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Abstract

The paper revisits characterizations of strong stability and strong regularity of Karush-
Kuhn-Tucker solutions of nonlinear programs with twice differentiable data. We give a
unified framework to handle both concepts simultaneously.

1. Introduction

In this paper, two basic concepts in the perturbation analysis of Karush-Kuhn-
Tucker (KKT) points of nonlinear programs are revisited: the strong stability in the
sense of Kojima [17] and the strong regularity in the sense of Robinson [29].

We consider nonlinear programs of the type

P(f,g,h): ma{f(x)\g(x)<0,h(x)=0), (1.1)

where / : R" ->• R, g : R" -»• Rm and h : R" -> Rr are supposed to be twice
continuously differentiable functions. Then the KKT necessary optimality conditions
at some primal-dual vector (x, u, v) e Rn+m+r have the form

Df (JC) + Dg(x)Tu + Dh(x)Tv = 0,
g(x)<0, u>0, <«,*(*)) =0 , h(x) = 0,

where Df denotes the gradient of/, and DgT (Dh1) is the transpose of the Jacobian
matrix of g (h). A point (x, u, v) satisfying (1.2) is said to be a KKT point of
P(/, g, h), and the jc-part of a KKT point is called a stationary solution of P(f, g,h).
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[2] Strong stability in nonlinear programming 337

The strong stability and regularity notions in this paper refer, roughly speaking, to
the following property: given a locally unique solution z = (x, u, v) of (1.2) and
some class <t> of C2-perturbations of the data <p = (/, g, h), there exists for any
small perturbation <p e <J> a unique KKT point z(Jp) of P(<p) near z and the mapping
<f> i-> z{ip) behaves continuously or Lipschitz continuously. For the precise definitions
we refer to Section 2.

Although the theory of strong stability for C2 programs was essentially complete
already in the late 80s, several publications of the 90s [2,3,6,7,25,31] recover these
results by deriving them from the perturbation analysis of more general optimization
or variational problems. The purpose of the paper is to recall basic characterizations of
strong stability or regularity for nonlinear optimization problems with twice differen-
tiable data. For reason of space restrictions we consider only the case of isolated KKT
points, for some extensions we refer to the discussions in the Remarks 2.9 and 3.6 be-
low. Using the approach [18,19] via the regularity of Lipschitzian equations, we give
a unified framework to handle strong stability and strong regularity simultaneously.
Moreover, we put these results in a historical context, because it seems that some
of the basic studies in the 80s have not been noticed until now by the optimization
community.

This paper is dedicated to Bruce Craven and Bertram Mond on the occasion of their
retirement.

2. Strong stability and regularity notions

In this section, we recall the definitions of strong stability and regularity and report
without proofs some interconnections.

Let P(/, g, h) be as given above. Following Kojima [17] we define a function F with
components F\, F2 and F3 depending on the primal-dual vector z = (x, y, v) e R."+m+r

such that

Ft(z) := Df (JC) + Dg(x)Ty+ + Dh(x)Tv,

F2(z):=g(x)-y-, (2.1)

:= h(x).

where for given y € Km, y+ and y~ denote the vectors of components y* = max{_y,,0}
and y~ = min{)>,, 0), respectively. Under the assumptions on P(/, g, h), F is piece-
wise differentiable and locally Lipschitzian. F will be called the Kojima function
associated with P(f, g, h). Zeros of F, also called critical points of P(f, g, h), can
be Lipschitzian mapped into KKT points (that is, solutions of (1.2)) and vice versa.
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338 Diethard Klatte and Bernd Kummer [3]

More precisely, one has

(x, u, v) KKT point =>• (x, u + g(x), v) critical point,

(x, y, v) critical point =» (x,y+,v) KKT point.

This will ensure that the stability results may be equivalently formulated both in terms
of KKT points and in terms of critical points; in the following we prefer to use the
latter notion.

We start by recalling Kojima's [17] notion of a strongly stable stationary solution.
Given an open, bounded subset X of R", we denote by C2(X, O )̂ the linear space of
all C2 functions from X to Rd, d = 1 + m + r, with zero element o, and define

\<p\x := supmax{|Mx)||, \\D<p(x)\\, max ||£>V,(*)II}, (2.3)

where we use the same symbol || • || for a given vector norm and its associated matrix
norm. Let B(z, s) denote the open ball with center z and radius s in the underlying
space.

