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1. Introduction

Various (explicit and/or abstract) Capelli identities corresponding to multiplicity-free
actions were established in [4]. Among the explicit identities given there, only those
relating skew-symmetric matrices under the action of GLN have not yet been completely
understood explicitly, although their general nature was determined. What is desired
here is to obtain an explicit formula for the skew Capelli element (see p. 592, Remark (a)
in [4] and see also [8]). Since in [4] the skew Capelli elements are introduced through
their eigenvalues in terms of the irreducible summands of the decomposition of the ring
of polynomials on the space of skew-symmetric matrices, it is difficult to obtain explicit
formulae directly from the definition. The main purpose of the present paper is to provide
such an explicit Capelli identity by using the minor summation formula of Pfaffians
established in [5]. In particular, we give an explicit formula for the skew Capelli element,
which in fact belongs to the centre ZU(glN ) of the universal enveloping algebra U(glN ),
in terms of the trace of powers of a matrix E = EN . Here, the (i, j)th element of the
matrix E is given by the (i, j)th standard basis elements Eij of glN . In this context,
the expression ‘the Capelli identity’ refers to a description of the invariant (polynomial
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coefficients) differential operators in terms of some suitable elements in ZU(glN ) under
the corresponding infinitesimal action of GLN .

To find the skew Capelli elements, we look at the following identity as our starting
point (see p. 296, Remark 2 in [5]):

[n/2]∑
t=0

λt
∑
i∈In

2t

pf(Xi) pf(∂i) = (−1)(n(n−1))/2 pf

(
−X In

−In λ∂

)
. (1.1)

Here, ∂ represents a dual matrix of X = (xij) obtained by replacing xij with ∂/∂xij ,
and Xi and ∂i, respectively, represent the sub-matrix of X and the sub-matrix of ∂

determined by the subscript i (see § 2 below for the precise meaning of the notation).
The important fact here is that the coefficients of the λt on the left-hand side give rise to
the generators of the ring of invariant differential operators with polynomial coefficients.
Actually, it is easy to see from this expression that the operators are GLN -invariant.
Therefore, the problem is to determine how we can express the right-hand side in terms
of suitable polynomials in Eij under the action in question. In fact, these polynomials
turn out to be elements of ZU(glN )[λ].

Our strategy is to use the idea described above to obtain the desired identities. For
motivation and guidance, we start by considering the much simpler commutative case.
In § 2 we recall the classical Newton formula for describing the expression of elementary
symmetric polynomials in terms of power-sum symmetric polynomials and vice versa.
In other words, this is a relation between the trace of powers and the sum of minor-
determinants of a given square matrix. If we replace ∂ appearing in (1.1) by a matrix Y

whose elements commute elementwise with those of X, then we may state a certain vari-
ant of Newton’s formula in determinant form for a skew-symmetric matrix. This variant
describes a relation between the trace of powers and the sum of minor-Pfaffians. This
enables us to establish a ‘commutative’ counterpart (or, rather, the ‘leading term’ of a
differential operator) of a formula for the target Capelli identity (see Theorem 2.7). From
this identity we may guess the explicit form of the skew Capelli elements and the identi-
ties, respectively. In particular, it seems quite reasonable to expect that the skew Capelli
elements can be written nicely using the trace of the matrix powers Ek of E. Of course,
if one could compute eigenvalues of tr(Ek) in their entirety, then one might naturally
expect that the final answer could be found by employing the representation/invariant
theoretic characterization of the operators. However, this is not the case. Fortunately,
though, one can determine constant multiples which relate the generators (of the invari-
ant differential operators with polynomial coefficients) and the desired central elements
defined in terms of the various tr(Ek). Combining the information about such constant
multiples which can be obtained from Theorem 2.7 regarding the inductive properties
which our expected elements possess, we will finally obtain the sought-after Capelli iden-
tity in Theorem 3.2. It is worth noting that a similar procedure also works when one tries
to find a certain variant (using the trace of the matrix powers Ek) of the Capelli identity
for the most standard GLN ×GLN action on the full matrix algebra (see Theorem 3.15).

Moreover, in the very final part of the paper, we devote ourselves to computing the
explicit eigenvalues of our skew Capelli elements T̃k(E). In order to do this, we first eval-
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uate the eigenvalues of these elements on some class of representations (parametrized by
partitions of the box-type shape) which consists of a part of the above-mentioned irre-
ducible summands. Indeed, comparing this result with the very definition of the afore-
mentioned skew Capelli elements CΛ

k via the eigenvalues introduced in [4] we finish the
computation. This means that our skew Capelli elements T̃k(EN ) coincide with CΛ

k .

2. Newton’s formula for Pfaffians

In this section we give a Pfaffian version of Newton’s formula for a skew-symmetric
matrix.

