In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence

Antonius C. M. van Hooijdonk¹*, K. D. Kussendrager¹ and J. M. Steijns²

¹DMV International, R&D Center, PO Box 13, 5460 BA Veghel, The Netherlands
²DMV International, Center of Expertise for Nutrition, PO Box 14, 6700 AA Wageningen, The Netherlands

The in vivo evidence of the antimicrobial and antiviral activity of bovine milk and colostrum derived components are reviewed with special emphasis on lactoferrin and lactoperoxidase. Their mode of action and the rationale for their application in efficacy trials with rodents, farm animals, fish and humans, to give protection against infectious agents, are described. A distinction is made between efficacy obtained by oral and non-oral administration of these non-specific defence factors which can be commercially applied in large quantities due to major achievements in dairy technology. From the in vivo studies one can infer that lactoferrin and lactoperoxidase are very promising, naturally occurring antimicrobials for use in fish farming, husbandry, oral hygiene and functional foods. Other promising milk-derived compounds include lipids, from which anti-infective degradation products are generated during digestion, and antimicrobial peptides hidden in the casein molecules.

Introduction

Milk and colostrum contain several antimicrobial factors which exert both specific and non-specific bacteriostatic and bactericidal activity. These factors are transferred from the mother to the neonate and contribute to the protection against infectious diseases. For many species the milk derived antimicrobial system is crucial for survival of the newborn.

During the first few days postpartum, the specific activity of the different immunoglobulins is the dominant factor for immunity. The specificity is a reflection of the bacterial and viral pressure of the environment and therefore protects the neonate against the prevailing contaminating organisms. Through targeted immunisation of cows, bovine milk antibodies can be raised with a substantially higher activity against predetermined bacteria and viruses and several companies are now isolating these specific antibodies for both pharmaceutical, food and feed applications.

Non-specific antimicrobial and antiviral factors are also important for the host defence system and probably act synergistically with the specific antibodies. In bovine milk and colostrum, lactoferrin and lactoperoxidase are the most dominant and best studied non-specific antimicrobial components and many in vitro experiments have proven their activity against all kinds of micro-organisms. Lysozyme is a potent antimicrobial enzyme but, in contrast to human milk, the concentration in bovine milk and colostrum is probably too low to significantly contribute to the overall bacteriostatic and bactericidal activity.

In this review, we will focus on the in vivo evidence of the antimicrobial and antiviral activity of bovine milk and colostrum-derived components. Several of these components are now commercialised or under clinical testing for both therapeutic and preventive use against infectious diseases in animals and humans. More recent research shows that several peptides present in milk, or generated in the digestive tract through enzymatic degradation of the major milk proteins, may as well play an antimicrobial role in vivo. Furthermore, several components or metabolites of the fat phase in bovine milk have been identified that contribute to the host defence against infection by enhancing the gastrointestinal killing of pathogens.

Lactoferrin

Mode of action

The mechanism by which lactoferrin exerts its antimicrobial and antiviral activity in vivo is complex and in many cases still poorly understood. Two basic biochemical properties of lactoferrin contribute to its involvement in the host defence: the extremely powerful iron-binding capability and the strong interaction with other molecules and surfaces. The antimicrobial effects can be direct through bacteriostatic and bactericidal activity or indirect through activation of a complex series of reactions leading...
to a protective immune response after infection (Sánchez et al. 1992; Levay & Viljoen, 1995; Lönnertdal & Iyer, 1995). The direct bacteriostatic effect of lactoferrin is well established by in vitro experiments and many studies have proven that iron deprivation was the underlying antimicrobial mechanism because the properties disappeared when the lactoferrin molecule was saturated with iron (Naidu & Arnold, 1997). In addition to this bacteriostatic effect, lactoferrin also exhibits an iron-independent bactericidal activity (Arnold et al. 1980; Naidu & Arnold, 1997). The bactericidal activity is related to the direct binding of lactoferrin to the microbial membrane, which alters the membrane permeability through dispersion of lipopolysaccharides and leads to death of the organism. Both intact lactoferrin and partially hydrolysed lactoferrin may kill the microbes via this binding mechanism. In the case of hydrolysed lactoferrin, the activity is attributed to a peptide (lactoferricin) derived from the N-terminal region (Tomita, 1994). This observation may be relevant for oral administration of lactoferrin because the proteolytic enzymes in the gastrointestinal tract may (partially) degrade lactoferrin, although it is well known that the proteolytic degradation is limited in infants (Lönnertdal, 1996).

