
1 Formalizing Deep Neural Networks

Michael Unser

1.1 Introduction

Since the various contributions presented in this book rely heavily on deep neural
networks, we felt that it would be useful to include some background material on
such computational structures. Our intention with this chapter is to provide a short,
self-contained introduction to deep neural networks that is aimed at mathematically
inclined readers. Our primary inspiration for writing it was to demonstrate the usage
of a vector–matrix formalism that is well suited to the compositional structure of these
networks and that facilitates the derivation and description of the backpropagation
algorithm. In what follows we first develop the formalism and then present a detailed
analysis of supervised learning for the two most common scenarios: (i) multivariate
regression, and (ii) classification; these rely on the minimization of least squares and
cross-entropy criteria, respectively. The regression setting is the most relevant one for
biomedical image reconstruction; see for instance [1].

1.2 Primary Components of Neural Networks

A deep neural network (DNN) is a parameterized computational structure that imple-
ments a multidimensional map generically denoted by f θ : RNin → RNout , where
Nin and Nout are the dimensions of the input and output spaces, respectively. The
vector θ represents the parameters of the neural network, which are adjusted during
training. A DNN results from the composition of simple computational modules: mul-
tidimensional linear (or affine) transformations and pointwise nonlinearities referred
to as neuronal activations. This is often represented by a graph (see Fig. 1.1) where
each node represents a neuron and where each arrow pointing to a neuron is associated
with a linear (adjustable) weight.

To be more precise, a DNN is composed of L layers of neurons indexed (from left to
right) by �. The �th layer of the network has N� neurons indexed by n. In the case of a
fully connected DNN, any given neuron (�,n) of layer � has arrows originating from all
neurons of level �−1. The architecture of a fully connected DNN is therefore uniquely
specified by its node descriptor (N0,N1, . . . ,NL), where N0 = Nin and NL = Nout.

To describe the computations performed by the DNN, we denote the intermedi-
ate values in the network at the output of layer � by z� = (z�,1, . . . ,z�,N�

). If the

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

4 Michael Unser

Figure 1.1 Diagram of a fully connected neural network R4 → R2 with L = 5 layers of active
neurons (gray circles) and node descriptor (4,5,4,2,3,2).

real-valued weights associated with the arrow (� − 1,m) → (�,n) are denoted by
θ�,n,m then the computation performed at neuron (n,�) (a node of the graph) is simply

z�,n = σ
⎛⎝θ�,n +

N�−1∑
m=1

θ�,n,mz�−1,m

⎞⎠ , (1.1)

where σ : R→ R is the activation function of the neuron, while θ�,n ∈ R is the bias
parameter.

1.2.1 Vectorial Representation of a Deep Neural Network

To make the compositional structure of the DNN explicit, we shall now adopt an
equivalent vectorial description. To that end, we collect the linear weights associated
with layer � in the matrix W� =

[
(θ�,n,m)N�

n=1,m = 1, . . . ,N�−1
] ∈ RN�×N�−1 and

the biases in the vector b� = (θ�,n)N�

n=1. Likewise, we denote the response of the nth
neuron in layer � by σ�,n : R→ R. This then allows us to implement the DNN with
Algorithm 1.1, which is sequential.

Algorithm 1.1 Feedforward DNN

1. Input: z0 = x ∈ RN0 .
2. Layer-to-layer propagation with intermediate input variable z�−1 ∈ RN�−1 , output

variables u�,z� ∈ RN� , linear network parameters W� ∈ RN�×N�−1 , and b� ∈ RN� .
For � = 1, . . . ,L, compute

u� =W�z�−1 + b�, (1.2)

z� = σ�(u�), (1.3)

where the vector-valued function σ� = (σ�,1, . . . ,σ�,N�
) : RN� → RN� provides a

concise representation of the pointwise nonlinearities.
3. Output: f θ(x) = zL ∈ RNL .

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

1 Formalizing Deep Neural Networks 5

The first processing step described by Eq. (1.2) is the part symbolized by the arrows
in Fig. 1.1, which connect one layer of the network to the next. It takes the output
z�−1 ∈ RN�−1 of the (� − 1)th layer and applies a linear transformation followed by
the addition of a constant vector b� (the bias). The linear transformation is encoded in
the matrix W� of size N� ×N�−1. Note that the bias can also be encoded in terms of
linear weights applied to a constant input common to all layers – structurally, this is
equivalent to augmenting the matrix W� by one line and expressing z�−1 in homoge-
neous coordinates by including the (dummy) constant 1 as an additional component.
Consequently, this part of the processing is intrinsically linear and parameterized by
the weights (W�,b�) which are learned during the training of the network.

