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A NOTE ON EQUICONTINUOUS FAMILIES OF VOLUMES 
WITH AN APPLICATION TO VECTOR MEASURES 

RICHARD ALAN OBERLE 

Let V denote a ring of subsets of an abstract space X, let R denote the real 
numbers, and let N denote the positive integers. Denote by a(V, R) (re
spectively ca(V, R)) the space of real valued, finitely additive (respectively 
countably additive) functions on the ring V and denote by ab(V, R) the 
subspace consisting of those members of the space a(V, R) with finite varia
tion on each set in the ring V. Members of the space a(V, R) are referred to as 
charges and members of the space ab(V, R) are referred to as locally bounded 
charges. We denote by cab(V, R) the intersection of the spaces ab(V, R) and 
ca(V, R). Elements of this space are called volumes and nonnegative elements 
are called positive volumes. 

Let W denote any family of subsets of the space X. A sequence An £ V, 
n Ç N, is said to be JF-dominated if there exists a set B £ W such that 
An C B, for n = 1, 2, . . . . A charge w £ a(V, R) is said to be Rickart on the 
ring V relative to the class W if for each IF-dominated, disjoint sequence 
An G V, n £ N, we have 

lim w(An) = 0. 
n 

This condition is an abstraction of the condition of strong boundedness intro
duced by Rickart in [15] for finitely additive set functions on a c-algebra into 
a Banach space. 

A family of charges M C a{V, R) is said to be uniformly Rickart on the ring 
V relative to the class W if for each fiF-dominated, disjoint sequence An Ç V, 
n G N, \imnw(An) = 0 uniformly with respect to the charges w G M. 

Each charge w Ç ab(V, R) is Rickart on the ring V relative to the class 

b(w) = {A e Vv\\w\{A) < oo} 
where Va denotes the family of all countable unions of members of the ring V 
and \w\(-) denotes the variation of the charge w £ ab(V,R) defined on all 
subsets as in [9]. For a volume w G cab (y, R), the class b(w) coincides with 
the sets A Ç Vv for which the sequence 

\w\ ( C M * ) n = 1,2,3,... 
is bounded for some representation A = \JnAn. If the ring V is an algebra of 
sets or a cr-ring of sets, then each member of the space ab(V, R) is Rickart on 
the ring F relative to the classes W = {X}, and W = F respectively. 
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In this paper it is shown that a family of volumes M C cab(V, R) is uni
formly Rickart on the ring V relative to a class b(w$), corresponding to a non-
negative volume Wo G cab(V,R), if and only if there exists a nonnegative 
volume v G cab(V, R) such that the set M is fl-equicontinuous. As a conse
quence, it is shown that for a class of vector measures on a general ring of sets, 
weak continuity is equivalent to strong continuity. 

The proof of the main theorem requires the following equivalent formulation 
of the Rickart condition which was first used by T. Ando, [1]. A discussion of 
additional equivalent formulations of the Rickart condition for finitely sub
additive real valued functions may be found in [3] and [13]. 

PROPOSITION l.Let Vbe a ring of subsets of the space X. A family M<Z cab(V,R) 
is uniformly Rickart on the ring V relative to a class W if and only if for each 
W-dominated sequence An G V, n G N, and each number e > 0, there exists a 
strictly increasing map j from the set of positive integers N into itself such that for 
all indices n G N and charges w G M, we have 

\w\(Bn\Cn) < e 

where for t G N 

Bt = AtKJAt+1KJ...VAjU) 

and 

t 

Ct = DAS. 

THEOREM 1. Let V be a ring of subsets of the space X. A pointwise bounded 
family M C cab(V, R) is uniformly Rickart on the ring V relative to the class 
b(wo), corresponding to a positive volume wQ Ç cab(V, R), if and only if there 
exists a positive volume v € cab(V, R) such that the set M is v-equicontinuous. 
In addition if each member of the set M is w0-continuous, then the set M is 
Wo-equicontinuous. 

