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FREE DECOMPOSITIONS OF A LATTICE 

G. GRÂTZER AND J. SICHLER 

1. Introduction. Two basic questions have been raised for free products 
of lattices: 

1. Do any two free products have a common refinement? 
2. Can every lattice be decomposed into a free product of freely indecom­

posable lattices? 
Both questions have been around for some time and attempts at solving 

them were made especially after the Structure Theorem for Free Products was 
discovered (see G. Grâtzer, H. Lasker, and C. R. Piatt [3]). Partial answer to 
question one was supplied in A. Kostinsky [7]. 

In this paper we answer both questions. Our basic observation is that the 
proper framework for these results is the theory of free K-products, that is, 
free products in an arbitrary equational class K of lattices. This approach has 
the advantage that the answers are supplied for all equational classes of lattices. 

It is especially simple to answer Question 1 for equational classes having a 
special property (J) (see §2) describing certain sublattices of free products. 
We also show that many equational classes fail to have (J). 

2. Results. An equational class K of lattices is called trivial if it is the class 
of all one element lattices; otherwise it is nontrivial. 

THEOREM 1. Let K be a nontrivial equational class of lattices. For any L in K, 
any two representations of L as a free K-product have a common refinement. 

It is easy to state what the common refinement is. To simplify our notation, 
we agree that we use the "internal" definition of free K-product, that is, the 
free K-factors are considered as sublattices of the free K-products. To further 
simplify our notation, let us agree that if L is a lattice and (A t\i £ / ) is a 
family of subsets of L where each A t is either a sublattice or the empty set, 
then we say that L is a free K-product of (A t\i £ / ) if and only if L is a free 
K-product of (At\i £ / and Ai ^ 0). 

THEOREM 1'. Let L be a free K-product of (A t\i £ I) and of (Bj\j £ J). Then 
L is a free K-product of (Af P\ B 3\i Ç / , j Ç J) and, for i £ I, A t is a free 
K-product of (Atr\ Bj\j 6 J ) , and, for j £ J, Bj is a free K-product of 
(Air\Bj\i £ / ) . 

Theorem V has many important consequences. 
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COROLLARY 1. If L is a free K-product of A and B, and also of A and C, then 
B = C. 

Corollary 1 is the Cancellation Property for Free Products. Observe that in 
Corollary 1 we assumed that A, B, and C are sublattices of L and we concluded 
the unexpectedly strong B = C. It is natural to ask whether the isomorphism 
of the free K-products would imply B isomorphic to C? To state it more 
precisely, let Li} i = 1, 2, be the free K-products of A t and Bt; does L\ ^ L2 

and Ai = A2 imply that B\ = B21 It was remarked by S. Comer that no 
result of this sort can hold for an equational class K; we can always choose 
Li ^ U ^ Ax ^ A2 ^ -FK(KO), B1 = FK(1), and B2 = FK(2). (FK(m) is the 
free lattice over K on m generators). S. Comer raised the question what 
happens if Ai is finitely generated. 

COROLLARY 2. Let A be a finitely generated lattice in K. If Lu i = 1, 2, is a free 
K-product of A and Bu and L\ = L2, then B\ == B2-

Call a lattice L in K freely K-indecomposable if and only if L cannot be 
represented as a free K-product of two lattices. A result, related to Corollary 2, 
is the following: 

COROLLARY 3. Let A be a freely K-indecomposable lattice in K. If Lui = 1, 2, 
is a free K-product of A and Bu and L\ = L2, then B\ ~ B2. 

The standard consequences of Theorem 1 are as follows: 

COROLLARY 4. / / L is a free K-product of A and B, and of A\ and Bu then 
A Ç A i implies that B~Q_B\. 

COROLLARY 5. Let L be the free K-product of (A^i G / ) and of (B-\j 6 J). 
Assume that all A u i Ç / , and Bjyj G J, are freely K-indecomposable. Then there 
is a bisection cp between I and J such that At = Bi<f> for all i £ I. 

