FREE DECOMPOSITIONS OF A LATTICE

G. GRÄTZER AND J. SICHLER

1. Introduction. Two basic questions have been raised for free products of lattices:
2. Do any two free products have a common refinement?
3. Can every lattice be decomposed into a free product of freely indecomposable lattices?

Both questions have been around for some time and attempts at solving them were made especially after the Structure Theorem for Free Products was discovered (see G. Grätzer, H. Lasker, and C. R. Platt [3]). Partial answer to question one was supplied in A. Kostinsky [7].

In this paper we answer both questions. Our basic observation is that the proper framework for these results is the theory of free \mathbf{K}-products, that is, free products in an arbitrary equational class \mathbf{K} of lattices. This approach has the advantage that the answers are supplied for all equational classes of lattices.

It is especially simple to answer Question 1 for equational classes having a special property (J) (see §2) describing certain sublattices of free products. We also show that many equational classes fail to have (J).
2. Results. An equational class \mathbf{K} of lattices is called trivial if it is the class of all one element lattices; otherwise it is nontrivial.

Theorem 1. Let \mathbf{K} be a nontrivial equational class of lattices. For any L in \mathbf{K}, any two representations of L as a free \mathbf{K}-product have a common refinement.

It is easy to state what the common refinement is. To simplify our notation, we agree that we use the "internal" definition of free K-product, that is, the free \mathbf{K}-factors are considered as sublattices of the free \mathbf{K}-products. To further simplify our notation, let us agree that if L is a lattice and $\left(A_{i} \mid i \in I\right)$ is a family of subsets of L where each A_{i} is either a sublattice or the empty set, then we say that L is a free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$ if and only if L is a free K-product of ($A_{i} \mid i \in I$ and $A_{i} \neq \emptyset$).

Theorem 1'. Let L be a free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$ and of $\left(B_{j} \mid j \in J\right)$. Then L is a free \mathbf{K}-product of $\left(A_{i} \cap B_{j} \mid i \in I, j \in J\right)$ and, for $i \in I, A_{i}$ is a free \mathbf{K}-product of $\left(A_{i} \cap B_{j} \mid j \in J\right)$, and, for $j \in J, B_{j}$ is a free \mathbf{K}-product of $\left(A_{i} \cap B_{j} \mid i \in I\right)$.

Theorem 1^{\prime} has many important consequences.

Received August 20, 1973. This research was supported by the National Research Council of Canada.

Corollary 1. If L is a free \mathbf{K}-product of A and B, and also of A and C, then $B=C$.

Corollary 1 is the Cancellation Property for Free Products. Observe that in Corollary 1 we assumed that A, B, and C are sublattices of L and we concluded the unexpectedly strong $B=C$. It is natural to ask whether the isomorphism of the free \mathbf{K}-products would imply B isomorphic to C ? To state it more precisely, let $L_{i}, i=1,2$, be the free \mathbf{K}-products of A_{i} and B_{i}; does $L_{1} \cong L_{2}$ and $A_{1} \cong A_{2}$ imply that $B_{1} \cong B_{2}$? It was remarked by S . Comer that no result of this sort can hold for an equational class \mathbf{K}; we can always choose $L_{1} \cong L_{2} \cong A_{1} \cong A_{2} \cong F_{\mathbf{K}}\left(\boldsymbol{\aleph}_{0}\right), B_{1}=F_{\mathbf{K}}(1)$, and $B_{2}=F_{\mathbf{K}}(2) .\left(F_{\mathbf{K}}(\mathfrak{m})\right.$ is the free lattice over K on m generators). S. Comer raised the question what happens if A_{1} is finitely generated.

Corollary 2. Let A be a finitely generated lattice in \mathbf{K}. If $L_{i}, i=1,2$, is a free K-product of A and B_{i}, and $L_{1} \cong L_{2}$, then $B_{1} \cong B_{2}$.

Call a lattice L in \mathbf{K} freely \mathbf{K}-indecomposable if and only if L cannot be represented as a free \mathbf{K}-product of two lattices. A result, related to Corollary 2, is the following:

Corollary 3. Let A be a freely \mathbf{K}-indecomposable lattice in \mathbf{K}. If $L_{i}, i=1,2$, is a free \mathbf{K}-product of A and B_{i}, and $L_{1} \cong L_{2}$, then $B_{1} \cong B_{2}$.

