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Webs of type P
Nicholas Davidson , Jonathan R. Kujawa , and Robert Muth
Abstract. This paper introduces type P web supercategories. They are defined as diagrammatic
monoidal k-linear supercategories via generators and relations. We study the structure of these
categories and provide diagrammatic bases for their morphism spaces. We also prove these supercat-
egories provide combinatorial models for the monoidal supercategory generated by the symmetric
powers of the natural module and their duals for the Lie superalgebra of type P.

1 Introduction

1.1 Background

This paper introduces certain diagrammatic supercategories via generators and rela-
tions. These supercategories provide a combinatorial model of certain monoidal
supercategories of representations for the type P Lie superalgebra p(n). The prefix
“super” means there is a Z/2Z-grading and definitions include signs according to
the grading. For example, a supercategory is a category enriched in the category of
Z2-graded vector spaces, while a monoidal supercategory is additionally equipped
with a monoidal structure satisfying a graded analogue of the interchange law. Recall
that the type P Lie superalgebra is one of the so-called strange families which appears
in Kac’s classification of the simple complex Lie superalgebras [18]. It has no direct
analogue in the classical world, and its representation theory is still relatively myste-
rious. One reason for this is that many classical techniques used to study Lie algebras
cannot be directly adapted to the study of p(n), e.g., its enveloping superalgebra has
trivial center, so the tools of central characters cannot be used.

In [22], Moon gave a generators and relations presentation for the endomorphism
algebras of the tensor powers of the natural supermodule for p(n). Due to their
similarity to Brauer’s algebras for the orthogonal and symplectic Lie algebras, they
are variously called X Brauer algebras where X ∈ {marked, odd, periplectic}. Building
on Moon’s work, the second author and Tharp introduced a diagrammatic super-
category that describes the full sub-supercategory of p(n)-supermodules which are
tensor products of the natural supermodule [20] (see also [26]). The objects of this
supercategory are nonnegative integers, and the morphisms arek-linear combinations
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of Brauer diagrams that are subject to signed versions of Brauer’s original relations.
The endomorphism algebras in this supercategory give a diagrammatic realization of
Moon’s algebra. Since then, there has been substantial work applying diagrammatic,
combinatorial, and categorical techniques to the study of p(n) and Moon’s algebra
(see [2–4, 8–12] and the references therein). The present paper further develops this
approach to the representation theory of p(n).

Because we allow all (not just grading-preserving) homomorphisms, the category
of finite-dimensional p(n)-supermodules is a supercategory. As this supercategory is
closed under taking tensor products and duals, this structure makes the supercategory
of finite-dimensional p(n)-supermodules into a rigid monoidal supercategory in the
sense of [5]. In this paper, we introduce and study diagrammatic supercategories
which completely describe certain natural monoidal sub-supercategories of p(n)-
supermodules.

1.2 Main results on webs

For the discussion in this subsection, we assume that k is an integral domain
where two is invertible. In Section 3, we use generators and relations to define a
k-linear monoidal supercategory called p-Web. The objects of this supercategory are
finite tuples of nonnegative integers. Morphisms in this supercategory are k-linear
combinations of webs, which are diagrams obtained by vertically and horizontally
concatenating the generating diagrams (explained below in Definition 3.1.1). In this
paper, we use the convention that diagrams are read from bottom to top. For example,
given any integer a > 1, the following sum of webs is a morphism in p-Web from
(1, a, 1) to (a):

Compared to webs that have previously appeared in the literature, experienced readers
will notice that our webs contain (unoriented) cups and caps on strings of thickness
one which are decorated by beads. These are odd morphisms in the category, and
correspond to the fact that the object 1 is self-dual. The bead is used to distinguish
these unoriented morphisms from the oriented cups and caps drawn in the oriented
version of the web category (see below). The one-valent vertex, called an antenna, is a
shorthand used to represent the composition of a beaded cap with the split. See (3.1).

In Section 4, we introduce an oriented version of p-Web which we call p-Web↑↓.
Again, this is a monoidal supercategory defined by generators and relations. The
objects of p-Web↑↓ are finite words in the symbols

{↑a , ↓a ∣ a ∈ Z≥0} .

As before, morphisms are k-linear combinations of diagrams obtained by vertical
and horizontal concatenations of generating diagrams. Any such diagram is called
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Webs of type P 3

an oriented web. For example, given any integer a ≥ 1, the following sum of oriented
webs is a morphism in p-Web↑↓ from ↑1 ↑a ↓1 to ↑1 ↑a−1:

Experienced webslingers will also note that these webs are decorated with yellow and
blue dots, which reverse the orientation of the strand. These represent odd morphisms
in this category. The yellow dot encodes an isomorphism ↑1 → ↓1, while the blue dot
encodes its inverse.

Our first set of results concern the structure of these categories. In Corollaries 3.3.2
and 4.3.2, we prove that both p-Web and p-Web↑↓ are symmetric braided categories
and that p-Web↑↓ is rigid. This is perhaps not surprising since these categories are
constructed to provide diagrammatic models of categories of p(n)-supermodules
which have these properties. In Corollary 6.3.2, we give a k-linear “stable basis” for
the morphism spaces in p-Web in terms of web diagrams (see Sections 3.5 and 6.7 for
details). By applying standard techniques (Section 4.4), we extend our arguments to
prove a basis theorem for the morphisms in p-Web↑↓.

We also describe relationships among these categories that could be predicted by
readers familiar with webs in other settings. Let p-Web1 denote the full subcategory
of p-Web consisting of all objects which are sequences of ones, and let p-Web↑ denote
the full subcategory of p-Web↑↓ consisting of all objects which are finite sequences
of upward oriented arrows labeled by nonnegative integers. In Theorem 6.4.4, we
demonstrate p-Web1 is isomorphic to the marked Brauer supercategory introduced
in [20]. In Theorem 6.8.3, we prove that p-Web and p-Web↑ are isomorphic monoidal
supercategories.

1.3 Main results on representations of p(n)

Our second set of results require that the ground ring k is an algebraically closed field
of characteristic zero. The results explain how the categories p-Web and p-Web↑↓ are
combinatorial models for certain natural subcategories of p(n)-supermodules.

Let Vn denote the natural p(n)-supermodule coming from its usual matrix repre-
sentation, and for a ≥ 0, let Sa(Vn) and⋀a(Vn) denote its ath symmetric and exterior
powers. Write p(n)-modV for the full subcategory of p(n)-modules consisting of all
finite tensor powers of Vn , and let p(n)-modS and p(n)-modS,S∗ denote the full
subcategory consisting of tensor products of Sa(Vn) for various a ≥ 0, and tensor
products of Sa(Vn) and its dual Sa(Vn)∗ for various a ≥ 0, respectively. We remark
that since Sa(Vn)∗ ≅ ⋀a(Vn) for all a ≥ 1, the category p(n)-modS,S∗ also, up to
isomorphism, includes exterior powers.

We can now describe the main results of the paper. For each n ≥ 1, we demon-
strate that certain categories of p(n)-modules are equivalent to a quotient of the
aforementioned web categories obtained by imposing one additional relation (which
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4 N. Davidson, J. R. Kujawa, and R. Muth

depends on n). That is, the single diagrammatic category p-Web can be used to describe
the category p(n)-modS for all n ≥ 1. Similarly, p-Web1 describes p(n)-modV and
p-Web↑↓ describes p(n)-modS,S∗ .

To be precise, for every n ≥ 1, we show in Theorems 6.1.1, 6.4.2, and 6.5.1 that there
are essentially surjective functors of k-linear, monoidal supercategories:

F ∶ p-Web1→p(n)-modV ,
G ∶ p-Web→p(n)-modS ,

G↑↓ ∶ p-Web↑↓→p(n)-modS,S∗ .

In Theorems 6.4.2, 6.7.2, and 6.8.2, we show that these functors are full. It is worth
noting that fullness can fail in positive characteristic. See Remark 6.7.3 for an example.

Next, using results of [10], we define a certain morphism

fn+1 ∈ Endp-Web1 ([�], [�]) ≅ Endp-Web (1� , 1�) ≅ Endp-Web↑↓ (↑
�
1 , ↑�1) ,

where � = (n + 1)(n + 2)/2, and 1� and ↑�1 denote an �-tuple of ones and ↑1’s, respec-
tively. The definition of this morphism is subtle, and it does not seem to admit a nice
diagrammatic description. We define p(n)-Web to be the monoidal supercategory
given by the same generators and relations as p-Web, along with the single additional
relation

fn+1 = 0.(1.1)

The monoidal supercategories p(n)-Web1 and p(n)-Web↑↓ are defined similarly.
In Theorem 7.2.1, it is shown that the functors F, G, and G↑↓ induce equivalences of

monoidal supercategories:

F ∶ p(n)-Web1
≅�→ p(n)-modV ,

G ∶ p(n)-Web ≅�→ p(n)-modS ,

G↑↓ ∶ p(n)-Web↑↓
≅�→ p(n)-modS,S∗ .