DEFINITION 2.1. (Kojima [17].) A stationary solution x of P(<p), y = (f,g, h), is
said to be strongly stable with respect to <J> C C2((R", Kd), if (i) there are positive
constants e and S such that the problem P(<p + <p) has a unique stationary solution
x = x(<p) in B(x, s), whenever ip := (f, g,h) € <P and \cp\B(i,e) < 5 and (ii) the
mapping <p i-> x(<p) is continuous at o with x = x(o).

The next definition (see [16]) is stronger than that of Kojima's [17] original notion
of a strongly stable critical point, but it is the appropriate one in the context of isolated
critical points which are our concern in the present paper.

DEFINITION 2.2. A critical point I = (x, y, v) of P(^), <p = (f,g, h), is said to be
strongly stable with respect to $ c C2(K", W), if (i) there are positive constants
£ and S such that the equation F(z) + F(z) = 0, z e B(z, s), has a unique solution
z = z(<p), whenever <p := (f, g, h) € 4>, F + F is the Kojima function of P(<p + (p)
and |< |̂s(i,£) < S and (ii) the mapping (j> i-> z(^) is continuous at o with z = z(o). If
additionally q> \-+ z(<p) is Lipschitzian on a | • |B(i,£)-norm neighborhood of the zero
function, then z is called strongly L-stable with respect to 4>.

As usual we shall say that a feasible point x of (1.1) satisfies the Linear Indepen-
dence Constraint Qualification (LICQ) if the system {Dgj(x), i € I(x), Dhj(x),j =
1, . . . , r} is linearly independent, where

= {i € { ! , . . . ,m)\g,(x) = 0}
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is the set of active indices at x. It is well-known that if a stationary solution x to (1.1)
satisfies LICQ, then the Lagrange multiplier (y, v) in the associated critical point—or,
equivalently, («, v) in (1.2)—is unique.

PROPOSITION 2.3. [16, Theorem 2.3]. Suppose that <t> c C2(K", Rd) contains at
least all functions x i->- ^>(x) = (aTx,0, 0), a e K". 77ie/i the following conditions
are equivalent:

(a) JC J5 a strongly stable (with respect to 4>j stationary solution to P(f, g, h), x
satisfies LICQ, and (y, v) is the associated multiplier.
(b) (x,y,v) is a strongly stable (with respect to <t>) critical point to P(/\ g, h).

The third strong stability notion will be the basic one in the present paper. It was
introduced by Clarke [4] in the analysis of Lipschitzian functions and was applied to
the Kojima function (respectively, to the KKT system) in [10] for C2 problems and
in [19,20] for C u optimization problems (that is, the involved functions have locally
Lipschitzian first derivatives). Put s :— n + m + r.

DEFINITION 2.4. A Lipschitzian function G : Rs -*• Rs is said to be regular at
z if there are positive constants e and S such that the local inverse mapping p i-»-
G~l(p) n B(z, e) is single-valued and Lipschitzian on B(0, S).

In the literature, a function satisfying the previous definition is also called a local
Lipschitzian homeomorphism [31,32] or to be Lipschitzian invertible [19]. Although
the notion "regularity" is often understood in a weaker sense, we use it here, since in
the context of isolated KKT points no confusion will appear. The same definition can
be applied to a multifunction G. In this sense, it was one of the central concepts in
Robinson [29,31] and also in Dontchev and Rockafellar [7]. In our context, we will
have G = F and p = (a, b, c) e OS1. Thus the equation G() = p just yields the
critical points of the perturbed problem

P(a, b, c) : min{f(x) - arx\g(x) < b, h(x) = c}.

The following proposition is well-known and gives the interrelations between the
notions of the Definitions 2.2 and 2.4.

PROPOSITION 2.5. Let <t> C C2(K", Rd) be a perturbation class containing at least
all functions x i-> (p(x) = (xTBx + aTx, b, c), B a symmetric («, n)-matrix, a € US",
b e Km, c e Kr. Suppose that z is a critical point to P(f, g, h). Then the following
conditions are equivalent:
(1) z is strongly stable with respect to 4>;
(2) z is strongly L-stable with respect to&iW, W);
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(3) F is regular at z.

PROOF. Taking into account that, by Proposition 2.3, each of the conditions (1), (2),
(3) involves LICQ, the equivalence of (1) and (2)' z is strongly stable with respect to
C2(Rn, &d) has been proved by Kojima [17, Corollary 4.3]. The inclusion (2)' =• (3)
follows from Theorem 3.1 inKummer[19]. The inclusion (3) => (2) is a consequence
of Robinson [31, Lemma 3.1] (or Theorem 2 in [18]) and (2) => (2)' is trivial.