We first recall the definition of the Pfaffian pf(X) for an 2m × 2m skew-symmetric
matrix X:

pf(X) =
∑

σ∈S2m/Bm

sgn(σ)xσ(1)σ(2)xσ(3)σ(4) · · ·xσ(2m−1)σ(2m).

Here Bm is the subgroup of the symmetric group S2m consisting of elements which
preserve the collection of pairs {{1, 2}, {3, 4}, . . . , {2m − 1, 2m}}. It is also convenient to
note that pf(X) can be expressed as

pf(X) =
1
m!

∑
σ∈Em

sgn(σ)xσ(1)σ=(2)xσ(3)σ(4) · · ·xσ(2m−1)σ(2m),

where we define Em = {σ = (σ(1), . . . , σ(2m)) ∈ S2m; σ(2k − 1) < σ(2k) (1 � k � m)}.
We now define

In
k = {i = (i1, . . . , ik); 1 � i1 < · · · < ik � n}

for n, k ∈ N satisfying k � n. Let X = (xij) be an n×n matrix. For each i = (i1, . . . , ik) ∈
In
k , we denote by Xi the sub-matrix of X defined by

Xi =




xi1i1 . . . xi1ik

...
. . .

...
xiki1 . . . xikik


 .

We now recall the minor summation formula of Pfaffians from [5].

Theorem 2.1 (the minor summation formula of Pfaffians). Let T be an n × n

matrix and let X and Y be n × n skew-symmetric matrices. Put m = [n/2], the integer
part of n/2. If we define Z = TY tT , then

m∑
�=0

λ�
∑
i∈In

2�

pf(Xi) pf(Yi) det(Ti) = (−1)(n(n−1))/2 pf

(
−X In

−In λZ

)
, (2.1)

where λ is a parameter, In is the n × n identity matrix and tT denotes the matrix
transposition of T .
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To simplify the following discussion we assume that n is even throughout this section.

Corollary 2.2. Suppose n = 2m is even. Let X and Y be n × n skew-symmetric
matrices. Then the multiplicity of each eigenvalue of the product XY is even.

Proof. Taking the square of both sides of (2.1) when T = In, we have

{ m∑
t=0

λt
∑
i∈In

2t

pf(Xi) pf(Yi)
}2

=

{
(−1)(n(n−1))/2 pf

(
−X In

−In λY

)}2

= det

(
−X In

−In λY

)

= det(−X) det(−X−1 + λY ) = det(In − λXY )

= λn det(λ−1In − XY ).

Put s = λ−1. Then the formula above turns out to be the characteristic polynomial of
the matrix XY . Namely, we have

det(sIn − XY ) =
{ m∑

t=0

sm−t
∑
i∈In

2t

pf(Xi) pf(Yi)
}2

. (2.2)

It hence follows that the multiplicities of the eigenvalues of XY are all even. �

We now recall the classical Newton formula.

Lemma 2.3 (the Newton formula). Let

ek =
∑

i1<i2<···<ik

xi1xi2 · · ·xik

be the kth elementary symmetric polynomials and pk =
∑

xk
i be the kth power-sum

symmetric polynomials. Among these symmetric polynomials the following relations hold:

k · ek =
k∑

i=1

(−1)i−1pi · ek−i (k = 1, 2, . . . ). (2.3)

This formula can also be expressed in the following determinant form, which is useful
for subsequent analysis (see, for example, p. 28 in [7]):

ek =
1
k!

det




p1 1 0 . . . 0 0
p2 p1 2 . . . 0 0
...

...
...

. . .
...

...
pk−2 pk−3 pk−4 . . . k − 2 0
pk−1 pk−2 pk−3 . . . p1 k − 1
pk pk−1 pk−2 . . . p2 p1




. (2.4)
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Definition 2.4. For an arbitrary n × n matrix T and k ∈ Z�0, we define Tk(T ) by

Tk(T ) =
1

2kk!
det




tr(T ) 2 0 . . . 0 0
tr(T 2) tr(T ) 4 . . . 0 0

...
...

...
. . .

...
...

tr(T k−2) tr(T k−3) tr(T k−4) . . . 2(k − 2) 0
tr(T k−1) tr(T k−2) tr(T k−3) . . . tr(T ) 2(k − 1)
tr(T k) tr(T k−1) tr(T k−2) . . . tr(T 2) tr(T )




for k � 1 and T0(T ) = 1.

Using Lemma 2.3 we have the following lemma.