Equation (1.3) describes the combined effect of the neuronal activations at layer
�, which corresponds to the nodes (gray circles) in Fig. 1.1. This module is essential
since it constitutes the nonlinear part of the processing. In practice, the responses of
the individual neurons are often chosen to be the same, leading to σ�,n = σ : R→ R,
with one of the most popular choices being σ(x) = ReLU(x) = max(0,x) (a rectified
linear unit).

1.3 Training

The parameters of the neural network are adjusted during the training process. This
is done over the training data by minimizing some prescribed training loss with the
help of a stochastic version of the steepest-descent algorithm, referred to as stochas-
tic gradient descent (SGD). The latter requires the repeated calculation of the gra-
dient of the training loss over data subsets – called batches – which are selected
randomly.

As far as supervised learning is concerned, one needs to distinguish between two
classes of problems. The first is multivariate regression, where the goal is to construct
a multivariate mapping f θ : RN0 → RNL such that f θ(xm) ≈ ym, without overfitting,
for a given set of training data (xm,ym) ∈ RN0 ×RNL with m = 1 . . . ,M . The second
is classification, where the training data are partitioned (or labeled) into K classes
(C1, . . . ,CK) and one wishes to construct a mapping pθ : RN0 → [0,1]K that returns
the posterior probabilities of class membership of an observed pattern x ∈ RN0 , so
that

pθ(x) ≈ (Prob(C1|x), . . . ,Prob(CK |x)
)
.

Here, we shall first consider the problem of (multivariate) regression, which is a
refinement of classical least squares data fitting and which lends itself naturally to the
derivation of the celebrated backpropagation algorithm. In Section 1.4 we then show
how the underlying computational structure and training algorithm should be modified
to yield a classifier.

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

6 Michael Unser

1.3.1 The Backpropagation Algorithm

The backpropagation algorithm is an efficient way to compute the partial derivatives
(the gradient) of the loss function with respect to the parameters of the network. It is
the workhorse of deep learning.

Appetizer: Deep Neural Network of Unit Width
To understand the procedure, it is helpful first to consider a simplified DNN with a unit
width across all layers, as shown in Fig. 1.2. Such an elementary network is described
recursively by the set of (scalar) equations

u� = w�z�−1 + b�, (1.4)

z� = σ�(u�), (1.5)

with � = 1, . . . ,L, where z0 = x is the input of the network and σ� : R → R is the
function that describes the neuronal response at layer �. Moreover, σ� is assumed to
be differentiable and its derivative is denoted by σ′�. This network implements a para-
metric function fθ : R→ R. The vector θ = (w1,b1, . . . ,wL,bL) collects the weights
of the network, to be adjusted during training. Given a data batch {(xm,ym)}Mm=1 and a
quadratic cost

J (θ) =
M∑

m=1

Jm(θ) with Jm(θ) = 1

2

(
fθ(xm)− ym

)2
, (1.6)

the goal is now to efficiently evaluate the gradient ∇θJ of the criterion. The gradient
components are the partial derivatives ∂J/∂w� and ∂J/∂b� for � = 1, . . . ,L. Since the
cost J is additive, it is sufficient to consider the contribution to the gradient of a single
data point (xm,ym) with associated elementary cost Jm. To that end, we first apply the
neural network to xm with the current set of parameter θ, which yields fθ(xm) and the
corresponding intermediate variables (u�,z�)N�=1 defined by Eqs. (1.4) and (1.5). This
step is called the “forward pass.” To compute the required derivatives we then proceed
backwards, starting from � = L, and propagate the differentiation within the network
using the chain rule. Specifically, by substituting the equation for the last layer, we
have that

Jm = 1

2

(
σL(uL)− ym

)2 with uL = wLzL−1 + bL (1.7)

fθ(xm) = zL ≈ ym

linear step

nonlinear step
z = σ (u)

z0

Figure 1.2 Minimal-width neural network R→ R with L = 5 layers of active neurons (gray
circles) and node descriptor (1,1,1,1,1).