Lactoferrin plays a role in the cellular defence system which comprises a close interaction between neutrophils, lymphocytes, macrophages and their secretory products upon microbial invasion. Lactoferrin may influence this defence system in several ways. The regulation of macrophage activity and proliferation of lymphocytes are reported functions of lactoferrin. The mechanism underlying these functions and their in vivo significance needs to be elucidated.

The most important pool of systemic lactoferrin is found in the polymorphonuclear neutrophils (Sánchez et al. 1992; Levay & Viljoen, 1995). It is well established that this pool of lactoferrin is crucial for the protection of the host against infection and inflammation. Upon contamination with micro-organisms the neutrophils will capture the invader (phagocytosis) and at the same time specific granules discharge lactoferrin into the blood. Due to the high affinity of lactoferrin for iron, a hypoferraemic state is generated, which prevents the pathogen from acquiring sufficient iron for growth (Sánchez et al. 1992). This is the immediate acute effect. The protective role of lactoferrin during inflammation is less clear but is probably related to the indirect influence on the production of cytokines, in particular the tumour necrosis factor alpha (Zagulski et al. 1989; Machnicki et al. 1993).

Endogenous lactoferrin

Plasma lactoferrin is released from neutrophils during infection, inflammation, tumour development and iron overload, demonstrating its multi-functional biological role (Bullen, 1987; Levay & Viljoen, 1995). The direct evidence that lactoferrin plays a crucial role in the body’s defence against micro-organisms is seen in patients with a lactoferrin deficiency. Several studies revealed that patients with a high susceptibility for infections lacked the protective effect of lactoferrin from the neutrophils (Breton-Gorius et al. 1980; Boxer et al. 1982). Spitznagel et al. (1972) demonstrated that polymorphonuclear neutrophils with no lactoferrin lost their bactericidal activity. In general, it can be stated that the susceptibility to infections is increased when the lactoferrin production is reduced, for instance as a result of malnutrition, pre- or postoperative starvation, hepatic failure or after iron saturation following parenteral administration (Gaunt & Seal, 1984). Diabetic patients also suffer from recurrent infections and it was suggested that the inhibition of endogenous lactoferrin and lysozyme by glucose-modified proteins is responsible for this loss of the antibacterial protection (Li et al. 1995). This once more demonstrates the important role of lactoferrin against infectious diseases.

Rudney et al. (1995) studied the in vitro and in vivo binding of saliva proteins to oral streptococci and demonstrated that lactoferrin was one of the proteins that interacted with different strains. It was suggested that this might have a positive influence on the microbial ecology of tooth surfaces. Another manifestation of the antimicrobial effect of endogenous lactoferrin is the defence of the mammary gland against infections. During lactation lactoferrin probably does not play an important protective role against invading micro-organisms in the cow’s udder because of the low concentration and the high citrate level (Reiter, 1985). However, in the non-lactating udder, the concentration of lactoferrin is considerably higher and the condition more favourable for antimicrobial activity. Indeed Reiter & Bramley (1975) showed that infusion of the non-lactating udder with Escherichia coli did not lead to mastitis, whereas with the same treatment, the lactating udder became infected. If the dry udder was infused with both E. coli and iron, the multiplication of the pathogen took place, indicating the protective role of lactoferrin via an iron-chelating mechanism.

Non-oral administration of lactoferrin

A few studies have been carried out to investigate the antibacterial and antiviral effect of intravenously or intraperitoneally administered lactoferrin. Zagulski et al. (1985) showed that bovine lactoferrin given intravenously to rabbits considerably prolonged survival time after a systemic experimental infection with a lethal dose of E. coli. A subsequent study with mice confirmed the observation that a single intravenously administered dose of lactoferrin given 24 hours before an E. coli challenge protected the animals, resulting in a lower mortality rate compared to a control group without lactoferrin (Zagulski et al. 1989). No difference in protection was found between bovine and human lactoferrin. A single dose of iron given just before or after the bacterial challenge suppressed the protective effect of lactoferrin but only during the first week. Subsequent doses of iron enhanced the killing of bacteria. In later studies Zagulski et al. (1998) showed that the clearance of E. coli was strongly accelerated in blood, liver, lungs, spleen and kidney after intravenous application of bovine lactoferrin.