Lemma 2.5. Let n, m ∈ N be such that n = 2m and let X and Y be n × n skew-
symmetric matrices. Then

pf(X) pf(Y ) = Tm(tXY ). (2.5)

Proof. Let α1 · · ·αm be the eigenvalues of tXY . If we put s = 0 in equation (2.2),
then {pf(X) pf(Y )}2 = α2

1 · · ·α2
m. Take the square root of each side of this relation. Then

substitute an appropriate matrix to determine the sign. This yields

em = pf(X) pf(Y ) = α1 · · ·αm. (2.6)

Thus, since
tr{(tXY )k} = 2(αk

1 + · · · + αk
m) (2.7)

for any k ∈ N, the assertion follows immediately from expression (2.4). �

The proof of the following lemma is the same as that of Corollary 2.2.

Lemma 2.6. We retain the notation and the assumptions of Lemma 2.5. We then
have

pf

(
−X In

−In λY

)
= pf(−X) pf(λY − X−1). (2.8)

In view of the minor summation formula (2.1), using Lemmas 2.5 and 2.6 we see that

m∑
�=0

λ�
∑
i∈In

2�

pf(Xi) pf(Yi) det(Ti) = (−1)(n(n−1))/2
Tm(λXZ − In). (2.9)

We are now in a position to state the following theorem. This theorem asserts that the
minor summation of the product of Pfaffians and/or determinants can be represented by
just one determinant whose entries are given by the trace of the related matrix powers.

Theorem 2.7. Let T be an n × n matrix and let X and Y be n × n skew-symmetric
matrices. Put Z = TY tT . For 0 � � � [n/2], the following identity holds:∑

i∈In
2�

pf(Xi) pf(Yi) det(Ti) = T�(tXZ). (2.10)
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For simplicity, we shall give the proof of Theorem 2.7 only for the case of even n. We
need the following expansion formula for Tk(λA + In) with respect to the parameter λ.

Proposition 2.8. Let n = 2m be an even integer and A be an n×n matrix. Suppose
0 � k � m. Then we have

Tk(λA + In) =
k∑

i=0

(
m − i

k − i

)
Ti(A)λi. (2.11)

Proof. We prove the lemma by induction on k. It clearly holds when k = 0. Now,
suppose that the formula holds for any l less than k. By the definition of Tk, if we expand
the determinant with respect to the last row, then we obtain

Tk(A) =
1
2k

k∑
i=1

(−1)i−1 tr(Ai)Tk−i(A). (2.12)

Using this relation, by the induction hypothesis and the binomial theorem we observe

Tk(λA + In) =
k∑

i=1

(−1)i−1 1
2k

tr{(λA + In)i}Tk−i(λA + In)

=
k∑

i=1

(−1)i−1 1
2k

{ i∑
j=0

(
i

j

)
tr(Aj)λj

}{k−i∑
l=0

(
m − l

k − i − l

)
Tl(A)λl

}

=
k∑

i=1

i∑
j=0

k−i∑
l=0

(−1)i−1 1
2k

(
i

j

)(
m − l

k − i − l

)
tr(Aj)Tl(A)λj+l.

We now divide the sum in Tk(λA + In) into two parts. That is, we set

Tk(λA + In) = χ1 + χ2,

where

χ1 =
k∑

i=1

i∑
j=1

k−i∑
l=0

(−1)i−1 1
2k

(
i

j

)(
m − l

k − i − l

)
tr(Aj)Tl(A)λj+l,

χ2 =
k∑

i=1

k−i∑
l=0

(−1)i−1 m

k

(
m − l

k − i − l

)
Tl(A)λl.

Now we put t = j + l, s = j and t − s = l and change the order of the summations
appearing in χ1. Then we have

χ1 =
k∑

t=1

t∑
s=1

k−t∑
i=0

(−1)i+s−1 1
2k

(
i + s

s

)(
m − t + s

k − t − i

)
tr(As)Tt−s(A)λt.
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We now recall two identities relating binomial coefficients. These identities can also be
easily verified by induction (see, for example, [2]). For any l, m, n ∈ Z�0 and r ∈ R, we
have

l∑
i=0

(−1)i

(
r

i

)
= (−1)l

(
r − 1

l

)
, (2.13)

l∑
i=0

(−1)i

(
l − i

m

)(
r

i − n

)
= (−1)l+m

(
r − m − 1
l − m − n

)
. (2.14)

Using (2.14), χ1 turns out to be

χ1 =
k∑

t=1

t∑
s=1

(−1)s−1 1
2k

(
m − t − 1

k − t

)
tr(As)Tt−s(A)λt.

Making use of (2.12) again, this expression becomes

χ1 =
k∑

t=1

t

k

(
m − t − 1

k − t

)
Tt(A)λt.

Similar manipulation yields

χ2 =
k−1∑
t=0

m

k

(
m − t − 1
k − t − 1

)
Tt(A)λt.

Adding χ1 and χ2, we thus obtain

Tk(λA + In) =
k∑

t=1

t

k

(
m − t − 1

k − t

)
Tt(A)λt +

k−1∑
t=0

m

k

(
m − t − 1
k − t − 1

)
Tt(A)λt

=
k∑

t=0

(
m − t

k − t

)
Tt(A)λt.