It is worth noting that these categories of p(n)-supermodules are not semisimple,
unlike some of the more familiar contexts where web categories are used.

1.4 Future work

Cautis, Kamnitzer, and Morrison [7] illustrated that Howe-type dualities give rise
to web-like categories, but it is also sometimes the case that a Howe duality can
be deduced from the existence of web-like categories (see [23, 25]). In a sequel to
this paper, we use the results herein to construct a Howe duality between p(m) and
p(n) [13].

In [3], the authors introduce the affine VW-supercategory. This can be regarded as
an extension of p-Web1 given by including an additional even morphism 1→1 which
defines a subalgebra of Endp-Web1(1d) isomorphic to a polynomial ring in d variables.
This diagrammatic supercategory admits a functor to the category of endofunctors of
p(n)-mod of the form V⊗d ⊗ −where the additional generator acts via a Casimir-like
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element. It would be interesting to define and study affine versions of p-Web and
p-Web↑↓, as well.

In [1], Ahmed, Grantcharov, and Guay introduced a quantum superalgebra of type
P via the FRT formalism. As an outcome of the construction, they obtain a Hopf
superalgebra with a quantum analogue of the natural representation and an action
of the braid group on its tensor powers. We expect one can also define quantum
analogues of Moon’s algebra and the supercategories p-Web1, p-Web, and p-Web↑↓.

1.5 Conventions

Throughout the paper, we will write k for our ground ring. Our requirements for k
will vary, so we will endeavor to make clear what is assumed in each section. At a
minimum, k will always be a commutative ring with identity.

We assume the reader is familiar with monoidal categories, defining them by
generators and relations, and in using diagrammatics to represent morphisms in such
categories. See Section 2.1 for a brief discussion and [19, 29] for further background.
To set our conventions, we read diagrams bottom to top with vertical concatenation
corresponding to composition of morphisms. Horizontal concatenation corresponds
to the monoidal (or tensor) product of morphisms.

This paper investigates mathematical objects in the “super” (i.e., Z2 = Z/2Z-
graded) setting. To establish nomenclature, we say an element has parity r if it is
homogenous and of degree r ∈ Z2. We write ∣w∣ for the parity of a homogeneous
element, and we say that w is even (resp. odd) if ∣w∣ = 0̄ (resp. ∣w∣ = 1̄). We view k as a
superalgebra concentrated in parity 0̄.

In particular, the context of this work isk-linear monoidal supercategories. As with
k-linear monoidal categories, they can be studied using a graphical calculus. One dif-
ference is that there is now a graded version of the interchange law. Diagrammatically,
this so-called super-interchange law introduces a sign whenever two odd morphisms
are isotopied past each other in the vertical direction:

(1.2)

Because of this, whenever two diagrams are horizontally concatenated, the left dia-
gram should be understood to be drawn above the right diagram:

(1.3)

See [5, Section 1] for details.
In what follows, we assume all modules, categories, and functors are k-linear.

We also assume that everything is Z2-graded and so will sometimes omit the prefix
“super.”
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6 N. Davidson, J. R. Kujawa, and R. Muth

1.6 ArXiv version

We chose to relegate a number of the more lengthy but straightforward calculations
to the arXiv version of the paper. The reader interested in seeing these additional
details can download the LATEX source file from the arXiv and find a toggle near the
beginning of the file which allows one to compile the paper with these calculations
included.

2 The gl-Web category

2.1 Definition of gl-Web

Let k be a commutative ring with identity. The definitions and results in this section
are generally well known, and we record them for convenience.

Here and below, we will define combinatorial k-linear strict monoidal
(super)categories by generators and relations. This method of construction is
well known, and we only briefly describe how this works in our setting. See, for
example, [19, Section XII.1] or [29, Section I.3] for a careful treatment in the classical
case. The objects will be words from some set (e.g., Z≥1 or {↑a , ↓a ∣ a ∈ Z≥1}) with the
monodial product given by concatenation of words. This set of objects will evidently
generate the set of all objects under the monoidal product, and the empty word will
be the monoidal unit object.

Morphisms will be given by providing a set of generating morphisms. A general
morphism will be constructed from these generators (and identity morphisms) by
a finite sequence of compositions, monoidal products, and k-linear combinations.
Since composition is given by vertical concatenation and the monoidal product is
given by horizontal concatenation, a general morphism will be a k-linear combina-
tion of diagrams with the same objects along the top and bottom, and where each
diagram was obtained by a finite sequence of vertical and horizontal concatenations
of generating morphisms and identities. To define the category, we impose relations
on the morphisms. These relations are local in the sense that if two morphisms are
identical other than in some small region where they differ by an imposed relation,
then the morphisms are equal in the category. Finally, in the cases when we have a
supercategory, the generating morphisms and defining relations will be homogenous
in the Z2-grading and this will provide the grading on the morphism spaces.

Definition 2.1.1 Let gl-Web denote the strict monoidal k-linear category given by
generators and relations as follows. The objects are sequences of nonnegative integers.
The morphisms are generated by the diagrams:

where a, b ∈ Z≥0. We call these morphisms split and merge, respectively. The identity
morphism of the object (a1 , . . . , ak) will be depicted by k vertical strands labeled in
order by a1 , . . . , ak .
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On the morphisms in gl-Web, we impose the following relations for all a, b, c ∈
Z≥0:

Web-associativity:

(2.1)

Rung swap:

(2.2)

Going forward, and in the relations defined above, we use the following
conventions:
• Strands labeled by “0” are to be deleted.
• Diagrams containing a negatively labeled strand are to be read as zero.
• We will sometimes choose to omit labels on strands when the label is clear from

context.
For brevity, we also adopt the convention in calculations that when an equality follows
from a previous result, this fact is indicated by placing the relevant equation number
over the equals sign in question. We also adopt the convention that we sometimes
write 0 for the monoidal unit object.

Remark 2.1.2 When k is a field, gl-Web can be viewed as a non-quantum version
of categories which appear in [23, 25, 28]. It can also be seen to be isomorphic to the
Schur category defined in [6], which appeared as this paper was being prepared. As
explained therein, the Schur category is related to the category introduced in [7].

2.2 Implied relations for gl-Web

We first record a few relations which are implied by the defining relations of gl-Web.
Many of the relations established in the remainder of Section 2 can be inferred from
[6, 7] by using [6, Remark 4.8 and Theorem 4.10], or may be viewed as analogues of
those shown in [25, Section 2] in the case q = 1. Complete proofs of Lemmas 2.2.1,
2.2.2, 2.3.1, and 2.3.2 and Theorem 2.3.3 are also available in [14].

Lemma 2.2.1 For all a, b ∈ Z≥0, we have
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8 N. Davidson, J. R. Kujawa, and R. Muth

Lemma 2.2.2 The following equalities hold in gl-Web:

for all admissible a, b, c, r, r′ , r′′ , s, s′ , s′′ ∈ Z≥0.

2.3 Braiding for gl-Web

We next establish the category gl-Web admits a symmetric braiding.
For any a, b ∈ Z≥0, we define the crossing morphism:

(2.3)

Lemma 2.3.1 For all a, b ∈ Z≥0, we have

Using the crossing, we record an identity in gl-Web which will be useful in later
calculations. This may be viewed as a special case of the Schur product rule (see [17,
equation (2.3b)], [6, Theorem 4.10]).

Lemma 2.3.2 For all a, b, c, d ∈ Z≥0 such that a + b = c + d, we have

The following theorem describes the basic relations involving the crossing
morphism.

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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Theorem 2.3.3 For all a, b, c ∈ Z≥0, we have

(2.4)

(2.5)

(2.6)

We define a crossing morphism a ⊗ b → b ⊗ a for objects a and b by the following
diagram:

(2.7)

The following follows from Theorem 2.3.3.

Corollary 2.3.4 The crossing morphisms defined in (2.7) define a symmetric braiding
on gl-Web.