The standard consequences of Theorem 1 are as follows:
Corollary 4. If L is a free \mathbf{K}-product of A and B, and of A_{1} and B_{1}, then $A \subseteq A_{1}$ implies that $B \supseteq B_{1}$.

Corollary 5. Let L be the free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$ and of $\left(B_{j} \mid j \in J\right)$. Assume that all $A_{i}, i \in I$, and $B_{j}, j \in J$, are freely \mathbf{K}-indecomposable. Then there is a bijection φ between I and J such that $A_{i}=B_{i \varphi}$ for all $i \in I$.

In other words, decomposition into freely \mathbf{K}-indecomposable components is absolutely unique.

Corollary 6. Let L be the free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$ and of $\left(B_{j} \mid j \in J\right)$. Assume that each $A_{i}, i \in I$, is freely \mathbf{K}-indecomposable. Then there is a partition $\left(I_{j} \mid j \in J\right)$ of I into nonvoid blocks such that, for each $j \in J, B_{j}$ is the free \mathbf{K} product of $\left(A_{i} \mid i \in I_{j}\right)$.

The next result shows that there are many lattices to which Corollaries 5 and 6 do not apply.

Theorem 2. Let \mathbf{K} be a nontrivial equational class of lattices. Then for each infinite cardinal \mathfrak{m}, there are $2^{\mathfrak{m}}$ pairwise nonisomorphic lattices of cardinality m in \mathbf{K} that cannot be represented as a free \mathbf{K}-product of freely \mathbf{K}-indecomposable lattices.

Another way of stating Theorem 2 is that the Common Refinement Property does not apply to infinitely many decompositions.

The proof of Theorem 1^{\prime} is especially simple if the equational class \mathbf{K} satisfies the following property:
(J) If L is a free \mathbf{K}-product of the ($L_{\imath} \mid i \in I$), A_{i} is a sublattice of L_{i} for $i \in I$, and A is the sublattice of L generated by $\cup\left(A_{i} \mid i \in I\right)$, then A is a free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$.

Observe that Theorem 1^{\prime} is a special case of (J); it requires (J) to hold provided that A is a free \mathbf{K}-factor.
(J) was proved by B. Jónsson [5] for any equational class \mathbf{K} having the Amalgamation Property. One can ask whether (J) holds for all equational classes. The following result shows that it is not the case; in fact, it provides $2^{\aleph_{0}}$ equational classes failing (J). Recall that an equational class is arguesian (see [4]) if it satisfies a special identity in six variables which reflect the Desargues Theorem for the lattice of all sublattices of a projective space.

Theorem 3. Let \mathbf{K} be an equational class of modular lattices. If \mathbf{K} satisfies property (J), then \mathbf{K} is arguesian.

Theorem 3 yields $2^{N_{0}}$ equational classes of modular lattices failing (J). A related result can be found in B. Jónsson [6] in which it is proved that if \mathbf{K} is an equational class of modular lattices with the property that every subdirectly irreducible member of \mathbf{K} has dimension at most n for some fixed integer n, the \mathbf{K} fails (J).
3. Proof of Theorem 1. Let L be a free \mathbf{K}-product of $\left(A_{i} \mid i \in I\right)$. We assume that the A_{i} are sublattices of L. We denote by L^{0} the lattice obtained from L by adjoining a new zero, denoted by 0 . Observe that if $L \in \mathbf{K}$, then so is L^{0}. So for every $i \in I$ we can consider the homomorphisms φ_{i} determined by

$$
\begin{array}{ll}
a \varphi_{i}=a & \text { for } a \in A_{i} \\
a \varphi_{i}=0 & \text { for } a \in A_{j}, j \neq i, j \in I
\end{array}
$$

For $a \in L$ we will use the notation:

$$
a \varphi_{i}=a_{A_{i}}
$$

and call $a_{A i}$ the lower cover of a in A_{i}. It follows from the definition that

$$
a_{A_{i}} \leqq a
$$

and if $a_{A_{i}} \in A_{i}$, then $a_{A i}$ is the largest element of A_{i} below a (see B. Jónsson [6]).