This completes the proof of the proposition. �

Proof of Theorem 2.7. If we consider the case k = m in (2.11), then we see that

Tm(λXZ − In) = (−1)m
Tm(−λXZ + In) = (−1)m

k∑
�=0

T�(tXZ)λ�. (2.15)

Since (n(n− 1))/2 ≡ m mod 2, if we combine (2.9) with (2.15), then the theorem follows
immediately. �
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3. Explicit Capelli identities

Let Λ2GLN denote the action of GLN on skew-symmetric two tensors. This is naturally
thought of as the action λ(g) : X → gX tg (g ∈ GLN ) on the space of skew-symmetric
matrices Λ2(CN ). We use Eij to represent a standard basis of the Lie algebra glN of
GLN . Then, let U(glN ) be the universal enveloping algebra of glN and ZU(glN ) be the
centre of U(glN ). We also denote the derived action of U(glN ) by λ. Then the standard
basis elements Eij of glN are represented by the linear vector fields as follows:

λ(Eij) =
N∑

t=1

(xit∂jt + xti∂tj). (3.1)

Remark 3.1. In applying this formula xij and xji should be treated as independent
variables. In other words, if we regard xij (i < j) as the standard coordinate functions
on Λ2(CN ), then we use the convention on notation that xji = −xij for i < j and also
use the convention ∂ji = −∂ij . Consequently, the infinitesimal action λ is interpreted as
λ(Eij) =

∑N
t=1 xit∂jt.

Let P(Λ2(CN )) be the ring of polynomials on Λ2(CN ). It is well known that the
natural action of GLN on P(Λ2(CN )) is multiplicity-free and that, in fact, the irreducible
decomposition of P(Λ2(CN )) under the action of glN is described by

P(Λ2(CN )) ∼=
⊕
D

�D
N ,

where D = (b1, b1, b2, b2, . . . ) runs over Young diagrams with columns of even length and
with depth(D) � N , and �D

N is the corresponding polynomial representation of GLN

(see, for example, [3]). The fundamental generators associated with Λ2(CN ) are given by

D2k = (1, 1, 1, 1, . . . , 1, 1)︸ ︷︷ ︸
2k-terms

,

and the corresponding fundamental highest-weight vectors are expressed in terms of
(the principal minor) Pfaffians ϕk = pf(X(1,2,...,2k−1,2k)) (see Lemma 3.8 below). Note
that �D2k

N
∼= Λ2k(CN ). Moreover, the highest-weight vector ϕD

N of �D
N for D = (b1, b1, b2,

b2, . . . ) is given by
∏[N/2]

k=1 ϕ
bk−bk+1
k . Let PD(Λ2(CN ))GLN be the algebra of GLN -invariant

differential operators with polynomial coefficients on Λ2(CN ). We now denote a typical
element of this space by X; that is, X is an N × N skew-symmetric matrix, and ∂ is a
dual matrix obtained by replacing xij with ∂ij = (∂/∂xij). Then it is known that the
canonical generators of PD(Λ2(CN ))GLN are given by

ΓΛ
k =

∑
i∈IN

2k

pf(Xi) pf(∂i) (1 � k � [N/2]).

The operator ΓΛ
k is characterized as an element of PD(Λ2(CN ))GLN up to constant

multiples by the following properties [4].
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(i) ΓΛ
k has degree k as a differential operator.

(ii) ΓΛ
k annihilates all �D

N occurring in P(Λ2(CN )) with depth (D) < 2k.

We now come to our main theorem, which gives Capelli identities for skew-symmetric
matrices in explicit form.

Theorem 3.2 (the skew Capelli identity). Define the (central) elements Ti,j ∈
ZU(glN ) by

Ti,j(E) = tr
{ i∏

t=j

(E − (1 − δit)(N − 2t))
}

(i � j).

Also define the element T̃k(E) ∈ ZU(glN ) by putting

T̃k(E) =
1

2kk!
det




T1,1(E) 2 0 . . . 0 0
T2,1(E) T2,2(E) 4 . . . 0 0

...
...

...
. . .

...
...

Tk−2,1(E) Tk−2,2(E) Tk−2,3(E) . . . 2(k − 2) 0
Tk−1,1(E) Tk−1,2(E) Tk−1,3(E) . . . Tk−1,k−1(E) 2(k − 1)
Tk,1(E) Tk,2(E) Tk,3(E) . . . Tk,k−1(E) Tk,k(E)




for each k ∈ Z�1 and T̃0(E) = 1. Then the following (skew Capelli) identities hold:

λ(T̃k(E)) = ΓΛ
k (0 � k � N/2), (3.2 a)

λ(T̃k(E)) = 0 (k > N/2). (3.2 b)

Remark 3.3. The statement (3.2 b) is equivalent to saying that the elements T̃k(E),
for k > N/2, vanish on �D

N for all Young diagrams with columns of even length at most
N .