In other words, decomposition into freely K-indecomposable components is 
absolutely unique. 

COROLLARY 6. Let L be the free K-product of (Ai\i G / ) and of (Bj\j G J). 
Assume that each Aui G / , is freely K-indecomposable. Then there is a partition 
(Ij\j G J) of I into nonvoid blocks such that, for each j G / , Bj is the free K-
product of (At\i G Ij). 

The next result shows that there are many lattices to which Corollaries 5 
and 6 do not apply. 

THEOREM 2. Let K be a nontrivial equational class of lattices. Then for each 
infinite cardinal rrt, there are 2m pairwise nonisomorphic lattices of cardinality m 
in K that cannot be represented as a free K-product of freely K-indecomposable 
lattices. 
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Another way of stating Theorem 2 is that the Common Refinement Property 
does not apply to infinitely many decompositions. 

The proof of Theorem V is especially simple if the equational class K satis­
fies the following property: 

(J) If L is a free K-product of the (Lt\i Ç / ) , A * is a sublattice of Lt for 
i G / , and A is the sublattice of L generated by U {A t\i Ç / ) , then A 
is a free K-product of {A t\i £ I). 

Observe that Theorem V is a special case of (J); it requires (J) to hold 
provided that A is a free K-factor. 

(J) was proved by B. Jonsson [5] for any equational class K having the 
Amalgamation Property. One can ask whether (J) holds for all equational 
classes. The following result shows that it is not the case; in fact, it provides 
2Ko equational classes failing (J). Recall that an equational class is arguesian 
(see [4]) if it satisfies a special identity in six variables which reflect the 
Desargues Theorem for the lattice of all sublattices of a projective space. 

THEOREM 3. Let K be an equational class of modular lattices. If K satisfies 
property (J), then K is arguesian. 

Theorem 3 yields 2Ko equational classes of modular lattices failing (J). A 
related result can be found in B. Jonsson [6] in which it is proved that if K 
is an equational class of modular lattices with the property that every sub-
directly irreducible member of K has dimension at most n for some fixed integer 
w, the K fails (J). 

3. Proof of Theorem 1. Let L be a free K-product of (At\i £ / ) . We assume 
that the A t are sublattices of L. We denote by L° the lattice obtained from L 
by adjoining a new zero, denoted by 0. Observe that if L Ç K, then so is L°. 
So for every i f I we can consider the homomorphisms ipt determined by 

a<fi = a for a (z A t\ 

apt = 0 for a £ A h j ^ i, j Ç / . 

For a G L we will use the notation: 

a<pi = aAi 

and call aAi the lower cover of a in A t. It follows from the definition that 

aAi ^ a 

and if aAi G A t, then aAi is the largest element of A * below a (see B. Jonsson 
[6]). 

Now let L be also the free K-product of (Bj\j G / ) . Take a G A t. We claim 
that 

aBj 6 ( ^ n ^ . ) U ( O ) . 
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Since L is generated by U (Bj\j € J) we can represent a in the form 

a = P(bjl<iJ . . . , bjlt7ll1 . . . , bjkti, . . . , bjk>nk), 

where p is an (wi + . . . + ftyO-ary lattice polynomial, j i , . . . , j * € ^> and 
6^,m 6 l^,- for i = I, . . . , k, 1 ^ m ^ nt. Computing the lower 4̂ r c o v e r s 
and observing tha t aAt- = a we obtain 

« = / > ( ( & i i , i ) A , i • • • , (bjk,nk)Ai). 

We can assume, without any loss of generality, t ha t j = j \ . Forming lower 
23 rcovers we get 

aBj = p(bjlfU • • • , &ji,»i, 0, . . . , 0, . . . , 0) , 

and 

aBj = (aAi)Bj = P(((bjlti)Ai)Bj1 . . . , ((bjk,nk)Ai)Bj). 