Now let L be also the free \mathbf{K}-product of $\left(B_{j} \mid j \in J\right)$. Take $a \in A_{i}$. We claim that

$$
a_{B_{j}} \in\left(A_{i} \cap B_{j}\right) \cup\{0\} .
$$

Since L is generated by $\cup\left(B_{j} \mid j \in J\right)$ we can represent a in the form

$$
a=p\left(b_{j_{1}, 1}, \ldots, b_{j_{1}, n_{1}}, \ldots, b_{j_{k}, 1}, \ldots, b_{j_{k}, n_{k}}\right),
$$

where p is an $\left(n_{1}+\ldots+n_{k}\right)$-ary lattice polynomial, $j_{1}, \ldots, j_{k} \in J$, and $b_{f_{i}, m} \in B_{j_{i}}$ for $i=1, \ldots, k, 1 \leqq m \leqq n_{i}$. Computing the lower A_{i}-covers and observing that $a_{A_{i}}=a$ we obtain

$$
a=p\left(\left(b_{j_{1}, 1}\right)_{A_{i}}, \ldots,\left(b_{j_{k}, n_{k}}\right)_{A_{i}}\right) .
$$

We can assume, without any loss of generality, that $j=j_{1}$. Forming lower B_{j}-covers we get

$$
a_{B_{j}}=p\left(b_{j 1,1}, \ldots, b_{j_{1}, n_{1}}, 0, \ldots, 0, \ldots, 0\right),
$$

and

$$
a_{B_{j}}=\left(a_{A i}\right)_{B_{j}}=p\left(\left(\left(b_{j_{1}, 1}\right)_{A_{i}}\right)_{B_{j}}, \ldots,\left(\left(b_{j_{k}, n_{k}}\right)_{A_{i}}\right)_{B_{j}}\right) .
$$

Observe, however, that for any $r \neq 1$ and $1 \leqq t \leqq n_{r}$,

$$
\left(\left(b_{f_{r}, t}\right)_{A_{i}}\right)_{B_{j}}=0,
$$

so

$$
\begin{array}{r}
a_{B_{j}}=p\left(b_{j_{1}, 1}, \ldots, b_{j_{1}, n_{1}}, 0, \ldots, 0\right)=p\left(\left(\left(b_{j_{1}, 1}\right)_{A_{i}}\right)_{B_{j}}, \ldots,\left(\left(b_{j_{1}, n_{1}}\right)_{A_{i}}\right)_{B_{j}}\right. \\
0, \ldots, 0) .
\end{array}
$$

Since p is isotone and for all $1 \leqq t \leqq n_{1}$

$$
b_{j_{1}, t} \geqq\left(b_{j_{1}, t}\right)_{A i} \geqq\left(\left(b_{j_{1}, t}\right)_{A i}\right)_{B j}
$$

we obtain

$$
\begin{aligned}
a_{B_{j}} & =p\left(b_{j_{1}, 1}, \ldots, b_{j_{1}, n_{1}}, 0, \ldots, 0\right) \geqq p\left(\left(b_{j_{1}, 1}\right)_{A i}, \ldots,\left(b_{j_{1}, n_{1}}\right)_{A_{i}},\right. \\
& \geqq p\left(\left(\left(b_{j_{1}, n_{1}}\right)_{A_{i}}\right)_{B_{j}}, \ldots,\left(\left(b_{j_{1}, n_{1}}\right)_{A_{i}}\right)_{B_{j}}, 0, \ldots, 0\right)=a_{B_{j}},
\end{aligned}
$$

and so

$$
a_{B_{j}}=p\left(\left(b_{j_{1}, 1}\right)_{A_{i}}, \ldots,\left(b_{j_{1}, n_{1}}\right)_{A_{i}}, 0, \ldots, 0\right) \in A_{i} \cup\{0\} .
$$