3 The p-Web category

3.1 Definition of p-Web

From now on, we assume k is an integral domain where 2 is invertible. For example,
k could be Z[ 1

2 ]. We again define a diagrammatic k-linear monoidal supercategories
by generators and relations as discussed in Section 2.1.
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10 N. Davidson, J. R. Kujawa, and R. Muth

Definition 3.1.1 Let p-Web be the strict k-linear monoidal supercategory given by
generators and relations as follows. The objects are all sequences of non-negative
integers.

The generating morphisms:

for a, b ∈ Z≥0. We call these morphisms split, merge, cap, and cup, respectively. The
Z2-grading is given by declaring splits and merges to have parity 0̄, and caps and cups
to have parity 1̄. The identity morphism of the object (a1 , . . . , ak) will be depicted by
k vertical strands labeled in order by a1 , . . . , ak .

To describe the imposed relations, it will be convenient to first define an additional
odd morphism,

(3.1)

which we call the antenna. Here and below, when we scale a diagram by an element of
k, we often write the scalar in parentheses to make clear it is not an edge label.

The defining relations of p-Web are (2.1) and (2.2) along with the following relations
for all a, b ∈ Z≥0:

Straightening:

(3.2)

Antenna retraction:

(3.3)

Cap/rung swap:

(3.4)

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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(3.5)

Cup/rung swap:

(3.6)

(3.7)

Remark 3.1.2 The diamonds which decorate the odd cup and cap morphisms in
the definition of p-Web are used to distinguish them from the even cup and cap
morphisms used in the definition of the oriented web category p-Web↑↓ in Section 4.1.

Remark 3.1.3 We introduced the antenna in (3.1) because this morphism appears
frequently when studying applications for p-Web. It has the disadvantage of requiring
2 to be invertible in k. One could define p-Web over Z by including the antenna as a
generating morphism and instead imposing the relation obtained by scaling (3.1) by 2,
along with relations for moving an antenna past other the generating morphisms. This
diagrammatic category would be related to the representation theory of the Kostant
Z-form U(p)Z introduced in [13]. We opted not to do this as it would add complexity
and was not needed for the applications considered here.

3.2 Implied relations for p-Web

We first record a few additional relations which are implied by the defining relations
of p-Web.

Lemma 3.2.1 For all a ∈ Z≥2, we have

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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12 N. Davidson, J. R. Kujawa, and R. Muth

Proof We have

as desired. ∎

Lemma 3.2.2 For all a ∈ Z≥2, we have

Proof Applying cap-rung swap relations (3.4) and (3.5) to push caps to the bottom
of diagrams, we have

(3.8)

Therefore, we have

proving the first claim. The second claim follows using analogous arguments. ∎
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3.3 Braiding for p-Web

For a, b ∈ Z≥0, we define the crossing morphism (a, b)→(b, a) in p-Web as in (2.3).
The goal of this section is to prove that the crossing morphism can be used to define
a symmetric braiding on p-Web.

Theorem 3.3.1 For all a ∈ Z≥0, we have

(3.9)

Proof We have

and

By Lemma 3.2.2 and (2.1), we have

which implies that

proving the first equality in (3.9). Now, using this equality, we may precompose with
two cup morphisms to arrive at the equality

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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14 N. Davidson, J. R. Kujawa, and R. Muth

Applying the straightening relation (3.2) to both sides of this equation gives the second
equality in (3.9). ∎

Theorem 3.3.1 demonstrates that cups and caps are natural with respect to the
crossing. Because the relations in gl-Web also hold in p-Web, the following is an
immediate consequence of the above and Theorem 2.3.3.

Corollary 3.3.2 The crossing morphisms defined in (2.7) define a symmetric braiding
on p-Web.

3.4 Additional relations in p-Web

The crossing morphisms allow for the following additional relations on p-Web.

Lemma 3.4.1 For every a ∈ Z≥0, we have

(3.10)

Proof Follows immediately from the definition of the antenna, along with Theorem
2.3.3 and (3.9). ∎

Lemma 3.4.2 We have

Proof The first two relations are easily seen to hold by direct computation and
applications of (3.4) to (3.7). The third is obtained by combining the first two:

where the first equality is deduced by putting a cap on top of the first relation, and the
second equality is deduced by putting a cup under the second relation. Because 2 is
invertible in the ground ring k, the third relation follows. ∎

Lemma 3.4.3 For all a, b ∈ Z≥0, we have

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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Proof First, note that

and similarly,

Therefore, we have

as desired. ∎

Lemma 3.4.4 For all a, b, c ∈ Z≥0, we have

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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16 N. Davidson, J. R. Kujawa, and R. Muth

Proof For the first equality, we have

as desired. The second equality is proved in a similar fashion. ∎

Lemma 3.4.5 The following relation holds in p-Web:

Proof We have

proving the first claim. The second claim is similar. For the third, we have

completing the proof. ∎

3.5 A basis for morphism spaces in gl-Web and p-Web

In this section, we construct k-spanning sets for the morphism spaces in gl-Web
and p-Web. In Section 6.3, we will show that these are in fact bases. The bases
themselves are diagrammatically analogous to bases defined in a different setting in
[27, Section 5].

We will write multiple splits and merges in the form

(3.11)

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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where the diagram should be interpreted as n vertically composed splits, or merges,
respectively. By (2.1), the resulting morphism is independent of the split (or merge)
order. It will also be convenient to define

(3.12)

Given a matrix A, let us write AT for the transpose. For any a ∈ Zt
≥0, b ∈ Zu

≥0, let
χ(a, b) be the set of tuples (A, B, C , D), such that

A ∈ Matt×t({0, 1}), B ∈ Matu×u({0, 1}), C ∈ Matt×u(Z≥0), D ∈ {0, 1}t ,

AT = A, BT = B, A i i = 0 for all i = 1, . . . , t, B i i = 0 for all i = 1, . . . , u,

2D i +
t
∑
j=1

A i j +
u
∑
j=1

C i j = a i for all i = 1, . . . , t,

u
∑
i=1

B i j +
t
∑
i=1

C i j = b j for all j = 1, . . . , u.

For any (A, B, C , D) ∈ χ(a, b), we define an associated element ξ(A,B ,C ,D) ∈
Homp-Web(a, b) via

where X is any diagram composed only of crossings, cups, and caps, where no cup
occurs below any cap, and in which:

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press
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18 N. Davidson, J. R. Kujawa, and R. Muth

• the strands labeled by A i j and A ji meet in a cap in X;
• the strands labeled by B i j and B ji meet in a cup in X; and
• the strand labeled by C i j at the bottom of X meets the strand labeled by C i j at the

top of X.

All such choices for X are equivalent up to sign because of Theorem 2.3.3.
It should be noted that the method of using splits and merges to “explode” or

“collapse” the bottom and top of morphisms as done here can be found elsewhere
in the literature (see, e.g., [24]).

Example 3.5.1 Let a = (9, 4, 8), b = (9, 6), and set

A =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎦
B = [0 1

1 0] C =
⎡⎢⎢⎢⎢⎢⎣

2 4
3 0
3 1

⎤⎥⎥⎥⎥⎥⎦
D = [1 0 1] .

Then (A, B, C , D) ∈ χ(a, b), and

Proposition 3.5.2 The set

B ∶= { ξ(0,0,C ,0) ∣ (0, 0, C , 0) ∈ χ(a, b)}

is a k-spanning set for Homgl-Web(a, b).
The set

B ∶= { ξ(A,B ,C ,D) ∣ (A, B, C , D) ∈ χ(a, b)}

is a k-spanning set for Homp-Web(a, b).

Proof We will focus primarily on the statement for the spanning set of morphisms
in p-Web. The statement for gl-Web is simpler due to the lack of cups and caps, and
should be considered known (see, e.g., [27, Theorem 3.11] or [6, Lemma 4.9]).

Let f be a diagram in Homp-Web(a, b). By inducting on the number of “out of place”
parts, we may apply the defining relations (2.1) and (3.7) of p-Web, Theorem 2.3.3,
and Lemma 2.3.2, to rewrite f as a linear combination of diagrams consisting of splits,
merges, cups, caps, antennas, and crossings, where:

• no merge occurs below any split;
• no cup occurs below any cap;
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• no crossing occurs above any merge or below any split;
• no antenna occurs above any merge, cup, cap, or crossing.
Any diagram that satisfies all of the above is equivalent to a constant multiple of some
diagram with the following form:

(3.13)

for some labels d i , x(i)j , y(i)j ∈ Z≥0, and X is a diagram composed only of crossings,
cups, and caps, where no cup occurs below any cap.