Apparently, lactoferrin not only acts via an iron sequestering mechanism but also stimulates other delayed non-specific responses to improve protection against
infections. These responses are associated with the indirect
effect of lactoferrin on the production of plasma cytokines,
compounds produced by immune cells during infection and
inflammation to coordinate the defence against pathogens.
In a study with mice, it was observed that the production of
tumour necrosis factor alpha (TNF-α) and interleukin 6
(IL-6) were regulated by lactoferrin. This resulted in a
suppression of inflammation decreased mortality (Mach-
nicki et al. 1993). Lee et al. (1998) used a germ-free,
colostrum-deprived, immunologically ‘virgin’ piglet model
to evaluate the protective effect of bovine lactoferrin
against the endotoxin lipopolysaccaride (LPS). Compared
to bovine serum albumin (BSA) as the control, the feeding
of lactoferrin prior to LPS challenge resulted in substantial
reduction in mortality after 48 hours: 73.7 % versus only
16.7 % in the group with lactoferrin.

The antiviral activity of lactoferrin was demonstrated in vivo
against the Friend virus complex which is associated
with the formation of leukaemia cells (Lu et al. 1987).
Mice were injected interperitoneally with iron-saturated
human lactoferrin and challenged with a lethal dosage of
the virus. The survival of the lactoferrin-treated animals
was significantly increased. This effect could not be
explained by the direct binding of lactoferrin to the virus
and it was speculated that the action on certain cells
inhibitory to the virus were responsible for the protection.

Shimizu et al. (1996) injected mice intraperitoneally
with lactoferrin before and after an infection with murine
cytomegalovirus. The administration prior to injection
protected the mice from death whereas no protection was
found when lactoferrin was given after or together with the
virus. The antiviral activity of lactoferrin was also found to
be indirect and caused by the augmentation of T-cell
dependent natural killer cell activity.

Oral administration of lactoferrin to animals

A number of animal studies with oral administration of
lactoferrin have been carried out to investigate the in vivo
bactericidal efficacy. Bullen et al. (1972) studied the effect
of lactoferrin on the bacterial flora of suckling guinea
piglets receiving mothers milk, which is as rich in
lactoferrin as human milk. Challenging the piglets with
E. coli resulted in lactobacilli-dominant flora for the
animals receiving mothers’ milk, whereas the animals on
an artificial diet displayed a coliform dominant flora. When
suckling piglets also received iron, the protective effect of
the mothers’ milk disappeared and a coliform-rich flora
was recovered from the faeces of breast-fed infants
easily digested by the enzymes in the intestinal tract and
could be recovered from the faeces of breast-fed infants
with an intact iron-binding capacity, indicating that
antibacterial activity can take place during the gastro-
intestinal passage via the iron-chelating mechanism.
However, even if lactoferrin is partially digested, it still
has antibacterial activity via the direct interaction with
micro-organisms as pointed out earlier. It is well recog-
nised that human milk has a protective effect against
infection in infants, especially against enteric infections
(Roberts et al. 1992). The gut flora of breast-fed infants,
in contrast to that of formula-fed infants, is much richer in
bifidobacteria and lactobacilli. Such a flora is normally
associated with an increased resistance against colonisation
of pathogens. Lactoferrin in conjunction with other factors
in milk likely contributes to this favourable microbial
ecosystem in the gut.

Roberts et al. (1992) investigated the infant faecal flora
after feeding formula with and without addition of
lactoferrin. The observation was that half the babies
displayed a bifidus flora in the case of lactoferrin