By definition, $a_{B_{j}} \in B_{j} \cup\{0\}$, hence

$$
a_{B_{j}} \in\left(A_{i} \cap B_{j}\right) \cup\{0\},
$$

as claimed.
This implies immediately that

$$
a=p\left(\left(b_{j_{1}, 1}\right)_{A i}, \ldots,\left(b_{j_{1}, n_{1}}\right)_{A_{i}}, \ldots,\left(b_{j_{k}, n_{k}}\right)_{A i}\right),
$$

and so A_{i} is generated by $\cup\left(A_{i} \cap B_{j} \mid j \in J\right) \cup\{0\}$.
Now a simple induction on the rank of a polynomial proves that for $a \in A_{i}$ and for the polynomial of smallest rank p representing a in the form

$$
a=p\left(a_{1}, \ldots, a_{n}\right), a_{1}, \ldots, a_{n} \in \cup\left(A_{i} \cap B_{j} \mid j \in J\right) \cup\{0\} ;
$$

no a_{i} is 0 , and therefore A_{i} is generated by $\cup\left(A_{i} \cap B_{j} \mid j \in J\right)$.
If \mathbf{K} satisfies property (J) then we are done: A_{i} is a free \mathbf{K}-product of $\left(A_{i} \cap B_{j} \mid j \in J\right)$.

In the general case, we form the lattice \bar{L}, a free K-product of $\left(A_{i} \cap B_{j} \mid i \in I, j \in J\right)$ and take the natural homomorphism

$$
\alpha: \bar{L} \rightarrow L
$$

that is the identity map on each $A_{i} \cap B_{j}(i \in I$ and $j \in J)$. We wish to show that α is an isomorphism. Since α is obviously onto, it is sufficient to show that α is one-to-one. It is easily seen that it is sufficient to verify this on the sublattice of \bar{L} generated by $\cup\left(A_{i} \cap B_{j} \mid j \in J\right)$ (because this implies that A_{i} is a free K-product of $\left(A_{i} \cap B_{j} \mid j \in J\right)$).

First, some notation. Let $\overline{A_{i}}$ be the sublattice of \bar{L} generated by $\cup\left(A_{i} \cap B_{j} \mid j \in J\right)$; let α_{i} be the restriction of α to $\overline{A_{i}}$;

$$
\alpha_{i}: \overline{A_{i}} \rightarrow A_{i}
$$

is again an onto homomorphism, and let θ and θ_{i} be the kernels of α and α_{i} respectively. Note that $\Theta_{i}=\theta \cap\left(\bar{A}_{i}\right)^{2}$ for $i \in I$.

Claim 1. θ is the smallest congruence relation of \bar{L} containing all the Θ_{i}, $i \in I$.

Proof. Θ is a congruence relation containing all $\theta_{i}, i \in I$, hence if Φ is the smallest one with this property, then $\Phi \leqq \theta$. Factor α through $\bar{L} / \Phi ; \alpha=\beta \gamma$, where β is the natural homomorphism from \bar{L} onto \bar{L} / Φ. Then $\left(\overline{A_{i}}\right) \beta \cong A_{i}$ and so γ is an isomorphism from $\left(\overline{A_{i}}\right) \beta$ onto A_{1}. It is routine to check that \bar{L} / Φ satisfies all the properties of a free \mathbf{K}-product of the $\left(A_{i} \mid i \in I\right)$ and so γ is an isomorphism and $\Theta=\Phi$, as claimed.

Claim 2. For $a \in \overline{A_{i}}$,

$$
a_{A i} \cap B_{j}=(a \alpha)_{B_{j}} .
$$

Proof. Since \bar{A}_{i} is generated by $\cup\left(A_{i} \cap B_{j} \mid j \in J\right)$ we can write a in the form

$$
a=p\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)
$$

where $a_{1}, \ldots, a_{n} \in A_{i} \cap B_{j}$ and $b_{1}, \ldots, b_{m} \in \cup\left(A_{i} \cap B_{k} \mid k \in J, k \neq j\right)$. Then

$$
a_{A i} \cap B_{j}=p\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0\right) .
$$

Applying α to the representation of a, we obtain

$$
a \alpha=p\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)
$$

since α is the identity map on $\cup\left(A_{i} \cap B_{n} \mid i \in I, n \in J\right)$. Therefore,

$$
(a \alpha)_{B_{j}}=p\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)
$$

since $\left(b_{n}\right)_{B_{j}}=0$ in view of $b_{n} \in A_{i} \cap B_{k}$ for some $k \neq j$. This proves Claim 2.