Note that the equivalences in the preceding proposition also belong to a set of
characterizations of strong stability given in Theorem 4.3 of [16]. It is also worth
mentioning that regularity of F at z ensures, by Banach's fixed point theorem applied
t o z h> F~\u(z)), existence, uniqueness and Lipschitz behavior of the solutions
z = z(w) to F(z) = u(z) in some e-neighborhood of z if u : B(z, e) -*• Kd has now a
sufficiently small C-norm. In other words, the perturbations of the Kojima function F
in Definition 2.2 can be extended to small C1 perturbations F + u which are not related
to a second optimization problem. With the same result, regular multi-functions can
be perturbed. This has been observed, perhaps first, by Robinson [29].

Robinson's [29] way to reformulate the KKT conditions is based on the observation
that z = (x, u, v) is a KKT point of P(/\ g, h) if and only if z satisfies the generalized
equation

H(z) € Nc(z), z = (x, u, v) € C, (2.4)

where C : = R " x R ; x IT, H = (#,, H2, H3) is defined by

ff,(z) := Df (x) + Dg(x)Tu + Dh(x)Tv,

H2(z) := g(x),

H3(z) := h(x)

and Nc(z) denotes the usual normal cone of C at z = (x, u, v) which has for the
above set C the special form

Nc(z) = {(0, n, 0) | t]i, = 0 if u,- > 0, ^ < 0 if w, = 0).

The natural parameterization of (2.4) leads to

H(z)-peNc(z), Z€C, (2.5)

that is, for p = (a, b, c), the solution set of (2.5) describes the critical point set
F~l(a, b, c) of P(<3, b, c) up to the transformation between critical points and KKT
points.
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[6] Strong stability in nonlinear programming 341

Using f,g,h e C2 and linearizing H\, H2 and Hj at some solution z = (x, u, v)
of (2.4), one has

Ldz) •= Hdz) + DH^zKz-z) = Df(x) + Dg(x)Tu + Dh(x)Tv + Q(x-x),

L2(z) := H2(i) + DH2(z)(z - z) = g(x) + Dg(x)(x - x),

:= H3(z) + DH3(z)(z -z) = h(x) + Dh(x)(x -x),

where 3?(x, u, v) := f (x) + uTg(x) + vTh(x) and Q := D\&{x, u, v). Put L =
(JLU L2, L3). So one obtains from (2.4) Robinson's [29] linearized system

Uz) € Nc(z), z = (*, u, v) € C, (2.6)

which is also solved by z. The natural parameterization of (2.6) leads to

L(z) - p € N c ( z ) , zeC, (2.7)

where p = (a, b, c). Obviously, (2.7) coincides with the generalized equation (2.5)
applied to the parametric quadratic program

PQ(a, b, c): min[q(x) - aTx \ g(x) + Dg(x)(x - x) < b,

h(x) + Dh(x)(x-x) = c),

where q(x) := Df (x)(x — x) + |Qc — x)TQ(x — x). Now we are on the point of
defining Robinson's notion of a strongly stable KKT point, called strong regularity.

DEFINITION 2.6. (Robinson [29]) For some solution I of (2.4), the generalized
equation (2.4) is said to be strongly regular at z if there are positive constants £ and
S such that for each p e fl(0, S), the parametric linearized system (2.7) has a unique
solution zip) in B(z, e) and the mapping p i->- zip) is Lipschitzian on B(0, S).

It is well-known from the literature that for the standard C2 program P(/, g, h),
strong regularity of (2.4) at some KKT point z (with related critical point z) and
regularity of the Kojima function F at z are equivalent. Since this equivalence will be
recovered by our approach in the next section, we shall give the corresponding results
and references later.

REMARK 2.7. By Definition 2.4 and Definition 2.6, the generalized equation (2.4)
is strongly regular at some KKT point z of P(/, g, h) if and only if the Kojima mapping
FPQ associated with the quadratic program PQ(0,0,0) is regular at z, where z is the
critical point which is related to z by the Lipschitzian transformation (2.2).
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REMARK 2.8. It is easy to see that the strong regularity of (2.4) at a KKT point
z = (x, u, v) implies that x satisfies LICQ. Indeed, by construction, the active index
sets / (x) at x with respect both to the original problem P(/, g, h) and to the quadratic
approximation PQ(0,0,0) coincide. Now apply Proposition 2.3, Proposition 2.5 and
Remark 2.7.