We shall prove the theorem by induction on N . Thus, it is necessary to have precise
information about the properties and relations for the T̃k(E) (and hence the Ti,j(E))
between two cases glN and glN−1.

Let IN = 〈E1N , E2N , . . . , ENN 〉 be a left ideal of U(glN ) generated by the elements
{EjN}j=1,...,N of the Lie algebra glN . We now regard glN−1 as a subalgebra of glN in
an obvious way, that is, glN−1 is a subalgebra generated by {Ejk}1�j, k�N−1. When it
is necessary to specify the degree N of glN , we denote the matrix E = (Ejk)1�j, k�N ∈
MatN (glN ) by EN . Then we have the following proposition.

Proposition 3.4. For k � j (k, j ∈ Z�0), the following relation holds:

Tk,j(EN ) ≡ Tk,j(EN−1) mod IN .

From this proposition, we have in particular the following corollary.

Corollary 3.5.
T̃k(EN ) ≡ T̃k(EN−1) mod IN .
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In order to give a proof of the proposition above we need to prepare some lemmas.
First we observe the following lemma.

Lemma 3.6. For any k � 0, we have

trEk
N ≡

k∑
j=1

(
k − 1
k − j

)
trEj

N−1 mod IN .

Proof. It is obvious to see that

trEk
N ≡

N−1∑
i=1

k−1∑
�=0

∑
1�i1,...,ik−1�N,

#{j∈(1,...,k−1); ij=N}=�

Eii1Ei1i2 · · ·Eik−1i mod IN .

Take now a pair of indices (j1, . . . , j�) such that ijt = N (1 � t � �) and fix it. Then one
easily proves

N−1∑
i=1

∑
1�ij�N−1 (j �=jt for all 1�t��),
ij=N (j=jt for some t=1,...,�)

Eii1Ei1i2 · · ·Eik−1i ≡ trEk−�
N−1 mod IN , (3.3)

by induction on k. Since the number of ways for choosing a pair of ij from the set
(i1, . . . , ik−1) such that #{j ∈ (1, . . . , k − 1); ij = N} = � is obviously equal to

(
k−1

�

)
,

the desired formula follows from (3.3) immediately. �

Lemma 3.7. Define the numbers aN
� (k) by the following equation:

{x − (N − 2)}{x − (N − 4)} · · · {x − (N − 2(k − 1))} =
k∑

�=1

aN
� (k)x�−1.

Then we have

aN−1
� (k) =

k∑
�=j

(
� − 1
� − j

)
aN

� (k). (3.4)

Proof. By definition it is clear that

k∑
�=1

aN−1
� (k)x�−1 =

k∑
�=1

aN
� (k)(x + 1)�−1,

whence the binomial theorem implies (3.4). �

Proof of Proposition 3.4. We first remark that the equations

Tk,j(EN ) = Tk−1,j−1(EN ) + 2(k − j)Tk−1,j(EN ),

Tk,k(EN ) = T1,1(EN ) = trEN
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hold, simply because of the definition of Tk,j(EN ). By means of these equations, it is
sufficient to prove the statement in the case of k > 1 and j = 1. Now we note that

trTk,1(EN ) =
k∑

�=1

aN
� (k) trE�

N .

Substituting the relation described in Lemma 3.6 we see

trTk,1(EN ) ≡
k∑

�=1

aN
� (k)

�∑
j=1

(
� − 1
� − j

)
trEj

N−1 mod IN

≡
k∑

j=1

{ k∑
�=j

(
� − 1
� − j

)
aN

� (k)
}

trEj
N−1 mod IN .

Hence the result follows from Lemma 3.7. This completes the proof of the proposition. �

Before going on to prove the theorem, we need the following lemma.

Lemma 3.8. Suppose 0 � n � N . Let x = (xij)1�i, j�n be an n × n principal
submatrix of the skew-symmetric matrix X = (xij)1�i, j�N . Then we have

λ(Eij) pf(x) =




0 (n < j),

0 (1 � j � n, 1 � i � n, i �= j),

pf(x) (1 � j � n, i = j).

In particular, if we put m = [N/2], then we have

λ(Eij)(ϕα1
1 · · ·ϕαm

m ) = δij

( m∑
k=[(i+1)/2]

αk

)
ϕα1

1 · · ·ϕαm
m (i � j).