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

1 Formalizing Deep Neural Networks 7

which yields

δL = ∂Jm

∂bL

= (σL(uL)− ym

)∂σL(uL)

∂uL

∂uL

∂bL

= (σL(uL)− ym

)
σ′L(uL) (1.8)

∂Jm

∂wL

= (σL(uL)− ym

)
σ′L(uL)︸ ︷︷ ︸

δL

∂uL

∂wL

= δLzL−1, (1.9)

where, for computational efficiency, we have identified the common (re-weighted)
error term δL. By inserting zL−1 = σL−1

(
wL−1zL−2 + bL−1

)
into Eq. (1.7), we then

proceed with the chain rule to the next layer and obtain

δL−1 = ∂Jm

∂bL−1
= (σL(uL)− ym

)
σ′L(uL)︸ ︷︷ ︸

δL

∂uL

∂bL−1
= δLwLσ

′
L−1(uL−1), (1.10)

∂Jm

∂wL−1
= (σL(uL)− ym

)
σ′L(uL)

∂uL

∂wL−1
= δL−1zL−2. (1.11)

By repeating this process for � down to 1, we uncover the simple recursion

δ� = ∂Jm

∂b�

= w�+1δ�+1σ
′
�(u�), (1.12)

∂Jm

∂w�

= δ�z�−1, (1.13)

which is the celebrated backpropagation algorithm. Let us also note that Eq. (1.12) is
consistent with Eq. (1.8) if we set wL+1= 1 and δL+1= fθ(xm) − ym. The back-
propagation algorithm can therefore be interpreted as feeding the prediction error
fθ(xm) − ym backwards in a slightly modified version of the network in Fig. 1.2,
where the biases have been suppressed and the pointwise nonlinearity replaced by a
simple multiplication (re-weighting) by σ′�(u�). The output of every layer then yields
δ� = ∂Jm/∂b�, which is then used to compute ∂Jm/∂w�.

Backpropagation in Full Generality
In practice, of course, the layers are wider so that the scalar multiplications in Eqs.
(1.12) and (1.13) need to be replaced by matrix–vector multiplication.

In the interest of clarity and to highlight the parallel with the scalar scenario that has
just been considered, we shall make use of the vectorial–tensor calculus formalism.
Given a data batch {(xm,ym)}Mm=1 (in the multivariate regression setting), we are now
aiming at training the neural network to minimize the quadratic cost

J (θ) =
M∑

m=1

Jm(θ) with Jm(θ) = 1

2

∥∥f θ(xm)− ym

∥∥2
2, (1.14)

where the network parameters θ are encoded in the weight matrices W� and bias
vectors b� for � = 1, . . . ,L.

We now focus on some particular layer � and write W=W� and b= b� for better
readability, while keeping all the other network parameters fixed. Under those condi-
tions, J (θ) = J (b,W) is a real-valued functional that depends on the vector and matrix

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

8 Michael Unser

parameters b= (bn)∈RN and W∈RM×N , with [W]m,n=wm,n. It is then helpful to
represent the partial derivatives of J with respect to those parameters by the following
vector- and matrix-valued functions:

∂J (b)

∂b
=

⎡⎢⎣∂J (b)/∂b1
...

∂J (b)/∂bN

⎤⎥⎦ (1.15)

∂J (W)

∂W
=

⎡⎢⎣ ∂J (W)/∂w1,1 . . . ∂J (W)/∂w1,N
...

∂J (W)/∂wM,1 . . . ∂J (W)/∂wM,N

⎤⎥⎦ . (1.16)

We now have all the elements needed to present the backpropagation algorithm for
a generic feedforward neural network that has L layers indexed by �, each of which is
composed of N� neurons. Since we are dealing with partial derivatives and making use
of the chain rule, it should not come as a surprise that determining this backpropaga-
tion algorithm requires a knowledge of the “derivative” map σ′� = (σ′�,1, . . . ,σ

′
�,N�

) :

RN� → RN� . Other than that, the sequence of computations is essentially the flow-
graph transpose of Algorithm 1.1 with the recursion running backwards.

Algorithm 1.2 Gradient computation by backpropagation

1. Initialization:

δL = ∂Jm

∂bL

= (f θ(xm)− ym

)� σ′L(uL) ∈ RNL, (1.17)

where the symbol � denotes the pointwise (or Hadamard) product of two vectors.
2. Backward propagation of the error through the network: For � = L− 1 down to 1,

compute

δ� = ∂Jm

∂b�

=WT
�+1δ�+1 � σ′�(u�) ∈ RN�, (1.18)

∂Jm

∂W�

= δ� · zT
�−1 ∈ RN�×N�−1, (1.19)

where (1.19) is valid for layer � = L as well.