Robinson's main impetus in [29] was the study of inverse and implicit function
theorems for generalized equations. This applies to a parametric family of nonlinear
programs

P(t),teT: minif «,x)\g(t,x)<0, h(t, x) = 0),
X

where / (/, •)» g(t, •), h(t, •), t e T, are C2 with respect to x 6 W and all functions,
together with the first and second order partial derivatives by x, are (at least) continuous
in (t,x). By the implicit function theorem [29, Theorem 2.1], strong regularity at a
KKT point of the initial problem implies strong stability of the KKT map under small
perturbations. Extensions to C u programs are studied by Kummer in [20].

REMARK 2.9. (Non-unique multipliers.) Until now we have characterized strong
stability of critical points, which involves necessarily LICQ at the primal part. To
discuss the case of strong stability of a stationary solution (Definition 2.1) in the
absence of LICQ, let x be a stationary solution to P(f,g,h) and suppose that x
satisfies the Mangasarian-Fromovitz Constraint Qualification {MFCQ). Then the set
A.{x) of associated Lagrange multipliers is a bounded convex polyhedron. Kojima
[17] has shown the following: If x does not satisfy LICQ, then x is strongly stable
if and only if the strong second-order sufficient optimality condition {SSOC) [17,29]
holds, that is, (3.10) below is fulfilled at any point (x, y), y € A(x). In particular, x
is then an isolated local minimizer.

For the parametric problem P(r), t e T, this means that MFCQ and SSOC at some
stationary solution x to P(F) imply the existence of a function ( h> x(/) continuous
in some neighborhood Uoft such that for t e U, x (t) is an isolated local minimizer
to P(/) near x = x(t). Supposing that / , g, h are C2 with respect to (x, t), Gfrerer
[9] has shown that MFCQ and SSOC imply Holder continuity with order 1/2 ofjc(-)
around F, while Ralph and Dempe [27] (see also [8,24]) proved that x(-) is even
Lipschitzian around t if additionally the constant rank condition is satisfied. Without
this additional assumption, local Lipschitz continuity may not be expected, however
local upper Lipschitz continuity holds, see, for example, Robinson [30]; we refer also
to Remark 3.6 below.
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3. Characterizations of strong stability

In this section, we characterize simultaneously the strong regularity of the piecewise
smooth function F in (2.1) and of the (smooth-polyhedral) generalized equation (2.4)
and hence, by Proposition 2.5, the other strong stability notions, too. Our tool is
Kummer's approach [19] though one could also use the regularity results in Dontchev
and Rockafellar [7] for generalized equations or in Pang and Ralph [26], Ralph and
Scholtes [28] for PC1 equations. However, the following approach is applicable also
to C11 optimization problems and Lipschitzian equations, which has not been shown
up to now for the other ones. Since we study the stability behavior of the KKT system
near a given critical point z = (x, y, v), equations &,-(*) = 0 may be handled in the
same way as inequalities with associated positive multiplier y, and so, for simplicity
of presentation, we suppose throughout this section that no equations appear. For a
C2 program without equality constraints,

P(f,g): min[f(x)\g(x)<0],

the Kojima function F = (Flt F2) according to (2.1) may be written by

(3.1)

where Onm is the (n, m) zero matrix and Em is the (m, m) unit matrix. Hence, F is a
locally Lipschitzian function of special form: M() is continuously differentiable and
N(-) is a special piecewise linear function. This suggests to use characterizations of
local Lipschitz invertibility of locally Lipschitzian functions by means of generalized
directional derivatives, together with suitable chain rules for generalized derivatives.

Given a locally Lipschitzian function G : KJ —> KJ and a zero z of G, the kind of
derivative we need follows from the characterization of regularity in Kummer [18,19]:

G is regular at z O 0 <£ AG(z; M) V/x e Rf \ {0}, (3.2)

with AG(z; fi) being Thibault's [33] so-called limit set which is defined by

v e AG(l; fi) :<$• v := l im^"1 (G(zk + 9kii) - G(z*)), where z* - • z, 9k | 0.