Claim 3. Let A be a free \mathbf{K}-product of B, C, and D, and let a be in the sublattice generated by B and C. Then

$$
a_{C}=a_{[C \cup D]},
$$

where a_{C} is formed in $[B \cup C]$.
Proof. This is clear from the definition of lower cover.
Now we return to the proof of Theorem 1^{\prime}. Let us fix $j \in J$ and let \bar{B}_{j} be the sublattice of \bar{L} generated by $\cup\left(A_{i} \cap B_{j} \mid i \in I\right)$.

For $a \in A_{i}$,

$$
a_{A_{i} \cap B_{j}}=(a \alpha)_{B_{j}}
$$

by Claim 2, and so by Claim 3 ,

$$
a_{\bar{B}_{j}}=(a \alpha)_{B_{j}} .
$$

So if $a, b \in A_{i}, a \equiv b\left(\Theta_{i}\right)$, then $a \alpha=b \alpha$ and thus $(a \alpha)_{B_{j}}=(b \alpha)_{B_{j}}$. Therefore,

$$
a \equiv b\left(\Theta_{i}\right) \text { implies that } a_{\bar{B}_{j}}=b_{\bar{B}_{j}} .
$$

Using Claim 1, and the description of the minimal congruence relation containing a set of pairs of elements (see, e.g. [1]) we obtain:

$$
a \equiv b(\Theta) \text { implies that } a_{\bar{B}_{j}}=b_{\bar{B}_{j}} .
$$

So if $a, b \in \bar{B}_{j}$ and $a \equiv b(\theta)$, then

$$
a=a_{\bar{B}_{j}}=b_{\bar{B}_{j}}=b,
$$

that is, α is one-to-one on \bar{B}_{j}. This shows that \bar{B}_{j} and B_{j} are isomorphic, completing the proof of Theorem 1^{\prime}.
4. Proof of the Corollaries. We need a simple lemma:

Lemma 1. Let L be the free \mathbf{K}-product of A and B. If for a sublattice A_{1} of A, L is generated by $A_{1} \cup B$, then $A=A_{1}$.

Proof. Let $a \in A$. Since $A_{1} \cup B$ generates L,

$$
a=p\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)
$$

for some polynomial p and $a_{1}, \ldots, a_{n} \in A_{1}, b_{1}, \ldots, b_{m} \in B$. Therefore,

$$
a=a_{A}=p\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)
$$

and so $a \in\left(A_{1} \cup\{0\}\right) \cap A$. Thus $A \subseteq A_{1}$, proving $A=A_{1}$.
We start proving the Corollaries with Corollary 4. Let A, B, A_{1}, B_{1}, and L be given as in Corollary 4 , and let $A \subseteq A_{1}$. By Theorem 1^{\prime},
$A \cap A_{1}, \quad A \cap B_{1}, \quad A_{1} \cap B, \quad B \cap B_{1}$
is the common refinement, and $A=A \cap A_{1}, A \cap B_{1}=\emptyset$, so

$$
A, \quad A_{1} \cap B, \quad B \cap B_{1}
$$

gives a free \mathbf{K}-product decomposition of L. Thus, applying Lemma 1 to A_{1}, B_{1} and to the sublattice $B \cap B_{1}$ of B_{1}, we conclude that $B \cap B_{1}=B_{1}$, that is $B \supseteq B_{1}$, proving Corollary 4 .

Now assume that A, B, and C are given as in Corollary 1. Then by Corollary $4, B \subseteq C$ and $C \subseteq B$, so $B=C$.

To verify Corollary 3 , let L be a free \mathbf{K}-product of A, B_{1} and of A^{\prime}, B_{2}, where $A \cong A^{\prime}$ is freely \mathbf{K}-indecomposable. By Theorem 1^{\prime} we get that A is a free K-product of $A \cap A^{\prime}$ and $A \cap B_{2}$, and so

$$
A \cap A^{\prime}=\emptyset \quad \text { or } \quad A \cap B_{2}=\emptyset
$$

Similarly,

$$
A^{\prime} \cap A=\emptyset \quad \text { or } \quad A^{\prime} \cap B_{1}=\emptyset
$$