Now, we consider (3.13). Note the following:
(1) If two strands which split from a i meet in a cap in X, then by (3.4), the diagram

can be rewritten by adding one to d i , deleting the strand, and multiplying by 2.
(2) If two strands which merge in b i meet in a cup in X, then by (3.7), the diagram is

zero.
(3) If for some i ≠ j, there is more than one instance of a strand which splits from a i

and a strand which splits from a j meeting in a cap in X, then the diagram is zero
by Lemma 3.4.5.

(4) If for some i ≠ j, there is more than one instance of a strand which merges into
b i and a strand which merges into b j meeting in a cup in X, then the diagram is
zero by Lemma 3.4.5.

(5) If d i > 1, then the diagram is zero by Lemma 3.4.5.
(6) If there is more than one strand in X which splits from a i and merges into b j ,

then by (2.2), the diagram can be written with a single strand which splits from
a i and merges into b j , multiplied by some constant.

After rewriting as above, we have via Lemma 2.3.1 that (3.13) is equivalent to a
constant multiple of some diagram of the form ξ(A,B ,C ,D), completing the proof for
p-Web.

An entirely analogous argument applies for gl-Web. Since there are no cups, caps,
or antennas, it is easier and we leave it to the reader. ∎

3.6 Generating sets for the morphism spaces of gl-Web and p-Web

In this section, we describe generating sets for the morphism spaces of gl-Web and
p-Web using only the operations of composition and k-linear combinations, and not
the monoidal product. These generators (and the relations among them, given in
Lemma 3.7.1) are used to establish a Howe duality in [13].

Let p-Webm be the full subcategory of p-Web consisting of objects a ∈ Zm
≥0.

We emphasize that the monoidal product in p-Web does not preserve the
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subcategory p-Webm . Hence, p-Webm is a supercategory and does not inherit a
monoidal structure. For t ∈ Z≥0, a ∈ Zm

≥0, 1 ≤ r < s ≤ m, we define the following mor-
phisms in p-Webm :

For 1 ≤ u ≤ m, we define the additional morphism

where again the dot denotes a combination of a split and antenna, as in (3.12).
To remove some of the clutter in the calculations which follow, we will sometimes

write products for compositions (e.g., f g = f ○ g) and will occasionally omit the label
a when the domain is clear from context (e.g., writing e(t)

[r ,s] instead of e(t)
[r ,s],a). Let

us write 1a for the identity morphism of a. Pre- or post-composing by these gives a
convenient alternate method for specifying the domain or range of a morphism. For
example, e(t)

[r ,s],a = e(t)
[r ,s]1a.

In order to establish a generating set for the morphisms in p-Webm , we need the
following technical lemma. Because we are no longer in a monoidal supercategory, we
only use composition and k-linear combinations when generating morphisms in this
category.

Lemma 3.6.1 Label the set of morphisms:

Y{e , f }(m) ∶= { e(t)
[r ,s],a , f (t)

[r ,s],a ∣ t ∈ Z≥0 , 1 ≤ r < s ≤ m, a ∈ Zm
≥0} .

Let S{e , f }(m) represent the k-linear subcategory of p-Webm consisting of all objects in
p-Webm , with morphisms generated by Y{e , f}(m). Then, for all a, b ∈ Zm

≥0, k ∈ Z≥0, and
i , j ∈ [1, m], and morphisms y ∈ S{e , f }(m), the morphism

is also in S{e , f }(m).
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Proof We may assume that y is itself a composition of u many morphisms in
Y{e , f }(m). Our argument will go by nested induction on k and u. First, note that if
k = 0, the claim holds trivially, so we now fix k > 0 and assume that the claim holds
for all y and k′ < k.

Assume u = 0. If i = j, then M is some multiple of the identity morphism by (2.2).
If i > j, then M = e(k)j, i , and if i < j, then M = f (k)i , j . This proves the claim when u = 0.
We now assume that u > 0 and that the claim holds for all u′ < u.

As u > 0, we may write y = y′e(t)
[r ,s] or y = y′ f (t)

[r ,s] for some r, s, t. We will assume the
former, as the latter case is similar. If r ≠ i, then e(t)

[r ,s] moves freely below past the split
on the ith strand in M. Then the induction assumption on u may be used to complete
the proof of the claim.

So we now assume that y = y′e(t)
[i ,s], so that M may be written:

(3.14)

Note that for clarity here we are omitting strands between the ith and sth strands.
Using Corollary 3.3.2, any morphisms on strands between the ith and sth strands may
be pulled all the way to the right side of the morphism M by introducing crossings.
For this reason, any morphisms between the ith and sth strands will not affect our
calculations and can be safely ignored.

Using (2.3), M may be rewritten as a linear combination of diagrams of the form

(3.15)

Using (2.1) and (2.2), any diagram as in (3.15) can be written as a linear combination
of diagrams of the form
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(3.16)

An application of (2.2) allows us to write any diagram as in (3.16) as a linear combi-
nation of diagrams of the form

(3.17)

where k′ + k′′ = k. If k′ = 0 or k′′ = 0, then the claim follows by the induction assump-
tion on u. If k′ , k′′ > 0, then applying the induction assumption on k to the k′ strand,
and subsequently to the k′′ strand proves the claim, and completes the proof. ∎

Given a = (a1 , . . . , ar) ∈ Zr , we write ∣a∣ = ∑r
i=1 ∣a i ∣.

Lemma 3.6.2 Morphisms in gl-Webm are generated under composition by Y{e , f }(m).

Proof Let a, b ∈ Zm
≥0, and let ξ ∶= ξ(0,0,C ,0) ∈ B be an element in Homgl-Web(a, b)

as in Proposition 3.5.2. We show by inducting on n = ∣a∣ + ∣b∣ that ξ belongs to the
set S{e , f }(m) from Lemma 3.6.1. Since by Proposition 3.5.2 such elements ξ span
Homgl-Web(a, b), this will prove the lemma.

If n = 0, then ξ is the identity morphism. Thus, we may assume that n > 0, and that
the claim holds for all n′ < n. If C = 0, then ξ is the identity morphism, so assume
C i j > 0 for some i , j. Then, using (2.1), we may write
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for some basis element ξ′ ∈ Homp-Web(a′ , b′), where ∣a′∣ < ∣a∣ and ∣b′∣ < ∣b∣. Apply-
ing the induction assumption on n, we have that ξ′ ∈ S{e , f }(m). Then, applying
Lemma 3.6.1, it follows that ξ ∈ S{e , f }(m), as desired. ∎
Theorem 3.6.3 Morphisms in p-Webm are generated under composition by the set
{b[1],a ∣ a ∈ Z≥0} when m = 1, and by

Y(m) ∶= { e(t)
[i , i+1],a , f (t)

[i , i+1],a , b[1,2],a , c[1,2],a ∣ t ∈ Z≥0 , 1 ≤ i < m, a ∈ Zm
≥0} ,

when m ≥ 2.
Proof The statement for m = 1 follows directly from Proposition 3.5.2, so assume
m ≥ 2. First, let

Y ′(m) ∶= { e(t)
[r ,s],a , f (t)

[r ,s],a , b[r ,s],a , c[r ,s],a , b[u],a ∣ t ∈ Z≥0 , 1 ≤ r < s ≤ m, u ∈ [1, m], a ∈ Zm
≥0}.

We first prove a preliminary claim that morphisms in p-Webm are generated under
composition by Y ′(m). Write Sm (resp. S′m) for the subcategory of p-Webm gen-
erated by morphisms in Y(m) (resp. Y ′(m)). Let a, b ∈ Zm

≥0. By Proposition 3.5.2,
Homp-Web(a, b) is spanned by elements of the form ξ ∶= ξ(A,B ,C ,D) ∈ B. We show by
induction on n = ∣a∣ + ∣b∣ that ξ ∈ S′m .

If n = 0, then ξ is the identity morphism. Thus, we may assume n > 0, and that the
claim holds for all n′ < n. Note the following:
• If A i j > 0 for any i < j, then by (2.1), ξ = ξ′b[i , j],a for some basis element

ξ′ ∈ Homp-Web(a′ , b), where ∣a′∣ < ∣a∣.
• If B i j > 0 for any i < j, then by (2.1), ξ = c[i , j],b′ ξ′ for some basis element

ξ′ ∈ Homp-Web(a, b′), where ∣b′∣ < ∣b∣.
• If D i > 0 for any i, then by (2.1), ξ = ξ′b[i],a for some basis element

ξ′ ∈ Homp-Web(a′ , b), where ∣a′∣ < ∣a∣.
In any of these cases, applying the induction assumption on n to ξ′ completes the
proof. Therefore, we may assume A = B = D = 0. Then the preliminary claim follows
by Lemma 3.6.2, so morphisms in p-Webm are generated under composition by
Y ′(m).