A sufficient condition for regularity was given by Clarke (see, for instance, [5, Theorem
7.1.1]):

G is regular at z if all matrices in 3G(z) are nonsingular, (3.3)
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where, with Diff(G) := {z € \&'\G is differentiate at z] and convX := convex hull
of X,

dG(l) := conv jlim DG(zk) | z* - • z, z* e Diff G (* = 1, 2 , . . . ) J

is Clarke's [5, Definition 2.6.1] generalized Jacobian of G at z. Obviously, Clarke's
condition 3.3 is equivalent to 0 £ 3G(z)/x for all n in KJ \ {0}, where dG(z)fi is the
element-wise product. Let us recall some facts important in our regularity analysis;
for the details we refer to [19]. First we note that AG(z;/x) is a subset of 3G(z)£i and
there are examples that this inclusion may be strict. Moreover, the reverse inclusion
of (3.3) is not true, in general. If G is continuously differentiate at z, then for all
ix € Rs, AG(z; ii) and 3G(z)/i coincide and are equal to DG(z)fi.

Coming back to regularity for C2 programs, we observe that the situation differs
from the general case. Now, identifying G and F, Clarke's condition 3.3 is even
necessary. This has been proved—in terms of strong stability—by Jongen, Klatte and
Tammer [10, Theorem 3.1] and it can be derived from Theorem 1.1 in Kummer [19].
In the following, we shall recover this result and we obtain as by-products also other
known characterizations of strong stability or regularity.

Since M is continuously differentiable, AM(x;X) reduces to the standard direc-
tional derivative M'(x; A.) and we may apply the chain rule (P8) in [19] to the Kojima
function F(x, y) described by (3.1). Hence, one has

= M'(x;k)N(y) + M{x)LN(y;n). (3.4)

Note that, by standard analysis arguments,

On.m\
Om,m) '" ' v ~ ' " ' \Dg(x)k 0 ••• 0 O,

For completeness, we present the proof of a simple known result, since it is, together
with the chain rule (3.4), the key for the characterization theorem.

LEMMA 3.1. [19, Lemma 4.3.] For the function T : R .-> K2, defined by T(0 :=
(r+, r), the following holds: AT(O; fi) = 3T(0)/x = {(a/x, (1 -a) /x) r | 0 < a < 1).

PROOF. Trivially, we have 3f(0) = conv((l,0)T, (0, l)T}. Hence, D := 3r(0)/x
has the claimed representation, and, by the discussion above, it contains AF(0;/i).
Now, let v = (i>i, v2)

T € D and let 0k I 0 be given. Then define

tk:=
0, if >it = 0,

if/* > 0,
if/i <0 .
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Hence tk -> 0 and 6^\T{tk + 6tfi) - P(r*)) converges to v. This implies D c
AF(0; /A), which completes the proof.

Given y e Rm, we may divide the vector function N(-) (given according to (3.1))
into components which are differentiable at y or not. Hence, applying Lemma 3.1, we
then obtain that AN(y; /it) and dN(y)(i coincide and all elements of AN(y;ix) have
the form

, . . . , a m /x m , (1 - a O / z , , . . . , ( 1 -am)fjLm)T, a € /?(y),

where

R(y) := a e
a,=0, ify,<0
or, = 1, if y, > 0 (i = 1,... , m)
a, 6 [0, 1], ify,=O

Writing l(x, y) := / (x) + g(x)Ty+, we obtain

M'(x;X)N(y) = (D]l{x,
\ Dg(x

y)\
x)X

and M(x)AN(y;n) =

(3.5)

-(l-ori)Mi

-(l-am)fi

Applying Lemma 3.1, (3.4) and a chain rule for Clarke's generalized Jacobian [5, The-
orem 2.6.6], we have for all points (x, y) and directions (X;/x) that AF((x, y), (X, (i))
and 3F(x, y)(k) coincide. This implies a representation of the generalized Jacobian
dF(x, y), which seems to be new.

LEMMA 3.2. Let F be the Kojimafunction according to (3.1). Thenforz = (x,y) e
ln+m, dF(z) is the set of all matrices A(z, a), a € R(y), where

A(z,a) =

D2J(x,y)

By applying (3.2) to the Kojima function (3.1) and its limit set AF((x, y); (A.,
the foregoing discussion now immediately gives a characterization theorem which can
be considered (in the case of C2 programs) as a variant of Theorem 5.1 in [19].
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THEOREM 3.3. (Characterization Theorem.) Let z = (x,y) be a critical point of
P(f, g) and let F be the Kojima function according to (3.1). Then F is regular at z if
and only if for any a 6 R(y), the system

D2J(x,y)k + Y.txOCi^Dgiii) = 0,
Dgl(x)TX - (1-a,)/^, = 0,

: : (3 '6 )

Dgm{x)Tk - (l-am)ixm = 0

has only the trivial solution (A., fj.) = 0.

