Now from the nature of the eccentric circle, $a_{1} b_{1}, d_{1} e_{1}$ meet in S , that is, the point g_{1} is S .

Similarly	$"$	$"$	h_{2} is S
and	$"$	$"$	k_{3} is S.

Hence the three straight lines, $g_{1} h_{1} k_{1}, g_{2} h_{2} k_{2}, g_{3} h_{3} k_{3}$ have one point S common and they are parallel, because the figures are similar and similarly situated;

\therefore the three lines are coincident.

Now taking the three triangles $\mathrm{O}_{1} a_{1} g_{1}, \mathrm{O}_{2} a_{2} g_{2}, \mathrm{O}_{3} a_{3} g_{3}$ which are similar, we have

$$
\frac{\mathrm{O}_{1} g_{1}}{\mathrm{O}_{1} a_{1}}=\frac{\mathrm{O}_{2} g_{2}}{\mathrm{O}_{2} a_{2}}=\frac{\mathrm{O}_{2} g_{3}}{\mathrm{O}_{3} a_{3}}
$$

and if $\mathrm{O}_{1} m_{1}, \mathrm{O}_{2} m_{2}, \mathrm{O}_{3} m_{3}$ are the perpendiculars from $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ to the directrix, we have

$$
\frac{\mathrm{O}_{1} a_{1}}{\mathrm{O}_{1} m_{1}}=\frac{\mathrm{O}_{2} a_{2}}{\mathrm{O}_{2} m_{2}}=\frac{\mathrm{O}_{3} a_{3}}{\mathrm{O}_{3} m_{\mathrm{s}}}=e ;
$$

it therefore follows that

$$
\frac{\mathrm{O}_{1} g_{1}}{\mathrm{O}_{1} m_{1}}=\frac{\mathrm{O}_{2} g_{2}}{\mathrm{O}_{2} m_{2}}=\frac{\mathrm{O}_{3} g_{3}}{\mathrm{O}_{3} m_{3}} ;
$$

$\therefore \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ are in a straight line, and it passes through the point in which the Pascal line of the cyclic hexagons meets the directrix.

On Newton's Theorem in the Calculus of Variations.
By J. H. Maclagan-Weddrrburn, M.A.