Since Sm contains e(t)
[i , i+1],a and f (t)

[i , i+1],a for all 1 ≤ i < m, a ∈ Zm
≥0, it follows by

(2.3) that Sm contains all crossing morphisms which transpose neighboring strands.
Then we have that e(t)

[r ,s],a, f (t)
[r ,s],a, b[r ,s],a, c[r ,s],a belong to Sm for all 1 ≤ r < s ≤

m, a ∈ Zm
≥0, as one may generate these elements by pre- and post-composing the

morphisms e(t)
[1,2],a , f (t)

[1,2],a , b[1,2],a , c[1,2],a with sequences of crossing morphisms.
Finally, we have that b[u],a = (1/2)[b[u ,u+1], e(1)

[u ,u+1]]1a for 1 ≤ u < m and b[m],a =
(1/2)[b[m−1,m] , f (1)

[m−1,m]]1a by (3.4) and (3.5), so it follows that S′m ⊆ Sm , completing
the proof. ∎
Corollary 3.6.4 If k is a field of characteristic zero, then morphisms in p-Webm are
generated under composition by the set {b[1],a ∣ a ∈ Z≥0} when m = 1, and by

Y0(m) ∶= { e(1)
[i , i+1],a , f (1)

[i , i+1],a , b[1,2],a , c[1,2],a ∣ t ∈ Z≥0 , 1 ≤ i < m, a ∈ Zm
≥0} ,

when m ≥ 2.
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Proof It can be deduced from (2.1) and Lemma 2.2.1 (or alternatively, using (2.9) in
[7] at q = 1) that (e(1)

[i , i+1])
t1a and ( f (1)

[i , i+1])
t1a are nonzero multiples of e(t)

[i , i+1],a and
f (t)
[i , i+1],a, respectively. Thus, the result follows from Theorem 3.6.3. ∎

3.7 Relations for morphisms in p-Webm.

We now establish a number of relations which hold among the generators in Y(m).
While not utilized in this paper, these relations will be key in establishing the Howe
duality result in [13].

Lemma 3.7.1 The following relations hold in p-Webm , for all valid 1 ≤ i , j ≤ m, and
a ∈ Zm

≥0.

[e(1)
[i , i+1] , f (1)

[ j, j+1]]1a = δ i , j(a i − a i+1)1a;(3.18)

[e(1)
[i , i+1] , e(1)

[ j, j+1]]1a = 0 if j ≠ i ± 1;(3.19)

[e(1)
[i , i+1] , [e

(1)
[i , i+1] , e(1)

[ j, j+1]]1a = 0 if j = i ± 1;(3.20)

[ f (1)
[i , i+1] , f (1)

[ j, j+1]]1a = 0 if j ≠ i ± 1;(3.21)

[ f (1)
[i , i+1] , [ f (1)

[i , i+1] , f (1)
[ j, j+1]]1a = 0 if j = i ± 1;(3.22)

[b[i , i+1] , b[ j, j+1]]1a = 0;(3.23)
[c[i , i+1] , c[ j, j+1]]1a = 0;(3.24)

[b[i , i+1] , c[ j, j+1]]1a =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(a i − a i+1)1a if j = i;
[e[i−1, i] , e[i , i+1]]1a if j = i − 1;
[ f[i , i+1] , f[i+1, i+2]]1a if j = i + 1;
0 otherwise

(3.25)

[b[i , i+1] , e(1)
[ j, j+1]]1a = 0 if j ≠ i , i + 1;(3.26)

[b[i , i+1] , f (1)
[ j, j+1]]1a = 0 if j ≠ i , i − 1;(3.27)

[b[i , i+1] , e(1)
[i , i+1]]1a = 2b[i+1] = [b[i+1, i+2] , f (1)

[i+1, i+2]]1a;(3.28)

[b[i , i+1] , e(1)
[i+1, i+2]]1a = b[i , i+2] = [b[i+1, i+2] , f (1)

[i , i+1]]1a;(3.29)

[e(1)
[ j, j+1] , c[i , i+1]]1a = 0 if j ≠ i − 1;(3.30)

[ f (1)
[ j, j+1] , c[i , i+1]]1a = 0 if j ≠ i + 1;(3.31)

[e(1)
[i , i+1] , c[i+1, i+2]]1a = c[i , i+2] = [ f (1)

[i+1, i+2] , c[i , i+1]]1a;(3.32)

[[b[i , i+1] , e(1)
[i , i+1]], e(1)

[ j, j+1]]1a =
⎧⎪⎪⎨⎪⎪⎩

2b[i+1, i+2]1a if j = i + 1;
0 otherwise;

(3.33)

[[b[1,2] , e(1)
[1,2]], f (1)

[1,2]]1a = 2b[1,2]1a;(3.34)
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[[b[1,2] , f (1)
[1,2]], f (1)

[ j, j+1]]1a = 0;(3.35)

[[c[i+1, i] , e(1)
[i , i+1]], e(1)

[ j, j+1]]1a =
⎧⎪⎪⎨⎪⎪⎩

c[i , i+1]1a if j = i + 1;
0 if j ≠ i + 1, i − 1.

(3.36)

Proof These are straightforward calculations which follow quickly from relations
already known to hold in p-Web. In particular:

• Relation (3.18) follows from (2.2);
• Relations (3.19)–(3.22) follow from Lemma 2.2.2;
• Relations (3.23), (3.24), (3.26), and (3.27) follow from (2.1);
• Relation (3.25) follows from Lemmas 3.4.3 and 3.4.4;
• Relation (3.28) follows from (3.4) and (3.5);
• Relations (3.29) and (3.32) follow from Lemma 2.3.2;
• Relations (3.30) and (3.31) follow from (3.6) and (3.7);
• Relations (3.33)–(3.35) follow from (3.3)–(3.5) and (3.28);
• Relation (3.36) follows from (3.32) and Lemma 2.3.2. ∎

4 The p-Web↑↓ category

4.1 Definition of p-Web↑↓

We now introduce an oriented version of p-Web. In this section, we continue to
assumek is an integral domain in which 2 is invertible. It will again be a diagrammatic
supercategory given by generators and relations as outlined in Section 2.1. Because
many of the constructions and arguments in this section are similar to those given in
the previous section, so we will sometimes be brief in explanations.

Definition 4.1.1 The category p-Web↑↓ is the k-linear strict monoidal supercategory
defined as follows. Objects are words (including the empty word) from the set

{↑k , ↓k ∣ k ∈ Z≥1} .

The morphisms are generated as a k-linear monoidal supercategory by the dia-
grams:

for all a, b ∈ Z≥0. We call these morphisms upward split, upward merge, leftward cap,
leftward cup, tag-in, tag-out, and rightward crossing, respectively. The parity is given by
declaring the tag-in and tag-out morphisms to be odd and the rest of the generating
morphisms to be even.

To describe the defining relations, it will be convenient to first set a diagrammatic
shorthand for certain additional morphisms in p-Web↑↓. We define morphisms:
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which we call upward cap, upward cup, and upward antenna, respectively. We also
define, for all a, b ∈ Z≥0, rightward cap and rightward cup morphisms:

For all a, b ∈ Z≥0, define the upward crossing

as in (2.3), with all strands oriented upward. We then define the leftward crossing by
composing this with the leftward cap and cup morphisms:

With this notation established, we can now give the defining relations for p-Web↑↓.
The defining relations of p-Web↑↓ are:

Up-arrow relations. Relations (2.1) and (3.7) hold in p-Web↑↓, where we interpret
the diagrams as having all strands oriented upward.
Leftward straightening. For all a ∈ Z≥0 we have

(4.1)

Left/right crossing inversion. For all a, b ∈ Z≥0, we have

(4.2)

Bubble annihilation. For all a ∈ Z>0 we have

(4.3)
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We remark that including the rightward crossing generator along with the left/right
crossing inversion relation is equivalent to imposing the relation that the leftward
crossing is invertible. While this latter approach is sometimes used in the literature,
we chose to make the inverse morphism explicitly part of the definition.

Going forward, it will be convenient to sometimes write ↑0 or ↓0 for the empty word
(i.e., the monoidal unit object).

4.2 Additional morphisms

We define downward splits and downward merges by

We define downward crossings like so:

4.3 Implied relations for p-Web↑↓

The following theorem establishes a number of additional relations which follow from
the defining relations of p-Web↑↓. In particular, they show that diagrams that are the
same as oriented graphs (which may have edges with tag-in and tag-out diagrams) are
equal, up to a sign. In particular, up to a sign, tag-in and tag-out morphisms move
freely through crossings and along strands.