If $A \cap A^{\prime}=\emptyset$, then by Theorem 1^{\prime} we get the decomposition

$$
A \cap B_{2}, \quad B_{1} \cap A^{\prime}, \quad B_{2} \cap B_{1}
$$

Applying Lemma 1 to A, B_{1}, and the sublattice $A \cap B_{2}$ of A, we conclude that $A \subseteq B_{2}$. By Corollary $4, A^{\prime} \subseteq B_{1}$, and so L is a free \mathbf{K}-product of A, A^{\prime}, and $B_{1} \cap B_{2}$. Thus B_{1} is a free \mathbf{K}-product of A^{\prime} and $B_{1} \cap B_{2}, B_{2}$ is a free K-product of A and $B_{1} \cap B_{2}$ and therefore $B_{1} \cong B_{2}$.

If $A \cap A^{\prime} \neq \emptyset$, then $A \cap B_{2}=\emptyset$ and $A^{\prime} \cap B_{1}=\emptyset$, and so L is a free K-product of $A \cap A^{\prime}$ and $B_{1} \cap B_{2}$. Applying Lemma 1 twice we get $B_{1} \cap B_{2}=$ B_{1} and $B_{1} \cap B_{2}=B_{2}$, and so $B_{1}=B_{2}$. The proof of Corollary 3 is thus complete.

Before we proceed to Corollary 2 we need a lemma:
Lemma 2. A finitely generated lattice L in \mathbf{K} is a free \mathbf{K}-product of finitely many freely \mathbf{K}-indecomposable lattices. \dagger

Proof. Let L be n-generated. We prove Lemma 2 by induction on n. If $n=1$, then $|L|=1$ and so L is \mathbf{K}-indecomposable. Let us assume the statement proved for lattices with less than n generators. If L is \mathbf{K}-indecomposable, we have nothing to prove. So let L be a free \mathbf{K}-product of A and B. Let a_{1}, \ldots, a_{n} be a generating set of L. Take $a \in A$ and $b \in B$; then

$$
a=p\left(a_{1}, \ldots, a_{n}\right), \quad b=q\left(a_{1}, \ldots, a_{n}\right),
$$

for suitable polynomials p and q. Hence

$$
a=p\left(\left(a_{1}\right)_{A}, \ldots,\left(a_{n}\right)_{A}\right), b_{A}=0=q\left(\left(a_{1}\right)_{A}, \ldots,\left(a_{n}\right)_{A}\right) .
$$

[^0]From the first equation we conclude that A is generated by $\left(a_{1}\right)_{A}, \ldots,\left(a_{n}\right)_{A}$, and from the second we see that so is $\{0\}$, and therefore $\left(a_{i}\right)_{A}=0$ for some $1 \leqq i \leqq n$. Therefore, A is $(n-1)$-generated. Similarly, B is $(n-1)$ generated, and by induction hypothesis, A and B are free \mathbf{K}-products of freely \mathbf{K}-indecomposable lattices. And, therefore, so is L.

Now Corollary 2 is trivial. By Lemma 2 we write A as a free \mathbf{K}-product of freely \mathbf{K}-indecomposable lattices and the free \mathbf{K}-factors can be cancelled one-by-one by Corollary 3.

Corollaries 5 and 6 require no proof.
5. Proof of Theorem 2. Let A be a lattice in \mathbf{K}. We define a partial lattice $P(A)$ as follows:

$$
\begin{aligned}
& P(A)=A \cup\left\{a_{0}, a_{1}, a_{2}, \ldots\right\} \cup\left\{b_{0}, b_{1}, b_{2}, \ldots\right\} ; \\
& \text { if } x \wedge y=z \text { in } A \text {, then } x \wedge y=z \text { in } P(A) ; \\
& \text { if } x \vee y=z \text { in } A \text {, then } x \vee y=z \text { in } P(A) ; \\
& a_{0} \wedge x=a_{0} \text { and } a_{0} \vee x=x \text {, for all } x \in A ; \\
& b_{n}=a_{n} \wedge b_{n+1} \text { for } n=0,1,2, \ldots
\end{aligned}
$$

All the meets and joins are the ones listed above and in addition the meets and joins of comparable elements, namely, $b_{0} \wedge x=x, b_{0} \vee x=x$ for all $x \in P(A)$, $b_{n} \wedge b_{m}=b_{n}, b_{n} \vee b_{m}=b_{m}, b_{n} \wedge a_{m}=b_{n}$ and $b_{n} \vee a_{m}=a_{m}$ for $n \leqq m$.