The foregoing characterization of regularity by system (3.6) is equivalent to the
critical face condition in [7, Theorem 5]; for a proof we refer to [21, Lemma 4.2].
By Theorem 3.3 and Lemma 3.2 we immediately have the following equivalence
[10,16,19] which was already mentioned above.

COROLLARY 3.4. Letz = (x, y) be a critical point ofP(f, g). Then F is regular
at z if and only if the generalized Jacobian dF(z) is nonsingular.

As a by-product, we obtain once more a fact which also follows from Proposition
2.3 and Proposition 2.5: if F is regular at z = (x, y), then x satisfies LICQ. To see
this by (3.6), one has only to put A. = 0, a,- = 1 if .y, > 0 and ay = 0 if yj < 0.

Lemma 3.2 and Corollary 3.4 allow a simple proof of Kojima's matrix charac-
terization of strong stability. This will be done here in the equivalent language of
regularity of F. Let det/1 denote the determinant of a matrix A. For given / put
7 := {1 m] \ I. Further, we observe that /(*) = (j| j , > 0}.

COROLLARY 3.5. (Kojima [17, Corollary 4.3].) Let z = (x, y) be a critical point
ofP(f, g) and put I+ := {i\yi > 0}. Then F is regular at z if and only if for all I with
I+ C / C I(x) and all special choices

a , - \ h ifie'- (3.7)

the numbers det A(z, a) are non-vanishing and have the same sign.

PROOF. The "only if'-direction easily follows from Corollary 3.4 and Lemma 3.2,
because any a satisfying (3.7) for I+ C I C I(x) = {/|y, > 0} belongs to R(y) and
so det A (z, a) is non-vanishing. Since 3 F(z) is a convex set of nonsingular matrices,
the sign of det A (z, a) is constant +1 or —1.

"If'-direction (the method of proof follows [10, Lemma 3.2]): by Corollary 3.4, it
suffices to show that if the matrices A (z, a) are nonsingular with constant sign a of the
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determinant for any special choice (3.7) with 7+ C 7 C 7 (x), then signdet A(z, a) =
a for all a e Riy).

We may assume that 7° := {i\yt = 0} consists of the last indices k,... ,m. Only
for i € 7°, a, may vary between 0 and 1, since for / £ 7°, a, is already fixed by the
condition a e R(y). Now we choose V := A(z, cc°) and W := A(z, or1) with

ot° := 1, if / € { 1 , . . . , m) and a? =
| 1 , if i e {*,... ,m-l),

JO, if i = m.

The matrices V and W differ only by the w-th column Vm and Wm. Expanding the
determinant to this column, one sees that r{t) := det(r V + (1 — t) W) is affine-linear
in t e R. Hence, due to the hypothesis signr(O) = signr(l) = a ^ 0, we obtain
signr(am) =afora l la m € [0, 1]. Continuing this procedure for any fixed am e [0, 1]
and choices a2, a3 of or according to

2

orf

= 1, i f i e { * m - 1 ) ,

\ = am if i =
and a:

= 1, if/ e {it,... , m - 2 } ,

= 0, if / = m - 1,

= am, i f / = m ,

and so on, we finally arrive at sign det A (z, or) = a for all a in R(y). This completes
the proof.

REMARK 3.6. (Extensions.) The approach to the conditions in Theorem 3.3 and
its corollaries is also suitable for analyzing strong stability of critical points for C11

programs and for analyzing the local upper Lipschitz continuity of the stationary
solution set mapping of C2 or C11 programs (or of more general variational systems).
In fact, a transformation of variables allows a reformulation of system (3.6) as a
generalized complementarity system, which involves a generalized equation in terms
of Thibault's limit set, see [19-21]. Regularity of F means that this generalized
complementarity system has only the trivial solution and this is equivalent to the
injectivity condition (3.2). Replacing (3.2) by an appropriate injectivity condition, but
now in terms of the contingent directional derivative, one obtains a characterization
of local upper Lipschitz continuity via a similar generalized complementarity system;
see Klatte and Kummer [15]. The difference essentially consists in the different shape
of the (generalized) directional derivatives which are used. Note that the result is
closely related to a result given by King and Rockafellar [13] and Levy [22] that a
map is locally upper Lipschitzian at some point of its graph if and only if its graphical
derivative has image {0} at 0; see also [8,23].