Proof. Since the sufficiency is clear, only a proof of the necessity is given. 
We show first that for each number e > 0, there exists a number 8 > 0 and 
a finite set u\, . . . , un Ç M ^J {w0} such that A Ç V and |wfc|(^4) < 5, 
k = 1, 2, 3, . . . , n yields \u(A)\ < e for all charges u G M KJ {w0}. If the 
contrary is assumed, then beginning with the charge w0 G M VJ {w0}, it is 
possible to choose a sequence wn G M \J {w0}, n = 0, 1, 2, . . . and a sequence 
An G V, n G N, such that for each index n = 1, 2, 3, . . . we have 

\wk\(An) < 1/2" for k = 0, 1, 2, . . . , n - 1 

and 

\Wn(An)\ > e. 
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The relation 

( n \ n 

U i J ^ S W ( ^ ) ^ l iom= 1,2,3,... 
insures that we have A = LWw G b(w0). 

Using the Ando formulation of the Rickart condition, there exist sequences 
Bn Ç V and Cn £ 7 , w G i V such that for each index w = 1, 2, 3, . . . 

(1) Bn = AnKJ An+1 \J . . . VJ 4 i ( n ) where j(w) < j U + 1), 
(2) 5» 2 C 3 Ci+i, 
(3) |w|CBn\C„) < e/2 for all charges w £ M. 

For each pair of indices k, n, with k = 0, 1, 2, . . . , n — 1 the relation 

KKAO ^ E W(;4,) ^ V2W-X 

insures that we have 

lim \wk\(Bn) = 0 
n 

and from monotonicity 

lim 1*0*1 (Cn) = 0 
n 

for each index k = 0, 1, 2, 3, . . . . Since the set M KJ {w0} is uniformly Rickart 
on the ring V, and the sequence Cn, n £ iV, is 6 (w0) -dominated and mono
tone, we conclude that the limit is uniform in the index k = 0, 1, 2, . . . . 
Therefore, there exists a nonnegative integer n(e) such that n è n(e) yields 

KI(CJ < e/2 
uniformly in the index k = 0, 1, 2, 3, . . . . We then have for indices 
* = 0, 1, 2, . . . , n = 1, 2, 3, 

H C 4 J S \wk\(Bn) ̂  K|(CJ + \wk\(Bn\Cn). 
This yields for indices n ^ w(e) 

|w*|C4») < e 

uniformly in the index k = 0, 1, 2, 3, . . . . This contradicts the constructed 
relation 

\wn(An)\ > e. 

Using the above established result, choose a sequence wm
n £ M VJ {w0}, 

m = 1, . . . , k(n), n = 1, 2, 3, . . . and a sequence 8n > 0, w = 1, 2, 3, . . . such 
that A £ V and |^w

w|01) < <5„ for m = 1, 2, . . . , k(n) yields 

\w{A)\ < 1/2* 

for all charges w £ M ^J {w0}. 
We set 
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Since the set M is pointwise bounded, the function v( • ) is nonnegative, count-
ably additive and the set M U {w0} is fl-equicontinuous. Note that countable 
additivity follows from the fact that the family w^, m = 1, 2, . . . , k(n), 
n — 1, 2, . . . is uniformly Rickart and each member is countably additive. 

Assume that each member of the family M is ^-continuous. If the family 
M is not ?#o-equicontinuous, there exists a number e > 0, a sequence An 6 Vy 

n £ N and a sequence wn £ Mf n £ N such that 

w0(An) < 1/2» 

and 

\wn{An)\ > e 

for all indices n = 1, 2, 3, . . . . Consequently A = \JnAn (E 6(wo) and the 
assertion follows from an argument similar to the one given above. 

Let F be a real Banach space and let Y' denote the dual. Let a(V, F) denote 
the space of F-valued, finitely additive functions on the ring V. Elements of 
the space a(V, Y) are referred to as vector charges. For each vector charge 
M 6 a (F , F), the semivariation p(-, fx):P(X) —> [0, oo] is defined for a set 
E G P(X) by the relation 

/>(£, M) = sup (\n(A)\:A e V, A ç £ ) . 

The semivariation is increasing on the a-algebra P(X) and subadditive on the 
ring V. Denote by ab ( V, F) the space of charges with finite semivariation on 
each set in the ring V. A vector charge /x £ a(V, Y) is said to be Rickart on 
the ring V if for each disjoint sequence An G V, n G N, for which 
£(U£. i^* , M) < °° we have 

lim fx(An) = 0. 
n 

A special case of the Rickart condition introduced here for vector charges 
has proven to be quite useful in the study of decompositions of a vector charge 
into a countably additive and (weakly) purely finitely additive component 
(see Rickart [15], Brooks [4], and Uhl [17]), as well as in the study of a Vitali-
Hahn-Saks-Nikodym theorem for vector charges (see Brooks and Jewett [7], 
andOberle[13]). 