Theorem 4.3.1 The following equalities hold in p-Web↑↓ for all a, b, c ∈ Z≥0 and all
admissible strand orientations:

(4.4)
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(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Proof Relations (4.4)–(4.7) hold when all strands are oriented upward, as shown in
Theorem 2.3.3. Using this fact, together with (4.1)–(4.3), it is a routine exercise then to
prove that the equalities (4.4)–(4.12) hold for all admissible orientations. The equalities
(4.13)–(4.17) can be seen to hold thanks to (4.4)–(4.12), Lemma 4.5.1, and Theorem
2.3.3, after noting that

(4.18)

which completes the proof. ∎

For a nonnegative integer a, it will be convenient to adopt the notation ∣a ∶=↑a and
∣−a ∶=↓a . More generally, for r ∈ Z≥0 and a = (a1 , . . . , ar) ∈ Zr , we will write

∣a ∶= ∣a1 ⋅ ⋅ ⋅ ∣ar

as a shorthand for the latter as an object of p-Web↑↓. For example, ∣(6,2,−9) =↑6↑2↓9.
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The up, down, left, and right crossings can be used to define crossing morphisms,

β∣a ∣b ∶ ∣a ∣b→∣b ∣a ,

for arbitrary a, b ∈ Z. Just as with gl-Web and p-Web, we can use these morphisms to
make oriented versions of (2.7) and to verify these make p-Web↑↓ into a symmetric
braided monoidal supercategory.

The relations (4.1), (4.10) show that ↑a and ↓a are left and right duals to each other
with the cups and caps as the evaluation and coevaluation morphisms. More generally,
using “rainbows” constructed from leftward and rightward caps and cups, we can also
construct evaluation and coevaluation morphisms for general objects in p-Web↑↓. For
example, the evaluation and coevaluation morphisms for ↓a↑b↓c are

Using these, we see that p-Web↑↓ is in fact a rigid category. Altogether, we have the
following result.

Corollary 4.3.2 The oriented crossing morphisms endow p-Web↑↓ with the structure
of a symmetric braided monoidal supercategory and the evaluation and coevaluation
morphisms endow p-Web↑↓ with the structure of a rigid supercategory.

4.4 Isomorphic morphism spaces in p-Web↑↓

We next remind the reader of well-known arguments (e.g., [16, Proposition 2.10.8])
which use the existence of the braiding morphisms in p-Web↑↓ to define isomorphisms
between various morphism spaces. Entirely analogous results obviously hold by the
same arguments for gl-Web and p-Web.

The symmetric group Sr acts on Zr by place permutation:

σ ⋅ a = σ ⋅ (a1 , . . . , ar) = (aσ−1(1) , . . . , aσ−1(r)).

The braiding morphism defines an associated invertible morphism

βσ ,∣a ∈ Homp-Web↑↓(∣a , ∣σ ⋅a),

where β−1
σ ,∣a = βσ−1 ,∣σ ⋅a . More generally, for r1 , r2 ∈ Z≥0, a ∈ Zr1 , b ∈ Zr2 , σ ∈Sr1 , and

ω ∈Sr2 , we have an isomorphism of morphism spaces:

Homp-Web↑↓(∣a , ∣b)
∼�→ Homp-Web↑↓(∣σ ⋅a , ∣ω⋅b),(4.19)

given by

f ↦ βω ,∣b ○ f ○ βσ−1 ,∣σ ⋅a .

Let ω0 ∈Sr be the longest element, so that ω0 ⋅ (a1 , . . . , ar) = (ar , . . . , a1). Then,
for a ∈ Zr1

≥0, b ∈ Zr2
≥0, c ∈ Zr3

≥0, and d ∈ Zr4
≥0, we have an isomorphism of Hom spaces:

Homp-Web↑↓(↓a↑b , ↑c↓d)
∼�→ Homp-Web↑(↑b↑ω0 d , ↑ω0 a↑c),(4.20)
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given by

with inverse given by an entirely similar map, thanks to (4.1).
Let p-Web↑ (resp. p-Web↓) be the full subcategory of p-Web↑↓ consisting of objects

of the form ↑a ∶=↑a1 ⋅ ⋅ ⋅ ↑ar (resp. ↓a ∶=↓a1 ⋅ ⋅ ⋅ ↓ar ) for all r ∈ Z≥0 and a = (a1 , . . . , ar) ∈
Zr
≥0. Combining (4.19) and (4.20) yields the following lemma.

Lemma 4.4.1 Let a ∈ Zr1 and b ∈ Zr2 . Then there exists c ∈ Zr3
≥0, d ∈ Zr4

≥0 such that
∣c∣ + ∣d∣ = ∣a∣ + ∣b∣ and there is a parity preserving isomorphism of morphism spaces

Φ ∶ Homp-Web↑↓(∣a , ∣b)
∼�→ Homp-Web↑(↑c , ↑d)

given by

Φ ∶ f ↦ φ2 ○ f ○ φ1 ,

for some invertible morphisms

φ1 ∈ Homp-Web↑↓(↑c , ∣a) and φ2 ∈ Homp-Web↑↓(∣b , ↑d).

Given a supercategory B, let Bsop be the category with the same objects and
morphisms as B but with composition given by α ● β ∶= (−1)pαpβ β ○ α for all homo-
geneous morphisms α and β in B. Let refl ∶ p-Web↑↓→p-Web↑↓ be the involutive
contravariant superfunctor (in the sense of [5, 21]) given by D ↦ (−1)k(k−1)/2D′ on
diagrams, where D′ is the reflection of D along a horizontal axis, and k is the number
of tag-in and tag-out generators in D. It is easily checked that this is well defined using
Theorem 4.3.1. The following lemma is immediate.

Lemma 4.4.2 The contravariant superfunctor refl is an equivalence of supercategories
p-Web↑↓→p-Websop

↑↓ and restricts to an equivalence p-Web↑→p-Websop
↓ .

4.5 Connecting p-Web to p-Web↑↓

Lemma 4.5.1 There is a well-defined functor of monoidal supercategories

ι↑ ∶ p-Web→p-Web↑
given on objects by ι↑(k) =↑k and on morphisms by
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Proof The theorem follows immediately from the defining relations of p-Web and
p-Web↑↓. ∎

Theorem 4.5.2 The functor ι↑ ∶ p-Web→p-Web↑ is full.

Proof We begin by proving a claim.
Claim: Let a ∈ Zr

≥0, b ∈ Zs
≥0, with a1 = b1 = k. If f ∈ Homp-Web↑(↑a , ↑b) is in the

image of ι↑, then the morphism

is also in the image of ι↑.
We prove the Claim by induction on k, with the base case k = 0 being trivial. Let

k > 0 and assume that the claim holds for all m < k. By Corollary 6.3.2, we may assume
that f is of the form ι↑(ξ) for some ξ ∈ B. After an isotopy of the strands in ι↑(ξ), we
may write

(4.21)

for some morphisms f1 , f2 , f3 in the image of ι↑, and some k′ ≤ k. If k′ = k, then
the diagram has a bubble, and is thus zero by (4.3). If k′ = 0, then the loop can be
untwisted, using Theorem 4.3.1. So we assume now that 0 < k′ < k. Using (4.11) and
(4.12), we may rewrite (4.21) as

where g is a morphism in the image of ι↑. Now, applying the inductive assumption for
k′, and then for k − k′ gives the result, proving the Claim.
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Now, we prove the lemma. Let f be a diagram in p-Web↑. Using (4.18), we
may assume that f is composed only of upward splits, upward merges, left-
ward/rightward/upward cups, leftward/rightward/upward caps, and crossings of all
orientations. Let c be the number of leftward/rightward cups in f. We prove by
induction on c that f is in the image of ι↑.

If c = 0, then since the domain and the codomain are composed only of up-arrows,
it must be that there are no downward strands in f, so f is composed only of upward
splits, upward merges, upward cups, upward caps, and upward crossings, and hence f
is in the image of ι↑.

Now, for the induction step, assume c > 0. Select any leftward/rightward cup in f.
Again, since the domain and the codomain are composed only of up-arrows, it must
be that the downward strand leaving from the cup must lead into a leftward/rightward
cap in f. Then, using Theorem 4.3.1, we may pull the downward strand to the left side
of the diagram, giving a diagram of the form

where g is a diagram in p-Web↑ with c − 1 leftward/rightward cups. By the induction
assumption, g is in the image of ι↑. Thus, by the Claim, f itself is in the image of ι↑,
completing the proof. ∎

We will show in Theorem 6.8.3 that ι↑ is also faithful.