As mentioned above, condition (3.6) in Theorem (3.3) is a special case of the critical
face condition for variational inequalities over polyhedral convex sets (see [7]) and
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can be extended to (strong) regularity conditions for generalized Kojima systems (see
[15,21]). For extensions of stability results to variational inequalities we also refer to
[24].

Finally, we note that Kojima's matrix characterization of strong stability (as given
in Corollary 3.5) corresponds to the coherent orientation property introduced by
Robinson in [32] with respect to normal maps. An extension of Corollary 3.5 says
that a normal map is locally a Lipschitzian homeomorphism if and only if this map
has coherent orientation; see [31,32] for details.

Now we shall apply the characterization theorem to the case of a strongly regular
(in Robinson's sense) critical point. Given a critical point z = (x, y) of P(/\ g), z is
also a critical point of the quadratic program PQ(0, 0), where

PQ(a, b) : min[q(x) - arx | g(x) < b), (a, b) e Rn+m,

zndq(x) = Df (x)(x-x) + \(x-x)TD2J(x,y)(x-x) andg(x) = g(x) + Dg(x)(x-
x). Note that there is no difference to the problem considered in Section 2, since
for the associated KKT point (x, u) (see (2.2)) and the standard Lagrange function
S£(x, u)=f {x) + g(x)Tu, the matrices D]l{x, y) and D\S£{x, u) coincide.

LEMMA 3.7. Let z = (x,y) be a critical point ofP(f, g) and denote by FPQ the
Kojima function of the quadratic problem PQ(0, 0). Then dF(z) = dFPQ(z).

PROOF. Immediate by definition of q and g.

COROLLARY 3.8. Letz = (x, y) be a critical point ofP(f, g) and let z — (x, «)
be the related KKT point according to (2.2). Then the generalized equation (2.4) is
strongly regular at z if and only if the Kojima function F is regular at z.

PROOF. Apply Lemma 3.7 and Remark 2.7.

We finish this section by specializing the characterization theorem to the case of
local minimizers. For a critical point (x, y) of P(/\ g), let l(x) again be the active
index set aXx and let / + be the set of indices i with yt > 0. Define for / c I(x),

W(I):={k\XTDgi(x) = O,i€l}.

The following theorem is well-known, cf the bibliographical note below.

THEOREM 3.9. Let z = (x,y) be a critical point ofP(f, g) and suppose that x
is a local minimizer of this program. Then F is regular at z = (x,y) if and only
if x satisfies LICQ and D*l(x,y) is positive definite on W(I+). In this case, if
(x(a, b), y{a, b)) denotes the critical point of the linearly perturbed program P(a, b),
then x{a, b) is a local minimizer ofP(a, b) whenever (a, b) is sufficiently small.
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PROOF. Before proving the equivalence, we note that the additional proposition is
implied by the persistence of both the LICQ and the second-order condition under
small perturbations. The proof is straightforward and will be omitted. Another ap-
proach to prove the additional proposition was suggested by Kojima [17, Theorem 5.2,
Corollary 6.6].

"If'-direction of the equivalence: the concluding Remark 1 in [20] generalizes this
assertion to the C11 case. For completeness, we repeat the arguments. We abbreviate
by SOC the second-order condition "D2

xl(x, y) is positive definite on W(I+)". Let F
be not regular at z. Then by applying Theorem 3.3, there exist a vector a e R (y) and a
nontrivial solution (k, fi) of (3.6). Using a, = 0 if yt < 0 and the linear independence
of {Dgi(x), i e /(*)}, we have A. # 0. Then, by definition of R(y),

Dgi(i)
Tk = 0, if i€l+,

Dgi(x)rk = (1 - adut, a, € [0, 1], if i e 7° := /(*) \ I+.

Applying this and multiplying the first equation in (3.6) on the left by kT, we obtain

kTD2J(x, y)k = -J2"i^TDgi(x) = - £ > , ( ! - adlA < 0.
16/° ie/°

Hence, SOC is not satisfied.
"Only if'-direction of the equivalence: suppose that F is regular at z = (x, y).