Let $G(A)$ denote the lattice freely generated by $P(A)$ in \mathbf{K}.
Claim 1. $G(A)$ contains $P(A)$.
Proof. For an integer n, let

$$
P_{n}(A)=A \cup\left\{a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}\right\}
$$

be the partial sublattice of $P(A)$. It is sufficient to show that for any integer n, $P_{n}(A)$ can be isomorphically represented in a lattice in \mathbf{K}. Let L_{n} be the free \mathbf{K}-product of A and $F_{\mathbf{K}}(n+1)$, the latter freely generated by x_{0}, \ldots, x_{n}. We view A and $F_{\mathbf{K}}(n+1)$ as sublattices of L_{n}. We map $P_{n}(A)$ into L_{n} :

$$
\begin{aligned}
& a \rightarrow x_{0} \vee a \text { for } a \in A \\
& a_{0} \rightarrow x_{0} \\
& \cdot \\
& \cdot \\
& \cdot \\
& a_{n-1} \rightarrow x_{n-1} \\
& b_{n-1} \rightarrow x_{n-1} \wedge x_{n} \\
& b_{n-2} \rightarrow x_{n-2} \wedge x_{n-1} \wedge x_{n} \\
& \\
& \quad \cdot \\
& \quad \cdot \\
& b_{0} \quad \rightarrow x_{0} \wedge x_{1} \wedge \ldots \wedge x_{n} .
\end{aligned}
$$

This map is obviously one-to-one and preserves all meets and joins of $P_{n}(A)$.
Claim 2. For any integer $n, G(A)$ is a free \mathbf{K}-product of the lattices

$$
A \cup\left\{a_{0}\right\},\left\{a_{1}\right\}, \ldots,\left\{a_{n-1}\right\}, \text { and } G_{n}
$$

where G_{n} is the sublattice of $G(A)$ generated by $\left\{a_{n}, b_{n}, a_{n+1}, b_{n+1}, \ldots\right\}$.
Proof. This follows trivially from the definition of free \mathbf{K}-product as the lattice in \mathbf{K} that is freely generated by the partial lattice formed as a disjoint union of the factors.

Claim 3. $G(A)$ is not the free \mathbf{K}-product of freely \mathbf{K}-indecomposable lattices.
Proof. Claim 2 yields that $G(A)$ can be written as a free K-product of n lattices for every integer n. So by Corollary 6 , any decomposition of $G(A)$ into freely \mathbf{K}-indecomposable factors has to have infinitely many factors. However, a free K-product of infinitely many lattices does not have a least element. Since b_{0} is the zero of $G(A)$, this verifies the claim.

Claim 4. $G(A) \cong G(B)$ implies that $A \cong B$.
Proof. By Claim 2, $A \cup\left\{a_{0}\right\}$ is a free factor of $G(A) . A \cup\left\{a_{0}\right\}$ has a zero, a_{0}, which is meet-irreducible, therefore $A \cup\left\{a_{0}\right\}$ is freely \mathbf{K}-indecomposable. Conversely, if A_{1} is a freely \mathbf{K}-indecomposable factor of $G(A)$ with more than one element, then by Theorem 1^{\prime} and Claim 2, A_{1} has to be contained in one of $A \cup\left\{a_{0}\right\},\left\{a_{1}\right\}, \ldots$, and G_{n}. Since $\left|A_{1}\right|>1, A_{1} \subseteq A \cup\left\{a_{0}\right\}$ or $A_{1} \subseteq G_{n}$. If $A_{1} \subseteq A \cup\left\{a_{0}\right\}$, then $A_{1}=A \cup\left\{a_{0}\right\}$, otherwise $A \cup\left\{a_{0}\right\}$ would not be freely \mathbf{K}-indecomposable. Now if $A_{1} \nsubseteq A \cup\left\{a_{0}\right\}$, then $A_{1} \subseteq G_{n}$ for all n, and so $A_{1} \subseteq \cap\left(G_{n} \mid n=1,2, \ldots\right)=\emptyset$, a contradiction

Therefore, we recognize $A \cup\left\{a_{0}\right\}$ in $G(A)$ as the only free factor with more than one element, verifying the claim.