Observe, however, t ha t for any r ^ 1 and 1 ^ t ^ nr, 

Ubjr,t)Ai)Bj = 0, 

so 

dBj = P(bjlti, . . . , bjuniJ 0, . . . , 0) = p(((bjlti)Ai)Bj, . . . , ((bjl>ni)Ai)Bj} 

0, . . . , 0 ) . 
Since £ is isotone and for all 1 ^ / ^ Wi 

we obtain 

GBy = P(bjltu • • • , 6j l tW1, 0, . . . , 0) ^ P((bn,l)Ai, • • • , (6ilfni)Ai, 

0, . . . , 0) 

^ p{({bn,ni)Ai)Bj, • • • , ((6ii,»i)A<)j8i, 0, . . . , 0) = aB-, 

and so 

aBj = p((bJlA)Ai1. . . , (bjlini)Ait0,. . . , 0 ) M ^ U {0}. 

By definition, aBj £ £ ; U {0}, hence 

as claimed. 
This implies immediately t ha t 

« = £ ( ( ^ 1 . 0 A O • • • , (bji,ni)Ai, • • • , (bjktnk)Ai), 

and so .4 , is generated by U {A, H 5 , | j G / ) U {0}. 
Now a simple induction on the rank of a polynomial proves t ha t for 

and for the polynomial of smallest rank p representing a in the form 

a = p(ai,... , 4 f l i A» £ U G 4 * n £ , | j < E J ) U {0}; 
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no a i is 0, and therefore A < is generated by U (̂ 4 * C\ Bj\j G / ) . 
If K satisfies property (J) then we are done: A < is a free K-product of 

( i4<ns, | je / ) . 
In the general case, we form the lattice L, a free K-product of 

(At C\ Bj\i G / , j G J) and take the natural homomorphism 

a : L —> L 

that is the identity map on each Atr\ Bj (i G / and j G / ) . We wish to show 
that a is an isomorphism. Since a is obviously onto, it is sufficient to show that 
a is one-to-one. It is easily seen that it is sufficient to verify this on the sub-
lattice of L generated by U {A { H Bj\j G J) (because this implies that A x is 
a free K-product of (At H Bj\j €_ / ) ) . 

First, some notation. Let At be the sublattice of L generated by 
U (A i C\ Bj\j G J ) ; let at be the restriction of a to At\ 

a i i T i - t A i 

is again an onto homomorphism, and let 9 and 0* be the kernels of a and at 

respectively. Note that 0* = 0 H (X*)2 for i G J. 

C/aim 1. 0 is the smallest congruence relation of L containing all the 0 f , 
i G / . 

Proof. 0 is a congruence relation containing all 0*, i G / , hence if <ï> is the 
smallest one with this property, then $ fg 0. Factor a through L/$; a = (3y, 
where /3 is the natural homomorphism from L onto Z / $ . Then (A^fi = A t 

and so 7 is an isomorphism from (At)ft onto A t. It is routine to check that 
Z / $ satisfies all the properties of a free K-product of the (A t\i G / ) and so 
7 is an isomorphism and 0 = <ï>, as claimed. 

Claim 2. For a G ^4t-, 

GA,- n * y = (aa)By. 

Proof. Since 4̂ * is generated by U (A t P\ 5 ; | j G J ) we can write a in the form 

a = p(au . . . , an, bu . . . , 6OT), 

where ai, . . . , an G A t H i ^ and fri, . . . , bm G U (-4 t H £*|& G J, k ^ 7). 
Then 

«A< n^i = P(«i> . . . , an, 0, . . . , 0). 

Applying a to the representation of a, we obtain 

aa = p(au . . . , an, &i, . . . , 6m) 

since a: is the identity map on U (A t P\ Bn\i £ I, n £ J). 
Therefore, 

(aa)Bj = £(ai, . . . , an, 0, . . . , 0), 

since (bn)B] = 0 in view of &n G 4̂ * O J3* for some k 7^ j . This proves Claim 2. 
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Claim 3. Let A be a free K-product of B, C, and D, and let a be in the sub-
lattice generated by B and C. Then 

where ac is formed in [ 5 U C ] . 

Proof. This is clear from the definition of lower cover. 