Then, by Proposition 2.3 (or by Corollary 3.4), x satisfies LICQ with respect to the
system g(x) < 0. Note that, by convention, LICQ is also satisfied if I(x) = 0.
SOC will be shown by combining (i) a known perturbation trick (see, for example,
[6,16,17]) and (ii) an argument (see, for instance, [12,14]) on the persistence of the
local minimizing property under perturbations. Consider

P(e) : min{/ (x) \ g(x) < b(e)}, e > 0, where b(s)i := T ^ r

[0 if yt^0.

Obviously, for any £ > 0, (x, y) is a critical point of P(e), where the active index set
of x with respect to g(x) < b(e) coincides with I+. It suffices to show that

3e > 0 : x is a local minimizerof P(e). (3.9)

Indeed if (3.9) holds then

kTD2J(x, y)k>0 V U W(I+), (3.10)

by a classical necessary optimality condition. Theorem 3.6 implies that, in particular,
the matrix A(z, or) with or, = 0 if y, < 0 and a, = 1 if y, > 0 is nonsingular, and so

'D2
xl(x,y) Dgl+(x)^

Dgl+(x) Oe
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is also nonsingular, where g,+ is the vector function built by gh i e / + . Hence,
by a known fact from linear algebra (see, for example, Corollary 2.2 (a) and the
references in [11]), we then obtain that the strong inequality in (3.10) is satisfied for
k e W(I+) \ {0}, that is, SOC holds.

To show (3.9), we first note that, by regularity, x is the unique local minimizer
of P(0) in some closed ^-neighborhood of x. Then, the continuity of/, g, together
with LICQ, imply that the mapping e H> 5(e) is upper semi-continuous at 0, with
5(0) = {*}, where 5(e) := argmin{/(x) | g(x) < b(e), \\x - x\\ < 8}. For the
definitions and arguments in detail we refer to [1, Chapter 4]. Thus, for any Q > 0,
there is some s' > 0 such that for 0 < e < e', each element of 5(e) belongs to the
interior of B(x, Q) and is hence a local minimizer of P(e). Since LICQ persists under
small perturbations, s can be chosen small enough that each element of S(s) is a
stationary solution of P(e). From the regularity of F at z = (x, y) (which is also a
critical point of P(e) for positive e) we know that for some small s, Q > 0, z is the
unique critical point of P(e) in B(z, Q), and so, S(e) = [x] if e is sufficiently small.
Therefore, (3.9) is shown, which completes the proof.

Bibliographical Note. The pioneering papers by Kojima [17] and Robinson [29],
both published in 1980, already covered many basic characterizations and conse-
quences of strong stability (regularity). In [17, Theorem 3.3, Corollary 4.3], it was
proved that the linearization of the Kojima function F is one-to-one if and only if the
matrix condition of Corollary 3.5 above is satisfied and that this is equivalent to the
strong stability of the corresponding stationary solution x, provided that LICQ holds.
Robinson [29, Theorem 3.1, §4] gave a matrix characterization of strong regularity at
some critical point z by defining a partition of the matrix A ( z , ( l , . . . , l ) ) into blocks
corresponding to the equality(-like) constraints, the inactive inequality constraints and
the rest, and by using the Schur complement concept. Additionally supposing LICQ,
Jongen et al. [11] proved in 1987 that Robinson's and Kojima's matrix conditions
are equivalent, and so, in principle, the equivalence of strong regularity and strong
stability is known since that time. A little gap was remaining after the mentioned
papers: the proof that LICQ is a (simple!) consequence of regularity, strong regularity
and strong stability at critical points. In our knowledge this gap was first closed by
[16, Theorem 2.3], [18, Theorem 4], [19, Theorem 5.1].

As mentioned in the proof of Proposition 2.5, the interrelations between all strong
stability notions considered in the present paper are intensively studied in [16,19].

The "if'-part of Theorem 3.9 in terms of strong regularity at critical points was
proved in [29, Theorem 4.1]. Under the additional assumption of LICQ, Theorem
3.9 was proved in [17, Corollary 6.6] in terms of a strongly stable local minimizer.
Since LICQ is automatically satisfied at a strongly stable critical point (all the more
if the *-part is a local minimizer), Theorem 3.9 should be attributed to Kojima. A
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direct proof of the "only if'-direction of Theorem 3.9 has been recently proposed by
Dontchev [6], however, presupposing that in the KKT points (x(a, b), y(a, b)) of the
linearly perturbed problem, x(a, b) are local minimizers. Applying stability results
for non-smooth equations or variational inequalities, proofs of Theorem 3.9 are also
given in [3,7,19,20,25].
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