Oral administration of lactoferrin to humans

The most natural means of administering lactoferrin is by
breast-feeding. Reiter (1985) estimated that breast-fed
human infants ingest about 3 g lactoferrin per day during
the first week of life. A calf drinking 2 litres of colostrum
ingests about 2 g of lactoferrin per day. Lactoferrin is not
easily digested by the enzymes in the intestinal tract and
could be recovered from the faeces of breast-fed infants
with an intact iron-binding capacity, indicating that
antibacterial activity can take place during the gastro-
inestinal passage via the iron-chelating mechanism.
However, even if lactoferrin is partially digested, it still
has antibacterial activity via the direct interaction with
micro-organisms as pointed out earlier. It is well recog-
nised that human milk has a protective effect against
infection in infants, especially against enteric infections
(Roberts et al. 1992). The gut flora of breast-fed infants,
in contrast to that of formula-fed infants, is much richer in
bifidobacteria and lactobacilli. Such a flora is normally
associated with an increased resistance against colonisation
of pathogens. Lactoferrin in conjunction with other factors
in milk likely contributes to this favourable microbial
ecosystem in the gut.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 23 Aug 2018 at 22:14:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms . https://doi.org/10.1017/S000711450000235X
supplementation but this flora was not as rich in bifidus as that of breast-fed infants. In the latter case, the bifidus flora was established earlier and remained stable during the breast-fed period whereas, in the case of lactoferrin-containing formula, the bifidus flora developed later at the age of three months. The question remains whether the occurrence of a bifidus flora is the correct marker for the antibacterial activity of lactoferrin. Stronger evidence of the protective effect of lactoferrin against enteric infections in humans was found by Trümpler et al. (1989) with neutrophenic patients receiving chemotherapy for acute myelogenous leukaemia. Patients receiving human lactoferrin coated with an acid stable substance had a significantly lower incidence of bacteraemia due to reduced multiplication and/or systemic spread of enterobacteria. This reduction was explained by the iron-binding effect of lactoferrin.

Lactoperoxidase

Mode of action

The detailed chemistry of the antibacterial activity of lactoperoxidase (LPO) in combination with its two co-factors, H$_2$O$_2$ and SCN$^-$, has been fully elucidated and explained elsewhere in this volume (see article by Kussendrager & Hooydonk).

The biological function of the lactoperoxidase system (LP-s) is predominantly that of defence against microbial infections and many in vitro studies showed the bacteriostatic and bactericidal effect against a broad spectrum of micro-organisms (Pruitt & Reiter, 1985; Wolfson & Sumner, 1993). Several applications now exist where the LP-s is commercially used as a natural preservative (De Wit & Van Hooydonk, 1996).

Other reported biological functions of LP-s are antiviral activity (Courtois et al., 1990), tumoricidal activity (Stanslawski et al., 1989) and protection against H$_2$O$_2$-mediated peroxidation (Reiter & Perraudin, 1991). The significance of these functions has still to be proven in vivo.

Various members of the peroxidase family play a role in the defence of mammals including eosinophilic peroxidase in intestinal tissues (Rytomaa & Teir, 1961), myeloperoxidase in leucocytes (Klebanoff, 1970), thyroid peroxidase in cell membranes (Ohtaki et al., 1980) and lactoperoxidase in saliva, milk and tears (Reiter & Oram, 1967). In this paragraph, we only discuss the in vivo antimicrobial activity of milk and saliva lactoperoxidase.

Compared to bovine milk, the concentration of LPO in human milk is very low. In contrast, in saliva of infants, the level is relatively high and significant amounts are ingested during sucking and fasting. We may expect that this saliva-derived LPO and SCN$^-$ contributes to the peroxidase activity in the human intestine because the enzyme is very resistant against proteolysis (Reiter & Perraudin, 1991). Calves receive most of the LPO via milk and colostrum.

SCN$^-$ occurs ubiquitously in tissue and secretions of mammals, making H$_2$O$_2$ normally the limiting factor for the activity of LP-s (Reiter & Perraudin, 1991). The SCN$^-$ level in bovine milk reflects the level in serum and is increased during infection of the udder, due to leakage from the blood. Clinical trials proved that addition of SCN$^-$ to milk for preservation purposes is not harmful for man (Dahlberg et al., 1984).

Whereas the systemic supply of H$_2$O$_2$ is generated by the polymorphonuclear neutrophils during phagocytosis, in the mouth and intestine it is the flora that may excrete H$_2$O$_2$ to trigger the LP-s activity (Reiter & Perraudin, 1991). In this way, LPO probably continuously contributes (together with other antimicrobial factors such as lactoferrin and lysozyme) to the maintenance of a healthy, non-cariogenic and non-infectious flora. LP-s is now added to toothpaste, mouthwashes, artificial saliva, chewing gum and calf starters to augment the in vivo protection against infections. To provide sufficient and a continuous source of H$_2$O$_2$, peroxidogenic enzymes such as glucose oxidase may be added to the system.