Now we return to the proof of Theorem 1'. Let us fix j £ / and let Bj be 
the sublattice of L generated by U (A t H\ B 3\i £ / ) . 

For a £ At, 

aAi HBJ = (aa)Bj 

by Claim 2, and so by Claim 3, 

aBj = (aa)Bj. 

So if a, b £ Aiy a = 6(0*), then aa = ba and thus (aa)Bj = (ba)Bj. Therefore, 

a = 6(0*) implies that aBj = 6gy. 

Using Claim 1, and the description of the minimal congruence relation con­
taining a set of pairs of elements (see, e.g. [1]) we obtain: 

a = 6(0) implies that aBj = bBj. 

So if a, 6 G -S^ and a = 6(0), then 

a = asy = bBj = 6, 

that is, a is one-to-one on Bj. This shows that 5 7 and Bj are isomorphic, com­
pleting the proof of Theorem 1'. 

4. Proof of the Corollaries. We need a simple lemma: 

LEMMA 1. Let L be the free K-product of A and B. If for a sublattice A\ of A, 
L is generated by A i \J B, then A = A\. 

Proof. Let a £ A. Since A\\J B generates L, 

a = p(au . . . , an, 61, . . . , bm), 

for some polynomial p and ai, . . . , an £ Ai, bi, . . . , bm £ i?. Therefore, 

a = aA = £(ai, . . . , an, 0, . . . , 0) 

and so a G (Ai U {0}) H 4 . Thus A C 4 i , proving 4 = 4 i . 

We start proving the Corollaries with Corollary 4. Let A, B, A\y B\, and L 
be given as in Corollary 4, and let A Q Ai. By Theorem 1', 

AC\AU AC\BU A1C\B1 B H Bx 
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is the common refinement, and A = A H Ai, A P\ B\ = 0, so 

gives a free K-product decomposition of L. Thus, applying Lemma 1 to Ai, B\ 
and to the sublattice B C\ B\ of Bi, we conclude that B C\ Bi = J5i, that is 
B 2 5 i , proving Corollary 4. 

Now assume that A, B, and C are given as in Corollary 1. Then by Corollary 
4 , 5 Ç C a n d C Ç 5 , s o 5 = C. 

To verify Corollary 3, let L be a free K-product of ^4, £ i and of A', B2, where 
A •= A' is freely K-indecomposable. By Theorem Y we get that A is a free 
K-product of 4̂ H A' and 4 Pi 5 2 , and so 

AC\A' = 0 or i n ^ = B. 

Similarly, 

i 4 ' n 4 = 0 or i 4 ' n 5 i = 0. 

If 4̂ H A' = 0, then by Theorem V we get the decomposition 

AC\B2, B1r\A,
J B2C\Bi. 

Applying Lemma 1 to A, Bi, and the sublattice A r\ B2 of A} we conclude 
that A Ç £2 . By Corollary 4, yl' Ç ^ j , and so L is a free K-product of A, A', 
and B\ C\ B2. Thus B\ is a free K-product of A' and i?i P\ B2} B2 is a free 
K-product of A and £ i C\ B2 and therefore £ i ~ B2. 

If ^ H A' •£ 0, then .4 H £ 2 = 0 and A' C\ B1 = 0, and so I is a free 
K-product of A C\ A ' and B\ C\ B2. Applying Lemma 1 twice we get B\ C\ B2 = 
Bi and B\ C\ B2 = B2, and so Bx = B2. The proof of Corollary 3 is thus 
complete. 