5 The Lie superalgebra of type P

5.1 The Lie superalgebra of type P

In this section, let k be a field of characteristic different from two. Let I = In∣n be the
index set {1, . . . , n,−1, . . . ,−n} with fixed order 1 < ⋯ < n < −1 < ⋯ < −n. Let ∣ ⋅ ∣ ∶
I→Z2 be the function defined by ∣i∣ = 0̄ if i > 0 and ∣i∣ = 1̄ if i < 0. Let V = Vn be the
vector space with distinguished basis {v i ∣ i ∈ I}. We define a Z2-grading on V by
declaring ∣v i ∣ = ∣i∣ for all i ∈ I. Let gl(V) = gl(n∣n) denote the superspace of all linear
endomorphisms of V. Then gl(V) is a Lie superalgebra via the graded version of the
commutator bracket:

[ f , g] = f ○ g − (−1)∣ f ∣ ∣g∣g ○ f

for all homogeneous f , g ∈ gl(V). As done here, we frequently only give a formula for
homogeneous elements and leave it understood that the general case is obtained via
linearity.

Define an odd supersymmetric nondegenerate bilinear form on V by declaring

(v i , v j) = (v j , v i) = δ i ,− j(5.1)
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for i , j ∈ I. Here, odd means that the associated linear map V ⊗ V→k is an odd
map of superspaces, while supersymmetric means that (v , w) = (−1)∣v∣∣w∣(w , v) for all
homogeneous v , w ∈ V .

Define a Lie superalgebra g = p(n) ⊆ gl(V) consisting of all linear maps which
preserve the bilinear form given in (5.1). That is, for all homogeneous v , w ∈ V ,

p(n) = { f ∈ gl(V) ∣ ( f (v), w) + (−1)∣ f ∣∣v∣(v , f (w)) = 0} .

The supercommutator restricts to define a Lie superalgebra structure on p(n).
With respect to our choice of basis, we can describe p(n) as the 2n × 2n matrices

defined over k of the form

p(n) = {(A B
C −At)} ,(5.2)

where A, B, C are n × n matrices with entries from k with B symmetric, C skew-
symmetric, and where At denotes the transpose of A. In terms of (5.2), the Z2-grading
is given by declaring g0̄ as the subspace of all such matrices where B = C = 0 and g1̄ as
the subspace of all such matrices where A = 0.

A (left) p(n)-supermodule is aZ2-gradedk-vector space with a leftk-linear action
of p(n)which respects theZ2-grading and which satisfies graded versions of the usual
axioms required of a module for a Lie algebra. For example, the natural supermodule
is Vn with p(n)-supermodule structure given by matrix multiplication. Since we will
only consider supermodules we usually leave the prefix “super” implicit going forward.

We allow for all (not just parity preserving) p(n)-module homomorphisms. Con-
sequently, the set of all p(n)-homomorphisms between two modules is naturally
a Z2-graded vector space. Explicitly, f ∶ M→N is a homogeneous p(n)-module
homomorphism if f is a linear map which satisfies f (Ms) ⊆ Ns+∣ f ∣ for s ∈ Z2 and
f (x .m) = (−1)∣x ∣∣ f ∣x . f (m) for all homogeneous x ∈ p(n) and m ∈ M.

Since the enveloping superalgebra U(p(n)) is a Hopf superalgebra, the cate-
gory of p(n)-modules is a monoidal supercategory in the sense of [5]. In what
follows, we study particular monoidal sub-supercategories of this category. For
every k ≥ 0, let Sk(Vn) denote the kth symmetric power of the natural module
Vn (by convention, S0(Vn) = k, the trivial module). Let p(n)-modS denote the
full monoidal sub-supercategory of p(n)-modules generated by {Sk(Vn) ∣ k ≥ 0},
and let p(n)-modS,S∗ denote the full monoidal sub-supercategory of p(n)-modules
generated by {Sk(Vn), Sk(Vn)∗ ∣ k ≥ 0}. That is, p(n)-modS is the full subcategory
of p(n)-modules consisting of objects of the form

Sa1(Vn) ⊗ ⋅ ⋅ ⋅ ⊗ Sak(Vn),

ranging over all k ∈ Z≥0 and a = (a1 , . . . , ak) ∈ Zk
≥0. The objects of p(n)-modS,S∗ are

similar except some symmetric powers are replaced by their duals.

5.2 Basic p(n)-module maps

To connect our diagrammatic categories to the representation theory of p(n),
we introduce certain explicit p(n)-module homomorphisms in the categories
p(n)-modS and p(n)-modS,S∗ .

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000688


Webs of type P 35

We can view the symmetric bisuperalgebra

S(Vn) = ⊕
k∈Z≥0

Sk(Vn)(5.3)

as the enveloping superalgebra for the abelian Lie superalgebra Vn . This endows
S(Vn) with the structure of a Z-graded Hopf superalgebra. In particular, it admits
an associative product m ∶ S(Vn) ⊗ S(Vn)→S(Vn) and coassociative coproduct Δ ∶
S(Vn)→S(Vn) ⊗ S(Vn). The product is the usual concatenation product and the
coproduct is given on generators v ∈ Vn by Δ(v) = v ⊗ 1 + 1 ⊗ v. We stress that the
multiplication in S(Vn) is supercommutative, meaning that vw = (−1)∣v∣∣w∣wv for all
homogeneous v , w ∈ Vn . Corresponding to the direct sum decomposition (5.3), there
are also projections pk ∶ S(Vn)→Sk(Vn) and inclusions ιk ∶ Sk(Vn)→S(Vn) for all
k ∈ Z≥0. Each of the maps Δ, m, pk , ιk is a U(p(n))-module homomorphism, and
we use them to construct several module homomorphisms which will be used in the
sequel.

We define the split U(p(n))-module morphism

spla ,b
a+b ∶ Sa+b(Vn)→Sa(Vn) ⊗ Sb(Vn)

via spla ,b
a+b ∶= (pa ⊗ pb) ○ Δ ○ ιa+b . Explicitly, we have

spla ,b
a+b(x1 ⋅ ⋅ ⋅ xa+b) = ∑

T={t1< ⋅ ⋅ ⋅ <ta}
U={u1< ⋅ ⋅ ⋅ <ub}
T∪U={1, . . . ,a+b}

(−1)ε(T ,U)xt1 ⋅ ⋅ ⋅ xta ⊗ xu1 ⋅ ⋅ ⋅ xub ,

for all homogeneous x1 , . . . , xa+b ∈ Vn , where ε(T , U) ∈ Z2 is defined by

ε(T , U) = #{(t, u) ∈ T × U ∣ t > u, x̄t = x̄u = 1̄} .

Similarly, define the merge U(p(n))-module morphism

mera+b
a ,b ∶ Sa(Vn) ⊗ Sb(Vn)→Sa+b(Vn)

via mera+b
a ,b ∶= pa+b ○ m ○ (ιa ⊗ ιb), or, explicitly,

mera+b
a ,b (x1 ⋅ ⋅ ⋅ xa ⊗ y1 . . . yb) = x1 ⋅ ⋅ ⋅ xa y1 ⋅ ⋅ ⋅ yb ,

for all x1 , . . . , xa , y1 , . . . , yb ∈ Vn . Both the split and merge maps are even (i.e., parity
preserving).

As the odd bilinear form used to define p(n) is supersymmetric, it fac-
tors through to define the odd antenna U(p(n))-module homomorphism ant ∶
S2(Vn)→k given by

ant(x1x2) = (x1 , x2)

for all x1 , x2 ∈ Vn .
For any k ∈ Z≥0, we have the evaluation U(p(n))-module homomorphism

evalk ∶ Sk(Vn)∗ ⊗ Sk(Vn)→k

f ⊗ x ↦ f (x).
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Dualizing the evaluation map yields the coevaluation U(p(n))-module
homomorphism

coevalk ∶ k→Sk(Vn) ⊗ Sk(Vn)∗ .

In particular, we have

coeval1 ∶ k→Vn ⊗ V∗n ,
1 ↦ ∑

i∈Im

v i ⊗ v∗i ,

where {v∗i ∣ i ∈ I} is the dual basis for V∗n defined by v∗i (v j) = δ i , j .
The odd nondegenerate bilinear form (⋅, ⋅) induces an odd U(p(n))-module

isomorphism

D ∶ Vn→V∗n ,
v i ↦ (v i ,−) = v∗−i .