As in the scalar scenario, we can also extend the validity of (1.18) for � = L by
defining WL+1 = I and δL+1 =

(
f θ(xm)−ym

)
. The backpropagation algorithm there-

fore essentially amounts to feeding the prediction error
(
f θ(xm) − ym

)
for each test

datum (xm,ym) backwards into the network. The only adjustment to the initial struc-
ture is that the nonlinear neuronal transformation at any given node (n,�) is replaced by
a pointwise multiplication of the backpropagated error with σ′�,n([u�]n). The striking
parallel between the forward and backward computations is best illustrated by the
juxtaposition of Figs. 1.3 and 1.4. Practically, this translates into the determination of
the gradient being essentially as fast as the application of the neural network to the

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

1 Formalizing Deep Neural Networks 9

xm

For = 1 to L,z0 = xm

zz0

fθ(xm) = zL ≈ ym

z = σ W z −1

u

+b

Figure 1.3 Feedforward computations in a DNN.

Jm

W
= δ · zT

−1

δL

δ

fθ(xm) − ym

For = L − 1 down to 1,

δ =
Jm

b
= WT

+1δ +1 σ (u)

Initialization : δL =
Jm

bL
= fθ(xm) − ym σL(uL)

Figure 1.4 Efficient computation of the gradient of the elementary least squares term
1
2‖f θ(xm)− ym‖22 by backpropagation for the DNN of Fig. 1.3.

data. While these computations can be done very efficiently, the remaining limiting
factor is the slow convergence of the gradient-descent algorithm and the necessity to
process large amounts of data to ensure correct behavior. Fundamentally, it is the need
for a massive number of iterations that is responsible for the large computational cost
of the training of DNNs.

1.4 Categorical Loss for Classification

For cases where the DNN is being designed for a classification task, it is common to
include an additional output layer that converts the real-valued output of the DNN into
a set of pseudo-probabilities. This recoding is typically achieved with a softmax unit.
Given the input vector z = (z1, . . . ,zK), the softmax transformation RK → [0,1]K is
defined by

Softmax(z) = (p1, . . . ,pK), pk = exp(zk)∑K
k=1 exp(zk)

, (1.20)

the effect of which is to translate the zk into a set of “probabilities” {pk}Kk=1, with∑K
k=1 pk = 1. These are intended to approximate the posterior probability distribution

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

10 Michael Unser

{Prob(Ck|x)}Kk=1 of the datum x, where Ck denotes the occurrence of the kth class.
The ultimate classification output of the neural network (the hard decision) is then
given by

k(x) = arg max pk = arg max zk .

Given a representative ensemble
(
xm,C(m)

)M
m=1 of labeled instances of training

data with class label C(m) ∈ {1, . . . ,K}, we now need to specify a suitable training
criterion. The preferred choice for a categorical output is the cross-entropy

J = −
M∑

m=1

K∑
k=1

[ym]k log
(
Prob(Ck|xm)

) = − M∑
m=1

log Prob
(
C(m)|xm

)
, (1.21)

where [ym]k = δk,C(m) is a binary variable (0 or 1) that indicates class membership
and Prob(Ck|xm) = pk , with pk given by Eq. (1.20); here z = f θ(xm) is the output of
the neural network for the input xm. Let us note that the minimization of Eq. (1.21) is
actually equivalent to the minimization of the empirical Kulback–Leibler divergence
between the “true” distribution [ym]k = δk,C(m) and the predicted distribution given
by Prob(Ck|xm).

In order to adapt the backpropagation scheme of Section 1.3.1 to the present sce-
nario, we need to determine the Jacobian of the softmax transformation. Again, this is
achieved by applying the chain rule. To that end we evaluate the partial derivatives of
the probabilities (1.20) with respect to zl , which yields

∂pk

∂zl

=
{

pk(1− pl), k = l

−pkpl, otherwise
, (1.22)

= pk(δk,l − pl). (1.23)

Let us now consider the contribution to the cross-entropy criterion (1.21) of sample m

which belongs to the class C(m). It is given by

Jm = −
K∑

k=1

yk log pk = − log pC(m)

with yk = [ym]k and pk = Prob(Ck|xm). By the chain rule and using the property that∑K
k=1 yk = 1, we obtain the formula

∂Jm

∂zl

= −
K∑

k=1

yk

pk(δk,l − pl)

pk

= pl − yl

which is remarkable for its simplicity. The surprising aspect is that the gradient is
essentially the same as if we had applied a least squares criterion to the probabilities –
the difference, of course, is that we are backpropagating the gradient with respect to
zk and not pk!