Before we proceed to Corollary 2 we need a lemma: 

LEMMA 2. A finitely generated lattice L in K is a free K-product of finitely 
many freely K-indecomposable lattices.\ 

Proof. Let L be w-generated. We prove Lemma 2 by induction on n. If 
n = 1, then \L\ = 1 and so L is K-indecomposable. Let us assume the state­
ment proved for lattices with less than n generators. If L is K-indecomposable, 
we have nothing to prove. So let L be a free K-product of A and B. Let ai, . . . , 
an be a generating set of L. Take a £ A and b £ B; then 

a = £(ai, . . . , an), 6 = q(au . . . , are), 

for suitable polynomials p and g. Hence 

« = £ ( (ÛI)A, • • • , 0 „ ) A ) , 6A = 0 = g((ai)A, . . . , (an)A). 

fA sharper result follows from the main result of G. Gràtzer and J. Sichler, Proc. Amer. 
Math. Soc. 1+6 (1974), 9-14, namely that an w-generated lattice is a free i£-product of at most 
n lattices. 
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From the first equation we conclude that A is generated by (ai)A, . . . , (an)A, 
and from the second we see that so is {0}, and therefore {at)A = 0 for some 
1 ^ i ^ n. Therefore, A is (n — 1 )-generated. Similarly, B is (n — 1)-
generated, and by induction hypothesis, A and B are free K-products of freely 
K-indecomposable lattices. And, therefore, so is L. 

Now Corollary 2 is trivial. By Lemma 2 we write A as a free K-product of 
freely K-indecomposable lattices and the free K-factors can be cancelled one-
by-one by Corollary 3. 

Corollaries 5 and 6 require no proof. 

5. Proof of Theorem 2. Let A be a lattice in K. We define a partial lattice 
P(A) as follows: 

P(A) = AKJ {a0, au a2, . . .} U {b0, bu b2, . . .} ; 
if x A y = z in A, then x A ^ = s i n P ( i ) ; 
if x V y = z in A, then x V ^ = s inP(^4 ) ; 
do A x = do and a0 V x = x, for all x £ 4̂ ; 
bn = an A bn+1 for w = 0, 1, 2, . . . . 

All the meets and joins are the ones listed above and in addition the meets and 
joins of comparable elements, namely, 50 A x = x, fro V x = x for all x Ç P(A), 
bn A bm = bn, bn V bm = bm, bn A am = bn and bn V am = am for n ^ m. 

Let G(-4) denote the lattice freely generated by P(A) in K. 

Claim 1. G (A) contains P{A). 

Proof. For an integer n, let 

P»C4) = -4 U {a0, . . . , an_i, 6o, • • • , &»-i} 

be the partial sublattice of P(A ). It is sufficient to show that for any integer n} 

Pn{A) can be isomorphically represented in a lattice in K. Let Ln be the free 
K-product of A and FK(n + 1), the latter freely generated by Xo, . . . , Xn. We 
view A and FK(n + 1) as sublattices of Ln. We map Pn(A) into Ln\ 

a —> Xo V a for a £ .4 
a0 —» #o 

aM_! —» xw_x 
^ n - l * xn~l A Xn 

#w-2 * xn~2 A # n - l A Xn 

bo —» xo A xi A . . . A xn. 
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This map is obviously one-to-one and preserves all meets and joins of Pn(A). 

Claim 2. For any integer n, G(A) is a free K-product of the lattices 

A U {a0}, {ai}, . . . , {an_i}, and Gn, 

where Gn is the sublattice of G (A) generated by {an, bn, an+i, 6n+i, . . .}. 

Proof. This follows trivially from the definition of free K-product as the 
lattice in K that is freely generated by the partial lattice formed as a disjoint 
union of the factors. 

Claim 3. G (A) is not the free K-product of freely K-indecomposable lattices. 

Proof. Claim 2 yields that G (A) can be written as a free K-product of n 
lattices for every integer n. So by Corollary 6, any decomposition of G (A) into 
freely K-indecomposable factors has to have infinitely many factors. However, 
a free K-product of infinitely many lattices does not have a least element. 
Since bo is the zero of G (A), this verifies the claim. 

Claim 4. G (A) 9^ G (B) implies that A 9* B. 