Proof. The first line follows immediately from the expression (3.1). Since pf(tgxg) =
det(g) pf(x), we see that the second and third lines are also obviously true. �

Remark 3.9. If b ∈ GLN is an upper triangular matrix, then the formula

pf((tbXb)(1,2,...,2k−1,2k)) = δ2k(b) pf(X(1,2,...,2k−1,2k))

holds for any skew-symmetric matrix X. Here δ2k(b) denotes the principal minor deter-
minant of b of order 2k (see, for example, [1]). This formula also implies the statement
of Lemma 3.8.

Proof of Theorem 3.2. By the definition of T̃k(EN ), it is clear that λ(T̃k(EN )) is
a degree k differential operator. Indeed, we know that λ(T̃k(EN )) has degree k as GLN -
invariant differential operator with polynomial coefficients. (Note also that the abstract
Capelli identity λ(ZU(glN )) = PD(Λ2(CN ))GLN holds (see [4]).) Comparing the defini-
tion (determinant expression) of T̃k(EN ) and Theorem 2.7, we see that the highest-order
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term (the leading term as a differential operator) of λ(T̃k(EN )) is exactly given by ΓΛ
k .

Actually, this fact is easily seen from the determinant expression of T̃k(EN ) by compar-
ing with the determinant Tk(X∂). This implies that the difference λ(T̃k(EN )) − ΓΛ

k is
of degree less than or equal to k − 1. This means that if we show λ(T̃k(EN )) satisfies
condition (ii) of the characterization of ΓΛ

k , then we conclude that (3.2 a) becomes true.
We show the desired identities (3.2 a), (3.2 b) by induction on N . First, it is clear that
(3.2 a), (3.2 b) hold for N = 1.

Suppose that the identities (3.2 a), (3.2 b) hold for N . Recall the highest-weight vector

ϕD
N =

[N/2]∏
k=1

ϕ
bk−bk+1
k

of �D
N , where ϕk = pf(X(1,2,...,2k−1,2k)) for a Young diagram D = (b1, b1, b2, b2, . . . ) of even

length. Note that λ(EiN+1)ϕ�
k = 0 for any � less than or equal to [N/2] by Lemma 3.8.

Note also that if depth(D) � 2k (� 2[N/2]), then we have ϕD
N+1 = ϕD

N . By Corollary 3.5,
for each k (0 � k � (N + 1)/2), if depth(D) � 2k (� 2[N/2]), then we have

T̃k(EN+1)ϕD
N+1 = T̃k(EN )ϕD

N+1 = T̃k(EN )ϕD
N .

Therefore, if D satisfies depth(D) < 2k (� 2[N/2]), then T̃k(EN+1)ϕD
N+1 = 0 holds

for N + 1 by the induction hypothesis (3.2 a) for N . The remaining case that we have
to show holds is only the case when k = (N + 1)/2 and depth(D) = N − 1 = 2[N/2]
for odd N , i.e. T̃(N+1)/2(EN+1)ϕD

N+1 = 0. But this in fact follows from the induction
hypothesis (3.2 b) for N . Thus the operator T̃k(EN+1) (0 � k � (N + 1)/2) satisfies the
characterization (i), (ii) of ΓΛ

k , whence the identity (3.2 a) for N + 1 follows. A similar
argument actually works when proving (3.2 b) for N + 1. This completes the proof of the
theorem. �

Our next task is to compute the explicit eigenvalues of the Capelli elements T̃k(E). In
other words, by Theorem 3.2 this is equivalent to determining the explicit value of the
constant sk which appeared as a ratio of ΓΛ

k to λ(CΛ
k ), where CΛ

k is the skew Capelli
element introduced in [4] (see p. 592). We shall prove below that sk = 1, that is, CΛ

k

coincides with T̃k(E) for each 1 � k � N/2.
To prove this it is necessary and sufficient to have precise information regarding the

eigenvalues of Ti,j(E) ∈ ZU(glN ) for some special representations. In fact, we shall
directly compute the eigenvalues for each representation corresponding to the Young
diagram of the box-type shape with columns of even length.

Using Lemma 3.8 we have the following lemma.

Lemma 3.10. Suppose 0 � n � N . Let k, b ∈ N. Let x = (xij)1�i, j�n be an n × n

principal submatrix of the skew-symmetric matrix X = (xij)1�i, j�N .