In effect, this means that one can adapt the backpropagation procedure (Algo-
rithm 1.2) to the case of a categorical loss by a straightforward adjustment of the
initialization step. More precisely, we substitute the term (f θ(xm)− ym) in Eq. (1.17)

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

1 Formalizing Deep Neural Networks 11

by (pθ(xm) − ym), with pθ(xm) = Softmax(f θ(xm)
)
, where the softmax operator is

defined by Eq. (1.20).
There is also a probabilistic interpretation of criterion (1.21). It is used in what

is called logistic regression. If we assume that the samples xm are independent, with
class probabilities Prob(Ck|xm), then the global probability associated with the dataset
(x1, . . . ,xM) is

M∏
m=1

K∏
k=1

Prob(Ck|xm)[ym]k, (1.24)

which, upon taking the (negative) logarithm, yields Eq. (1.21). This shows that
minimization of the cross-entropy criterion is actually equivalent to the search for a
maximum-likelihood solution.

1.5 Good Practice for Training DNNs

Here is a short list of practical aspects to consider when designing and training neural
networks.

1. Start from an architecture that already works. Neural networks require a lot of
heuristics. It is therefore recommended to start from models that are known to
perform well for a given task – e.g., convolutional neural networks for image
processing or segmentation. Also, consider incorporating components such as
batch normalization [2] and skip-connections [3], whose positive effect on
performance is well documented.

2. Split the data into training, validation, and test sets. Knowledge of the
validation loss of the trained network is helpful to optimize the hyperparameters
(the number of layers, number of filters, regularization weight, etc.). The test set
should only be used at the very end for evaluation purposes.

When the data is scarce – as is often the case for medical applications –
perform k-fold cross-validation, which makes use of the whole dataset.

3. Regularize the network to improve generalization or promote sparsity. For
the first use-case, the most common practice is to add weight decay (an �2-penalty
on the weights); other methods include early stopping and dropout [4]. For
promoting sparsity, an �1-norm regularization can be added to the loss.

4. Use prior knowledge to guide the construction of the network. For example,
choose filter sizes that are appropriate to capture the content of the images you are
classifying.

5. Progressively reduce the learning rate (the step size of SGD) as training
progresses. One should typically begin training with a larger learning rate – in
order to obtain faster convergence and avoid local minima – and then decrease it
when the loss starts to converge – to prevent oscillations around a minimum.

6. Prefer the adaptive moment estimation (ADAM) optimizer to “vanilla”
gradient descent methods. Classical gradient descent methods have been mostly

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009042529.003

12 Michael Unser

replaced by optimization strategies that rely on higher-order moments of the
gradient or include momentum. The most salient example is the ADAM optimizer
[5], which has now become the de facto standard.

7. Augment the training data to improve performance. The training data can be
extended by performing operations on the available data points which do not
change their labels. Common operations of this kind which are often applied to
images include flipping, cropping, and rigid-body or elastic deformations [6, 7].

8. Consider alternatives to grid search for optimizing the hyperparameters.
Beware that there are better methods to optimize the network hyperparameters
than simple intuition or grid search; these include Bayesian and evolutionary
optimization [8, 9].

9. Use tools such as Tensorboard1,2 to visualize the evolution of training and guide
your decisions on hyperparameter optimization.

References

[1] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network
for inverse problems in imaging,” IEEE Transactions on Image Processing, vol. 26, no. 9,
pp. 4509–4522, 2017.

[2] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proc. International Conference on Machine Learning.
PMLR, 2015, pp. 448–456.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proc. 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016,
pp. 770–778.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.
International Conference on Learning Representations, 2015.

[6] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv:1605.07146, 2016.
[7] S. Bianco, C. Cusano, F. Piccoli, and R. Schettini, “Personalized image enhancement using

neural spline color transforms,” IEEE Transactions on Image Processing, vol. 29, pp. 6223–
6236, 2020.

[8] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures,” in Proc. International
Conference on Machine Learning. PMLR, 2013, pp. 115–123.

[9] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Advances in Neural Information Processing Systems, J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, eds., vol. 24. Curran Associates,
2011.

1 https://www.tensorflow.org/tensorboard/
2 https:/pytorch.org/docs/stable/tensorboard.html

https://doi.org/10.1017/9781009042529.003 Published online by Cambridge University Press

https://www.tensorflow.org/tensorboard/
https://pytorch.org/docs/stable/tensorboard.html
https://doi.org/10.1017/9781009042529.003