Proof. By Claim 2 , i U {a0} is a free factor of G (A). A U {a0} has a zero, 
a0, which is meet-irreducible, therefore A VJ {a0} is freely K-indecomposable. 
Conversely, if A i is a freely K-indecomposable factor of G (A) with more than 
one element, then by Theorem 1/ and Claim 2, Ai has to be contained in one 
of A U {a0}, {ai}, . . . , and Gn. Since \Ai\ > 1, Ai Ç1 A U {a0} or AY C Gw. 
If Ax C 4̂ VJ {a0}, then ^4i = yl VJ {a0}, otherwise 4̂ U {a0} would not be 
freely K-indecomposable. Now if A\ $£ A \J {a0}, then Ai Q Gn for all n, and 
so^4i Ç Pi (Gn\n = 1, 2, . . .) = 0 , a contradiction 

Therefore, we recognize A U {a0} in G(^4) as the only free factor with more 
than one element, verifying the claim. 

Now Theorem 2 is trivial. If A ranges over a set of pairwise nonisomorphic 
lattices of cardinality m (all belonging to K), then G (A) will give the same 
number of pairwise nonisomorphic lattices of cardinality m each of which 
satisfies Claim 3. It is well known that there are 2m pairwise nonisomorphic 
lattices of cardinality m in K. 

6. Proof of Theorem 3. The proof of Theorem 3 is based on a lemma of 
[2]. 

LEMMA 3. Let L be a modular lattice and let M5 = {o, a, b, c, i) be a sublattice 
of L which is the five element nondistributive lattice with o as its least and i its 
greatest element. Then the interval [o, a] as a lattice satisfies the arguesian identity. 

Now let K be an equational class of modular lattices. Let us assume that K 
does not satisfy the arguesian identity but that K satisfies (J). 
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Since K is not arguesian and the arguesian identity has six variables, FK(&) 
is not arguesian; let xi, . . . , Xe be the free generators of FK(6). 

Now let L be the free i£-product of M5 and FK(6). Let A = {o, a, b, i) be 
a four-element sublattice of M5. Since (J) is assumed to hold in K, the sub-
lattice L\ of L generated by A and FK(6) is the free K-product of A and 
^ K ( 6 ) - But A is FK(2), and so Li is the free lattice over K on the generators 
a , by xi, . . . , XQ. 

Now let L2 be the sublattice of L\ generated by the elements yt = 
(a A xt) V o, i = 1, 2, . . . , 6. We claim that L2 ^ FK(6) with yu . . . , y6 as 
the free generators. Indeed, consider the homomorphism of L\ onto FK(6) 
defined by 

a —>xi V X2 V . . . V x6, & —»#i A X2 A . . . A x&, xt—*xu i = 1, 2, . . . , 6. 

This homomorphism maps y i —> x ,̂ i — 1, 2, . . . , 6, and so L2 onto FK(6); 
therefore L2 ^ FK(6). 

We conclude that in Li, the interval [o, a] is not arguesian (since it contains 
a copy of FK(6) which is not arguesian). But the interval [o, a] of Li is a 
sublattice of the interval [0, a] of L, and by Lemma 3 the latter interval is 
arguesian, a contradiction. 

REFERENCES 

1. G. Gràtzer, Lattice theory. First concepts and distributive lattices (W. H. Freeman and Co., 
San Francisco, 1971). 

2. G. Grâtzer, B. Jônsson, and H. Lakser, The amalgamation property in equational classes of 
modular lattices, Pacific J. Math. 45 (1973), 507-524. 

3. G. Grâtzer, H. Lakser, and C. R. Piatt, Free products of lattices, Fund. Math. 69 (1970), 
233-240. 

4. B. Jônsson, Modular lattices and Desargues Theorem, Math. Scand. 2 (1954), 295-314. 
5. Sublattices of a free lattice, Can. J. Math. 13 (1961), 256-264. 
5# Relatively free products of lattices, Algebra Universalis 1 (1972), 362-373. 
7. A. Kostinsky, Some problems for rings and lattices within the domain of general algebra, Ph.D. 

Thesis, Berkeley, 1971. 

University of Manitoba, 
Winnipeg, Manitoba 

https://doi.org/10.4153/CJM-1975-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-034-5