LP-s administration to saliva

A number of clinical trials have been undertaken to investigate the activation of lactoperoxidase in saliva with H$_2$O$_2$-generating enzymes.

In a paper by Hoogendoorn (1985), a positive effect of toothpaste supplemented with amyloglucosidase and glucose oxidase was reported from several clinical studies. The activation of lactoperoxidase by these enzymes prevented a fall in the tooth pH of the surface, reduced plaque accumulation and suppressed carious lesion and gingivitis. Also in patients suffering from recurrent oral ulcerations, the same system reduced the occurrence and provided a long-lasting protection.

Supplementation of both LPO and peroxidogenic enzymes to toothpaste also proved to be beneficial for oral health care. In a trial with 25 healthy humans increased levels of HOSCN/OSCN$^-$ were found in the saliva of the subjects receiving a toothpaste containing LP-s (Leriander-Lumikari et al., 1993). This is clearly an indication of an elevated antimicrobial system in the mouth due to the addition of LP-s. Van Steenberghe et al. (1994) demonstrated the protective effect of LP-s containing toothpaste in patients suffering from radiation-induced xerostomia. Patients treated with the test toothpaste showed less plaque formation and a lower incidence of gingival inflammation.

LP-s administration to calves and piglets

In contrast to infants, the saliva of calves contains little LPO and they receive most of the protective enzyme via colostrum and milk. SCN$^-$ is secreted in the calf’s stomach and it was found that lactobacilli isolated from the abomasal fluid generated H$_2$O$_2$. Thus, in calves the conditions seem favourable for the formation of LP-s activity in vivo. Despite the continuous ingestion of the antibacterial components from colostrum or milk, the frequency of diarrhoea in calves during the first week is high and antibiotics are often required for recovery.

Reiter and Oram (1967) performed in vivo experiments with calves using a non-pathogenic E. coli (no adhesion to the intestinal wall of the calf). The strain was orally administered following by feeding raw milk containing glucose oxidase/glucose and extra SCN$^-$. Compared to the
control containing a reducing compound to inactivate indigenous LPO, the recoverable organisms were reduced by as much as 4 log cycles. An interesting observation was that Lactobacillus lactis could replace the enzyme as a source of H_2O_2. This suggests that the activity of endogenous LPO may be enhanced and contribute to beneficial antibacterial effects upon eating of fermented milk products. This possible secondary effect of probiotics has, to our knowledge, never been explored.

In a larger field trial in Sweden (Reiter et al. 1981), 5-d-old calves were removed from a herd to calf-fattening units, which frequently led to a high incidence of diarrhoea. It was observed that the LP-s-fed calves remained more healthy and the weight gain was significantly higher. Similar trials over a period of 5 years in the UK confirmed the health-promoting effect of LP-s during calf rearing under practical conditions (Reiter & Perraudin, 1991).

With the current pressure on the use of antibiotics, isolated bovine LPO appears to be an attractive, natural antibacterial compound for supplementation of calf starters and several successful trials have been conducted with milk replacers containing LP-s (Waterhouse & Mullan, 1980a, b). Reiter (1985) also reported a trial with piglets and showed a significant protective effect of bovine LP-s against an E. coli challenge. The piglets that received LP-s containing diluted colostrum remained unaffected, whereas the controls developed severe diarrhoea.

LP-s plus lactoferrin administration to calves

Recently, the Dutch TNO research institute performed a feeding trial with thirty 7-d-old calves (van Leeuwen et al. 1998). The calves were split into two groups of 15 animals and test results recorded for 13 days. The control group received a commercial cow milk replacer and the test group the same diet, supplemented with a combination of LP-s and lactoferrin (LF) (obtained from DMV International). The final concentration of the active components in the milk, on dry basis, was: lactoperoxidase (LP), 200 ppm; KSCN, 120 ppm; 2 Na_2CO_3.3 H_2O_2; 225 ppm and LF in milk, on dry basis, was: lactoperoxidase (LP), 200 ppm; KSCN, 120 ppm; 2 Na_2CO_3.3 H_2O_2; 225 ppm and LF

The weight gain was slightly higher in the test group but the difference was not significant.

The antimicrobial and antiviral activities of lipids are currently receiving increasing interest, especially in the context of the preparation of infant formula and medical food.