(a) If n < i1 � N , then

λ(Ei1ik
Eikik−1 · · ·Ei2i1) pf(x)b = 0. (3.5)
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(b) If 1 � i1 � n and ij ∈ {i1} ∪ {n + 1, n + 2, . . . , N} for all j ∈ {2, 3, . . . , n}, then

λ(Ei1ik
Eikik−1 · · ·Ei2i1) pf(x)b = b#{j∈{2,...,k}:ij=i1}+1 pf(x)b. (3.6)

(c) If 1 � i1 � n and there exists j ∈ {2, 3, . . . , n} such that ij �∈ {i1} ∪ {n + 1, n +
2, . . . , N}, then

λ(Ei1ik
Eikik−1 · · ·Ei2i1) pf(x)b = 0. (3.7)

Proof. By Lemma 3.8, statement (a) is clear. To prove statement (b), we first assume
ij ∈ {n + 1, n + 2, . . . , N} for all j ∈ {2, 3, . . . , N}. We carry out this proof by induction
on k. If k = 2, then by Lemma 3.8 we have

λ(Ei1i2Ei2i1) pf(x)b = λ([Ei1i2 , Ei2i1 ] + Ei2i1Ei1i2) pf(x)b

= λ(Ei1i1 − Ei2i2 + Ei2i1Ei1i2) pf(x)b = b pf(x)b.

Assume that the statement holds for any j less than k. Then, since i2 > n we have

λ(Ei1ik
· · ·Ei3i2Ei2i1) pf(x)b

= λ(Ei1ik
· · ·Ei4i3([Ei3i2 , Ei2i1 ] + Ei2i1Ei3i2)) pf(x)b

= λ(Ei1ik
· · ·Ei5i4Ei4i3Ei3i1 + Ei1ik

· · ·Ei4i3Ei2i1Ei3i2) pf(x)b = b pf(x)b

provided ij �= i1 for all j = 2, . . . , k. We next suppose il = i1 for some l (> 1). We may
assume that l is the smallest among such integers. Then by the same reasoning it is clear
that

λ(Eilil−1 · · ·Ei2i1) pf(x)b = b pf(x)b.

If there are other values of j such that ij = i1, then by repeating the same procedure we
obtain (b).

We prove (c) by induction on l. Let l be the smallest integer such that il �∈ {i1}∪{n+
1, n + 2, . . . , N}. If l = 2, statement (c) follows immediately from Lemma 3.8. Assume
that (3.7) holds for any j less than l. Then we have

λ(Eilil−1Eil−1il−2Eil−2il−3 · · ·Ei2i1) pf(x)b

= λ(([Eilil−1 , Eil−1il−2 ] + Eil−1il−2Eilil−1)Eil−2il−3 · · ·Ei2i1) pf(x)b

= λ(Eilil−2Eil−2il−3Eil−3il−4 · · ·Ei2i1 + Eil−1il−2Eilil−1Eil−2il−3 · · ·Ei2i1) pf(x)b.

Hence, the induction hypothesis yields

λ(Eilil−1Eil−1il−2Eil−2il−3 · · ·Ei2i1) pf(x)b

= λ(Eil−1il−2Eilil−1Eil−2il−3 · · ·Ei2i1) pf(x)b

= λ(Eil−1il−2([Eilil−1 , Eil−2il−3 ] + Eil−2il−3Eilil−1)Eil−3il−4 · · ·Ei2i1) pf(x)b

= λ(δil−1il−2Eil−1il−2Eilil−3Eil−3il−4 · · ·Ei2i1

+ Eil−1il−2Eil−2il−3Eilil−1Eil−3il−4 · · ·Ei2i1) pf(x)b.
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Again by the induction hypothesis, we find

λ(Eilil−1Eil−1il−2Eil−2il−3 · · ·Ei2i1) pf(x)b

= λ(Eil−1il−2Eil−2il−3Eilil−1Eil−3il−4 · · ·Ei2i1) pf(x)b.

Repeating the same procedure, we have λ(Ei1ik
Eikik−1 · · ·Ei2i1) pf(x)b = 0. This proves

the lemma. �

Corollary 3.11. Let 0 � n � N and let k, b ∈ N. Retain the notation in Lemma 3.10.
Then we have

λ(tr(Ek)) pf(x)b = nb(N − n + b)k−1 pf(x)b. (3.8)

Proof. The definition of tr(Ek) and statements (a) and (c) of Lemma 3.10 imply

λ(tr(Ek)) pf(x)b =
∑

1�i1,...,ik�N

λ(Ei1ik
· · ·Ei3i2Ei2i1) pf(x)b

=
n∑

i1=1

∑
i2,...ik∈{i1}∪{n+1,...,N}

λ(Ei1ik
· · ·Ei3i2Ei2i1) pf(x)b

=
n∑

i1=1

k−1∑
t=0

∑
i2,...,ik;

#{j∈(2,3,...,k); ij=i1}=t

λ(Ei1ik
· · ·Ei3i2Ei2i1) pf(x)b.

Since the number of ways to choose a pair of ij from (i2, . . . , ik) such that #{j ∈
(2, 3, . . . , k); ij = i1} = t is obviously equal to

(
k−1

t

)
, by virtue of (b) in Lemma 3.10 we

see that

λ(tr(Ek)) pf(x)b =
n∑

i1=1

k−1∑
t=0

(
k − 1

t

)
bt+1(N − n)k−t−1 pf(x)b.

