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A GENERALIZATION OF RADON'S THEOREM II

H. TVERBERG

A new proof is given of the following result:

Let m and d be positive integers, and let a set of

md + m - d points be given in d-dimensional space. Then the

set can be partitioned into m sets such that the m convex

polytopes spanned by the sets have a non-empty intersection.

Let n-set mean a set of n points in / , We shall say that an

n-set is m-divisible if it can be divided into m sets in such a way that

the convex hulls of the m sets have a non-empty intersection. In 196^,

[6], I proved the following:

THEOREM. Any [m(d+l)-d)-set is m-divisible.

The proof has been regarded as difficult and it is therefore a

pleasure to be able to present a much simpler proof below. It is also a

pleasure to acknowledge my debt to Imre Barany, whose proof of Theorem 2.2

in [I] inspired the present one.

The proof is by induction on m . The case m = 1 is trivial and so,

assuming that the theorem holds for m = k > 0 , we are to prove that it

holds for m = k + 1 . Put K = (fe+l)(d+l) - d and let a K-set

n = \p , ..., p > be given. If the theorem is false for fi , then there

is an e > 0 such that it is also false for any set fl = {p , ..., p } ,
-»- K
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322 H. Tverberg

where | p. —p. | < e , i = 1, ..., K . We choose ft strongly independent,

as defined by Reay [4], and prove the theorem for ft , which suffices.

Strong independence of ft means that for each t and for any t affine

subspaces B. , ... , B. of FT , spanned by pairwise disjoint subsets of

ft , dim(B n ... n B.) = max(-l, dim B + ... + dim B ~{t-l)d) .

Consider a partition in ft , that is a partition of a subset of ft ,

consisting of disjoint non-empty sets ft-, , ft, , having the property

that conv fl n ... n conv ft, ± 0 . Such partitions exist by the case

m = k of the theorem. Choose such a partition for which the distance from

conv ft. to conv fl. n ... n conv ft, is minimal. If this distance is

zero, we are through, and so we assume it to be positive. A contradiction

will now be obtained by showing that some other partition in ft will make

the distance considered smaller.

Let q € conv ft- and r € conv ft. n ... n conv ft, be a pair of

points realizing the distance. By Caratheodory's theorem there is a

simplex, with vertex set ft' c ft , such that q is in the relative

interior of conv ft' . Replacing ft. by ft' , we may thus assume that q

is in the relative interior of conv ftQ . Similarly, we may assume that

each conv ft. , i = 1, ..., It , is a simplex with r in its relative

interior. Putting A. = aff ft. , the affine hull of ft. , we then get

dim j4.=|ft.|-l, i = 0, ..., k . Furthermore, by the condition of

strong independence,

dim [A n .. . O A A = dim A + ... + dim A - (k-l)d

= |ft u ... u ft J - k + d - kd .

We now want to prove that (2 u ... u ft, is a proper subset of ft ,

which will leave us some point p . to add to a suitable ft. so as to

lower the distance in question. Consider the parallel hyperplanes H

through q and H through r , both orthogonal to q - r . The open
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slab between them clearly separates conv ft. from

conv ft n ... n conv ft, . Furthermore ft- c H , while

conv ft n ... n conv ft, c H . The first of these inclusions holds true

because H is a supporting hyperplane of conv ft in q and q is in

the relative interior of the simplex conv ft.. . The second one holds

because r is in the relative interior of each simplex

conv ft , ..., conv ft, , so that some neighbourhood of r in A n ... n A^

is contained in conv ft n ... n conv ft^ , and is thus supported by #r in

R . (if it was not, it would meet the open slab mentioned above.) These
two inclusions show that A c H and A n ... n A, c H which, by the

u q ± K. i
strong independence in ft can happen only if

dim A + dim(4 n ... n 4fe) < d .

Thus

|ftQ| - 1 + |ftx u . . . u ftfe| _ k + d - kd < d ,

so t h a t

|ftQ u ... u ftfc| < k(d+i) + 1 = |ft| .

It is no restriction to assume that p ^ ft u ... u ft^ .

The easier case is when p is in that open halfspace, bounded by

H , in which #r lies. The segment qjp. will then be in

conv(ft. u {p,}) and for any point q' on it sufficiently near q , but

not equal to q , we will have |^'-r| < \i-r\ • Thus the distance from

conv(ftQ u {p.}) to conv ft n ... n conv ftj, will be smaller than that

from conv ft .

In the second, more difficult, case, p is separated (weakly) from

H-p ty # . We shall see that for some £ € {l, ..., k} there is a ray

from *" , contained in A . A. A . , ..., A. , which passes through

the simplex conv(ft- u {p }] and also lies in the halfspace bounded by H
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and containing H . Any point r' (# r) on this ray, sufficiently near

r , will then satisfy |<?-̂ '| < |<?-F| and also be in

conv Q n ... n conv(f2. u {p,}) n ... n conv fl, , so that the desired

contradiction will be obtained once again.

For the proof of the existence of the ray just mentioned, we introduce

an affine coordinate system in which r = (0, ..., 0) , p. = (l, ..., l) ,

A± is given by x. = 0 , j € C^, ... , A^ by x. = 0 , j € Cfc . Here

C.., ..., C, , form a partition in {l, ..., d} (with possibly some empty

parts). The disjointness of the C. is a consequence of the strong

independence in Q . Furthermore H is given by a x + ... + <z>Ej = 0 ,

where a. = 0 for j {: (C u ... u C,) , as we have seen that

A n ... n A, c H . The a.'s are normalized so that p (which is not

in H ) lies in the hyperplane a-,x-> + • • • + ̂ ^ J = 1 • Thus H will

have the equation a x + ... + aj;, = a , with 0 < a 5 1 .

Now consider the flat aff(fi u {p^}) n 4 n ... n A . It is no

restriction to assume that C = {l, ..., \C\\ ,

C = {|C |+1, ..., |C |+|C |} and so on. Then the point

p' = (1, ..., 1, 0, ... , 0) [\C \ l's) is in the flat, as it equals

p + (0, ..., 0, -1, ..., -l) . Furthermore p' and p are in the same

open halfspace of aff(fi. u {p..}) , bounded by A , as

(0, ..., -1, ..., -1) is in A . Hence the ray from r through p'

passes through the simplex conv(fi u {p,}) . It will also lie in the

halfspace bounded by H and containing H , provided

[a±, ..., ad) ' (1, ..., 1, 0, ..., 0) = a1 + ... + a ^ | > 0 . Thus, if

a + ... + a\n | > 0 , we have what we want. Similarly, we shall be

satisfied with a.\r i + ... + a., i î  . > 0 , and so on. But one of
I 0 I t I '
r i + ... + a . , i i^

2'

these equalities must hold, as a. + ... + ai. i i- i = 1 .
1 l^l + + l^l

https://doi.org/10.1017/S0004972700004858 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004858


A generalization of Radon's theorem 325

Doignon and VaIette [2] have proved that our theorem remains valid in

any affine space over an ordered division ring. The proof given above can

be modified so as to show this. Finally I would like to call the reader's

attention to the recent survey papers by Eckhoff [3] and Reay [5], which

give a lot of information on Radon's theorem and related matters.
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