Milk contains a complex mixture of lipids ranging from simple triglycerides comprising 98 % of the fat phase in milk to minor lipids such as phospholipids, which are mainly concentrated in the fat globule membrane (Renner et al. 1989). Phosphatidylethanolamine, phosphatidylcholine and sphingomyelin are the predominant fractions of phospholipids. The biological function of these components is still unclear but in vitro results indicate that metabolic breakdown products of triglycerides and phospholipids may possess antimicrobial and antiviral activity.

Isaacs et al. (1995) conducted an in vitro study in which fatty acids and monoglycerides were added to
milk and infant formula. They found that fatty acids and monoglycerides with chain lengths varying from 8 to 12 carbons were more antiviral and antibacterial than long-chain monoglycerides.

Edwards et al. (1994) compared the faecal concentration of short-chain fatty acids in breast-fed infants and formula-fed infants and observed a significant difference in the pattern of these faecal fatty acids. Breast-fed babies showed a predominantly acetic–lactic acid profile, whereas the formula-fed babies had higher concentrations of propionic and butyric acids. The authors speculated that short-chain fatty acids play a role in maintaining a stable favourable flora by inhibitory actions preventing colonisation of enterogenic pathogens. However, the difference between the flora of breast- and formula-fed infants could not be explained by the profile of these fatty acids.

The protective effect of phospholipids against gastric ulceration was investigated by Kivinen et al. (1992) in a human study. Milk phospholipids were given to human volunteers and the protective effects against an aspirin challenge was investigated. Gastric mucosal damage was almost completely absent in the presence of phospholipids, suggesting that these components derived from milk may contribute in the prevention of gastritis, which is associated with the colonisation by Helicobacter pylori.

In a recent study by Sprong et al. (1998), the effect of phospholipids on gastrointestinal survival and translocation of Listeria was investigated in rats. The test group received sweet butter milk known to be rich in phospholipids and the control group skim milk. The conclusion was that the phospholipids in butter milk improved the host defence against Listeria by enhancing the gastrointestinal killing of the pathogen. This observation is important and may throw a new light on the biological role of phospholipids in milk.

Conclusion and outlook

As shown above lactoferrin and lactoperoxidase are well-characterised protective factors from milk and colostrum. Although their in vivo mode of action is not fully understood, various supplement studies reveal their inhibitory actions against pathogens such as bacteria and viruses, and because of this, both compounds have found their way on to the market.

Interest in understanding the composition of cow’s milk and colostrum is initiated by the desire of infant formula manufacturers to adjust cow’s milk-based infant formulas so as to mimic as closely as possible, human breast milk. In a recent review Rudloff & Kunz (1997) compared the protein and non-protein components in human milk, bovine milk and infant formulas. In human milk glycoproteins, glycolipids and lactose-derived oligosaccharides are now considered to be soluble receptors for pathogenic microorganisms, viruses or endotoxins, and hence may exert anti-infective properties. There are indications that some of these components may also be present in cow’s milk. Schanbacher et al. (1997) have recently indicated bioactive peptides released from α₂- or β-caseins that may contribute to the antimicrobial defence in the mammary gland, and possibly the suckling neonate. In vitro studies have shown that a 39 amino acids long C-terminal fragment of bovine α₁₂-casein inhibits the growth of E. coli and Staphylococcus strains (Zucht et al. 1995).

Future research will identify and characterise new components from either mature milk or colostrum that offer protection against infections and modulate the control of inflammation, and will reveal whether the primary function is targeted at protection of the milk gland or the neonate. Dairy technology has expanded enormously over the last years and it is envisaged that the technology for manufacturing minor bioactive components in milk or colostrum will be realised in the near future. Thus it will become possible to isolate these compounds for inclusion in health-promoting functional foods, nutraceutical products, veterinary and health care products.

References

Van Leeuwen P, Huisman J, Kerkhof HM & Kussendrager K (1998) Small intestinal microbiological and morphological observations in young calves fed milk replacers enriched with a...

Waterhouse A & Mullan WMA (1980b) Addition of an active lactoperoxidase system to a milk substitute diet for calves. *Irish Journal of Food Science and Technology* 4, 69.

© A. C. M. van Hooijdonk, K. D. Kussendrager & J. M. Steijns 2000