The last expression gives (3.8) immediately. �

We now compute the eigenvalue of the operator λ(T̃k(E)) on the box-type represen-
tation �bD2l

N (bD2l = (b, b, . . . , b, b)). By Corollary 3.11, for any 0 � l � [N/2] and b ∈ N,
it is easy to verify that

λ(Ti,j(E))ϕb
l = λ

(
tr

{ i∏
t=j

(E − (1 − δit)(N − 2t))
})

ϕb
l

=




2lbϕb
l (i = j),

2lb

i−1∏
t=j

(2t + b − 2l)ϕb
l (i > j).

The following relation can be easily seen from the expression for the eigenvalue of
λ(Ti,j(E)):

λ(Ti,j(E))ϕb
l = {2(i − 1) + b − 2l}λ(Ti−1,j(E))ϕb

l (i > j). (3.9)
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Then, expanding the determinant λ(T̃k(E)) with respect to the last column and using
(3.9), we have

λ(T̃k(E))ϕb
l =

1
2k

[Tk,k(E) − 2(k − 1){2(k − 1) + b − 2l}]λ(T̃k−1(E))ϕb
l

=
(2k − 2 + b)(l + 1 − k)

k
λ(T̃k−1(E))ϕb

l .

Hence, by repeating this procedure k times we get

λ(T̃k(E))ϕb
l (= �bD2l

N (T̃k(E))ϕb
l ) =

1
k!

k∏
t=1

{2(k − t) + b}
k∏

t=1

(l + 1 − t)ϕb
l

=
Γ (l + 1)

Γ (l + 1 − k)Γ (k + 1)

k−1∏
t=0

(2t + b)ϕb
l , (3.10)

where Γ (z) is the gamma function.
Theorem 3.1 and Corollary (11.3.19) in [4] imply that the operators T̃k(E) actually

realize the skew Capelli elements CΛ
k up to constant multiples. By comparing eqn (11.3.6)

in [4] and the actual value (3.10) for the case D = bD2l, it is easy to check that the
constant should be equal to 1. Specifically, this implies that the general eigenvalue of the
operator T̃k(E) on �D

N is given as follows.

Proposition 3.12. We have

CΛ
k = T̃k(E) (1 � k � N/2).

In particular, for any Young diagram D = (b1, b1, b2, b2, . . . ) with columns of even length
we have

�D
N (T̃k(E)) =

∑
1�i1<···<ik�[N/2]

k∏
t=1

{2(k − t) + bit}. (3.11)

As an application of this formula or the special case of (3.10), we note, for example, the
following simple evaluation of the (simplest) Cayley-type formula (b-function) attached
to Λ2

C
2m.

Corollary 3.13. Let X = (xij) be an N × N skew-symmetric matrix and ∂ = (∂ij)
be the dual matrix of X. Then we have

pf(∂) pf(X)s =
[N/2]−1∏

t=0

(s + 2t) pf(X)s−1. (3.12)

We finish the paper by making one remark concerning the Capelli identities for the
standard GLN × GLN action on the space of N × N matrices.

Remark 3.14. The procedure developed in this paper may also be used to obtain the
Capelli-type identity for the N × N full matrix algebra under the GLN × GLN -action.
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Actually, we may replace the ordinary Capelli elements (see, for example, [10]) by the
traces of powers of E as central elements of U(glN ). Moreover, since the action is faithful,
this new expression for the Capelli identity provides a new type of the Newton formula
which is a variant of the formula discussed in [6] and [9]. Indeed, under the notation
in [4], we have the following theorem.

Theorem 3.15. We have the following Capelli identities attached to the GLN ×GLN

action on the space of all N × N matrices:

Γk = L(T̃′
k(E)) = L(Ck) (k � N),

where we define the element T̃
′
k(E) ∈ ZU(glN ) by putting

T̃
′
k(E) =

1
k!

det




T ′
1,1(E) 1 0 . . . 0 0

T ′
2,1(E) T ′

2,2(E) 2 . . . 0 0
...

...
...

. . .
...

...
T ′

k−2,1(E) T ′
k−2,2(E) T ′

k−2,3(E) . . . k − 2 0
T ′

k−1,1(E) T ′
k−1,2(E) T ′

k−1,3(E) . . . T ′
k−1,k−1(E) k − 1

T ′
k,1(E) T ′

k,2(E) T ′
k,3(E) . . . T ′

k,k−1(E) T ′
k,k(E)




for each k ∈ Z�1 and T̃
′
0(E) = 1. Here the matrix coefficients T ′

i,j(E) ∈ ZU(glN ) are
given by

T ′
i,j(E) = tr

{ i∏
t=j

(E − (1 − δit)(N − t))
}

(i � j).
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