Brooks [5; 6] has shown that a Rickart vector charge on an algebra of sets 
admits a finitely additive control measure. Uhl [17] noticed that the existence 
of a finitely additive control measure is equivalent (on an algebra of sets) to 
the weak compactness of the range of a countably additive, Rickart vector 
charge. However, the characterization of unconditional summability of a 
series in terms of weak relative compactness of the net of unordered, finite 
sums (see McArthur [12], or Robertson [16]) insures that a vector charge 
^ Ç a(Vt F) is Rickart on a ring V if and only if the set 

J E M W :A GP(iV),A-finite> 
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is weakly relatively compact for each disjoint sequence An Ç V, n G N, with 
£(U?=i^U, M) < °° . Consequently each weakly compact vector charge is 
Rickart (a vector charge M £ ab(V, F) is said to be weakly compact if the set 
{n(B):B 6 V, B C 4̂} is weakly compact in the space F for each set A £ Va 

with £04, M) < °°) . This observation may be established directly from the 
Orlicz-Pettis theorem (Day [8]). The converse has been noted by Uhl [17] for 
Rickart charges on an algebra of sets. The Uhl theorem may be used to show 
that each countably additive Rickart charge on a general ring of sets is also 
weakly compact. Indeed, one need only note that for a Rickart charge 
\x 6 ab(V, Y) and each set A <E V„ with p(A, /z) < oo and A Q V, the net 
{n(B):B £ V,B <Z A} is Cauchy in the space F. Consequently, the restriction 
of the charge M to the ring V(A) = {B Ç V:B C A} has an extension to a 
Rickart vector charge on the algebra 

s/(V,A) = {B e P(A):B £ V or A\B £ V) 

where P {A ) denotes the ©--algebra of all subsets of the set A. This extension is 
given on a set B Ç. S3?\V, A) by the formula 

= U(B) HB^V 
M A ; (lim (n(C):C e V,CCA) - n(A\B) if A\B G V. 

Since the charge ne( • ) is Rickart on the a lgebra j / (F , A), it admits a control 
measure (Brooks [6]). By the Uhl theorem, the set {f*e(B):B £s/(V,A)} is 
weakly relatively compact in the space F so that the set {fi(B):B Ç V, 
B C A} is weakly relatively compact in the space F. 

G. G. Gould [11] first noted that for a large class of Banach spaces, which 
includes the weakly complete spaces, each vector charge with finite semivaria-
tion on the ring V is Rickart. The results of Bessaga and Pelczynski [2] insure 
that the spaces considered by Gould are precisely those Banach spaces which 
do not contain the space c0 of sequences of scalars converging to zero. 

If a vector charge y. 6 a(V, Y) has finite semivariation on the ring V and is 
Rickart on the ring V, then the set of charges {\yf o /x| ( • ) \y' G F', \yf \ = 1} is 
uniformly Rickart on the ring V relative to the class 

W = {A e V.:p(A,v) <oo} 

where Va denotes the class of all countable unions of elements from the ring V. 
However, the Uniform Boundedness Principle, (Dunford-Schwartz [10]) in
sures that this is equivalent to saying that the set {\y' o /x| ( • ) \yf 6 Y', 
\y'\ = 1} is uniformly Rickart on the ring V relative to 

W= n | % ' o M ( - ) ) : y € Y',\y'\ = 1}. 

Indeed, consider any disjoint sequence An 6 V, n 6 N such that 
A = \J„An e W. We then have 

\y'on\(A) < oo 
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for each functional y' G Y', \yf\ = 1. Now for each set B G V, B Q A, the 
relation 

TB(y') =y'{n{B)) for y £ F ' 

defines a net of linear continuous functionals on the space Y' which satisfy 
the relation 

\TB(y')\ g \y'on\(A) 

for each functional y' G F' , \y'\ S 1. The Uniform Boundedness Principle 
insures that there exists a constant w > 0 so that 

\TB(y')\ S m 

for all sets B G F, 5 C 4̂ and all functionals y G F', \y'\ ^ 1. Consequently 
we have 

p(A, n) < m. 