Now Theorem 2 is trivial. If A ranges over a set of pairwise nonisomorphic lattices of cardinality m (all belonging to \mathbf{K}), then $G(A)$ will give the same number of pairwise nonisomorphic lattices of cardinality m each of which satisfies Claim 3. It is well known that there are 2^{m} pairwise nonisomorphic lattices of cardinality m in \mathbf{K}.
6. Proof of Theorem 3. The proof of Theorem 3 is based on a lemma of [2].

Lemma 3. Let L be a modular lattice and let $M_{5}=\{o, a, b, c, i\}$ be a sublattice of L which is the five element nondistributive lattice with o as its least and i its greatest element. Then the interval $[0, a]$ as a lattice satisfies the arguesian identity.

Now let \mathbf{K} be an equational class of modular lattices. Let us assume that \mathbf{K} does not satisfy the arguesian identity but that \mathbf{K} satisfies (J).

Since \mathbf{K} is not arguesian and the arguesian identity has six variables, $F_{\mathbf{K}}(6)$ is not arguesian; let x_{1}, \ldots, x_{6} be the free generators of $F_{\mathbf{K}}(6)$.

Now let L be the free K-product of M_{5} and $F_{\mathbf{K}}(6)$. Let $A=\{o, a, b, i\}$ be a four-element sublattice of M_{5}. Since (J) is assumed to hold in \mathbf{K}, the sublattice L_{1} of L generated by A and $F_{\mathbf{K}}(6)$ is the free \mathbf{K}-product of A and $F_{\mathbf{K}}(6)$. But A is $F_{\mathbf{K}}(2)$, and so L_{1} is the free lattice over \mathbf{K} on the generators $a, b, x_{1}, \ldots, x_{6}$.

Now let L_{2} be the sublattice of L_{1} generated by the elements $y_{i}=$ $\left(a \wedge x_{i}\right) \vee o, i=1,2, \ldots, 6$. We claim that $L_{2} \cong F_{\mathbf{K}}(6)$ with y_{1}, \ldots, y_{6} as the free generators. Indeed, consider the homomorphism of L_{1} onto $F_{\mathbf{K}}(6)$ defined by

$$
a \rightarrow x_{1} \vee x_{2} \vee \ldots \vee x_{6}, b \rightarrow x_{1} \wedge x_{2} \wedge \ldots \wedge x_{6}, x_{i} \rightarrow x_{i}, i=1,2, \ldots, 6
$$

This homomorphism maps $y_{i} \rightarrow x_{i}, i=1,2, \ldots, 6$, and so L_{2} onto $F_{\mathbf{K}}(6)$; therefore $L_{2} \cong F_{\mathbf{K}}(6)$.

We conclude that in L_{1}, the interval $[o, a]$ is not arguesian (since it contains a copy of $F_{\mathbf{K}}(6)$ which is not arguesian). But the interval $[o, a]$ of L_{1} is a sublattice of the interval $[o, a]$ of L, and by Lemma 3 the latter interval is arguesian, a contradiction.

References

1. G. Grätzer, Lattice theory. First concepts and distributive lattices (W. H. Freeman and Co., San Francisco, 1971).
2. G. Grätzer, B. Jónsson, and H. Lakser, The amalgamation property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507-524.
3. G. Grätzer, H. Lakser, and C. R. Platt, Free products of lattices, Fund. Math. 69 (1970), 233-240.
4. B. Jónsson, Modular lattices and Desargues' Theorem, Math. Scand. 2 (1954), 295-314.
5. -_ Sublattices of a free lattice, Can. J. Math. 13 (1961), 256-264.
6. -_ Relatively free products of lattices, Algebra Universalis 1 (1972), 362-373.
7. A. Kostinsky, Some problems for rings and lattices within the domain of general algebra, Ph.D. Thesis, Berkeley, 1971.

University of Manitoba, Winnipeg, Manitoba

[^0]: \dagger A sharper result follows from the main result of G. Grätzer and J. Sichler, Proc. Amer. Math. Soc. 46 (1974), 9-14, namely that an n-generated lattice is a free K-product of at most n lattices.