We now apply the Rickart condition to conclude that 

lim/iC4n) = 0. 
n 

This observation and Theorem 1 yield the following characterization of con
tinuity in terms of weak continuity for finitely additive vector charges. 

THEOREM 2. Let V be a ring of subsets of a space X, let Y be a Banach space 
and let v G cab(V, R) be nonnegative. A Rickart vector charge y G ab(V, F) is 
v-continuous if and only if for each functional y1 G F' , the charge y' o jit( • ) is 
v-continuous. 

Proof. The necessity is clear. To see the sufficiency, notice that the assump
tion that for each functional y' G F' , the charge y' o \x is ^-continuous, insures 
that we have 

b(v) C K / O M ) . 

Indeed, we need only show that for two nonnegative volumes w,v £ cab(V, R) 
the condition that w is ^-continuous insures that b(v) C b(w). To see this, let 
w denote the extension of the volume w to a (possibly infinite valued) measure 
on the o--ring <r(V) generated by the ring V. Assume that for a set A G Vff, 
we have 

A G b(v) and A g b(w). 

From the countable additivity of the extension w, there exists a set ^4i G F, 
Ai <Z A such that w(yli) > 1. From additivity, we have 

co = w(A) = w(-4i) + w(A\Ai). 

Consequently 

w(A\Ai) = co. 

Continuing in this fashion, we may choose a disjoint sequence An Ç A, An G F, 
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n = 1, 2, 3, . . . such thatwC4n) > l,forw = 1 , 2 , 3 , . . . . However, 4 G b(v) 
yields 

limi>(i4„) = 0 
n 

so that by continuity 

lim w(An) = 0 

which contradicts the constructed relation 

w(An) > 1 

for indices n = 1, 2, 3, . . . . We now have 

b{v) c n (btyori'.y G KM/I = i). 
Therefore the set {|y' o [x\( • ):y' G F', \y'\ = 1} is uniformly Rickart on the 
ring V relative to the class b(v). Using Theorem 1, we conclude that the set 
{\y' on\(-)'.y' G Y', \y'\ = 1} is z;-equicontinuous and hence the vector 
charge \x G ab(V, Y) is ^-continuous. 

Theorem 2 extends the original formulation given by Pettis [14] for count-
ably additive vector measures on a c-algebra of sets which are defined by the 
Pettis integral of vector functions which are Pettis summable with respect to a 
finite measure. 

COROLLARY. Let V be a ring of subsets of an abstract space X and let Y be a 
real Banach space which does not contain the space c0 of real sequences converging 
to zero. Then a charge ju G ab(V, Y) is v-continuous with v £ cab+(V, R) (the 
cone of nonnegative volumes) if and only if the charges y' o \x, y' G Yf, \y'\ — 1 
are v-continuous. 

A nonnegative volume v Ç cab(V,R) is said to control a vector charge 
ix Ç a ( V, Y) if the charge ix is ^-continuous on the ring V. Theorem 1 contains 
the essentials of the following existence theorem for control volumes. 

THEOREM 3. Let V be a ring of subsets of an abstract space X and let Y be a real 
Banach space. A countably additive, Rickart vector charge fi G ab(V, Y) admits 
a control volume v G cab (y, R) if and only if there exists a nonnegative volume 
w G cab (V, R) with 

b(w) C {A G V9\p(A,v) < oo}. 

Proof. If there exists a nonnegative volume w G cab(V, R) with 
b(w) C {A G V.:p(A, p) < oo}, then the family {/ o /T . / G F , | / | = 1} is 
uniformly Rickart on the ring V relative to the family b(w). Theorem 1 gives 
the existence of the control volume. Conversely, if the charge ix £ ab(V, Y) is 
^-continuous for a non-negative volume v G cab(V,R)f then an argument 
similar to the one given in the proof of Theorem 2 yields 

b(v) C{A G V.:p(A,p) < oo}. 
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Indeed, to see that the argument applies, one need only note that for a count-
ably additive charge M G ab(V, F), the semivariation p( • , /x) is subadditive 
on the family {A G Va:p(A, \i) < GO }. 

When the ring V is an algebra or a cr-ring of sets, the family Va coincides with 
the family b(v) for each nonnegative volume v Ç cab(V,R). Consequently, 
each countably additive, Rickart vector charge /x Ç ab(V, Y) satisfies the 
conditions of Theorem 3. 
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