Using this isomorphism, we define the odd cap and cup U(p(n))-module homomor-
phisms by

∩ ∶= eval1 ○(D ⊗ id) ∶ V⊗2
n →k,

∪ ∶=(id⊗D−1) ○ coeval1 ∶ k→V⊗2
n .

On our basis for Vn , these maps are given by

∩(v i ⊗ v j) = δ i ,− j and ∪ (1) = ∑
i∈Im

(−1) īv i ⊗ v−i .

Finally, for any two p(n)-modules M and N, we have the even “tensor swap”
homomorphism

τM ,N ∶ M ⊗ N→N ⊗ M ,
m ⊗ n ↦ (−1)pmpn n ⊗ m,

for all homogeneous m ∈ M and n ∈ N . Note that

τVn ,Vn = (spl1,1
2 ○mer2

1,1) − (id1 ⊗ id1).(5.4)

Compare with (2.3) when a = b = 1.
Note that spla ,b

a+b , mera+b
a ,b , evk , coevk , and the tensor swap are in fact gl(V)-

equivariant. On the other hand, ant, the odd cup, and the odd cap are only p(n)-
equivariant.

6 From webs to p(n)-modules

6.1 The functor G ∶ p-Web→p(n)-modS

Unless otherwise stated, in this section, k is a field of characteristic not two. Recall
p(n)-modS denotes the monoidal supercategory of p(n)-modules generated by sym-
metric powers of the natural module Vn .
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Theorem 6.1.1 There is a well-defined functor

G ∶ p-Web→p(n)-modS

given on objects by G(k) = Sk(Vn) and on morphisms by

Proof We simply check that images of relations (2.1)–(3.7) are preserved by G. This is
routine, but requires some care in managing signs. Details are included in the arXiv
version of this paper, as explained in Section 1.6. ∎

6.2 The crossing morphism in p(n)-modS

For short, let

τa ,b ∶ Sa(Vn) ⊗ Sb(Vn)→Sb(Vn) ⊗ Sa(Vn)

be the tensor swap map introduced in Section 5.2.

Lemma 6.2.1 For all a, b ∈ Z≥0, we have

Proof This is well-known gl-Web (see, e.g., [28] where it is done for quantum
gl(V)). It is also routine to check directly. Details are included in the arXiv
version. ∎

6.3 Basis theorems for gl-Web and p-Web

We now prove that the sets introduced in Section 3.5 form k-bases for the morphism
spaces of gl-Web and p-Web.

Theorem 6.3.1 Assume ∣a∣ + ∣b∣ ≤ 2n. Then

{G(ξ(A,B ,C ,D)) ∣ (A, B, C , D) ∈ χ(a, b)}

is a family of linearly independent morphisms in Homp(n)(Sa(Vn), Sb(Vn)).

Proof Let (A, B, C , D) ∈ χ(a, b). For all i = 1, . . . , t and j = 1, . . . , u, define

ri =
u
∑
�=1

C i� , ∣C∣ =
t
∑
k=1

rk , and Pi j =
i−1
∑
k=1

rk +
j−1

∑
�=1

C i� .

For X ∈ {A, B}, let

((iX
1 , jX

1 ), (iX
2 , jX

2 ), . . . , (iX
α , jX

α ))
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be an irredundant list of all pairs of indices (i , j) such that i < j and X i j = 1. Let

(iD
1 , iD

2 , . . . , iD
δ )

be an irredundant list of all indices i such that D i = 1. It follows from the fact that
∣a∣ + ∣b∣ ≤ 2n and the definition of the set χ(a, b) that ∣C∣ + α + β + δ ≤ n.

We define the following elements of S(Vn)⊗t :

v(A,B ,C ,D),1 ∶= v1 ⋅ ⋅ ⋅ vr1 ⊗ vr1+1 ⋅ ⋅ ⋅ vr1+r2 ⊗ ⋅ ⋅ ⋅ ⊗ vr1+ ⋅ ⋅ ⋅ +rt−1+1 ⋅ ⋅ ⋅ v∣C∣

v(A,B ,C ,D),2 ∶=
α
∏
k=1

1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ v∣C∣+k ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ v−∣C∣−k ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1,

v(A,B ,C ,D),3 ∶=
δ
∏
k=1

1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ v∣C∣+α+kv−∣C∣−α−k ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1,

where the vectors v∣C∣+k and v−∣C∣−k appear in the iA
k -th and jA

k -th slots, respectively,
and the term v∣C∣+α+kv−∣C∣−α−k appears in the iD

k -th slot.
We also define the following elements of S(Vn)⊗u :

w(A,B ,C ,D),1 ∶=
t
∏
i=1

u
∏
j=1

1 ⊗ ⋅ ⋅ ⋅ 1 ⊗ vPi j+1 ⋅ ⋅ ⋅ vPi j+C i j ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1,

w(A,B ,C ,D),2 ∶=
β

∏
k=1

1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ v∣C∣+k ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ v−∣C∣−k ⊗ 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1,

where the term vPi j+1 ⋅ ⋅ ⋅ vPi j+C i j appears in the jth slot, and the vectors v∣C∣+k and
v−∣C∣−k appear in the iB

k -th and jB
k -th slots, respectively.

Considering S(Vn)⊗t and S(Vn)⊗u as associative algebras, we define

v(A,B ,C ,D) ∶= v(A,B ,C ,D),1 ⋅ v(A,B ,C ,D),2 ⋅ v(A,B ,C ,D),3 ∈ Sa(Vn),

w(A,B ,C ,D) ∶= w(A,B ,C ,D),1 ⋅w(A,B ,C ,D),2 ∈ Sb(Vn).

Since Sb(Vn) has a k-basis of tensor products of monomials in {v i ∣ i ∈ In}, we
may define a linear projection map

p(A,B ,C ,D) ∶ Sb(Vn)→k{w(A,B ,C ,D)}.

We define a partial order ⪰ on χ(a, b) by setting

(A′ , B′ , C′ , D′) ⪰ (A, B, C , D)

if and only if

A′i j ≤ A i j , B′i j ≤ B i j , C′i j ≥ C i j , D′i ≤ D i for all i , j.

It is straightforward to check, with the aid of Lemma 6.2.1, that

p(A,B ,C ,D) ○G(ξ(A′ ,B′ ,C′ ,D′))(v(A,B ,C ,D)) =
⎧⎪⎪⎨⎪⎪⎩

±w(A,B ,C ,D) , if (A′ , B′ , C′ , D′) = (A, B, C , D),
0, if (A′ , B′ , C′ , D′) /⪰ (A, B, C , D).

(6.1)
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Now, assume that there exist nontrivial scalars c(A′ ,B′ ,C′ ,D′) ∈ k such that

∑
(A′ ,B′ ,C′ ,D′)∈χ(a ,b)

c(A′ ,B′ ,C′ ,D′)G(ξ(A
′ ,B′ ,C′ ,D′)) = 0.

Let (A, B, C , D) ∈ χ(a, b) be maximal in the ⪰ order such that c(A,B ,C ,D) ≠ 0. Then we
have by (6.1) that

0 = ∑
(A′ ,B′ ,C′ ,D′)∈χ(a ,b)

c(A′ ,B′ ,C′ ,D′)p(A,B ,C ,D) ○ G(ξ(A
′ ,B′ ,C′ ,D′))(v(A,B ,C ,D))

= ±c(A,B ,C ,D)w(A,B ,C ,D) ,

a contradiction. ∎

Corollary 6.3.2 The set

B ∶= { ξ(A,B ,C ,D)∣ (A, B, C , D) ∈ χ(a, b)}

is a k-basis for Homp-Web(a, b).

Proof This follows by Proposition 3.5.2 and Theorem 6.3.1. ∎

The previous corollary along with the results of Section 4.4 and Theorem 6.8.3
provide a basis theorem for p-Web↑↓, as well. The following result is also immediate.

Corollary 6.3.3 The set

B ∶= { ξ(0,0,C ,0)∣ (0, 0, C , 0) ∈ χ(a, b)}

is a k-basis for Homgl-Web(a, b).

These morphism spaces have been studied in, e.g., [24, 28]. Also, this basis should
be compared with the basis of “reduced chicken foot diagrams” given in [6].

Remark 6.3.4 The assumption that k is a field is for convenience and is not required
for the basis theorems stated above. Let k be an integral domain in which 2 is
invertible, and let Vn be the free k-supermodule of rank 2n with homogenous basis
as in Section 5.1. A standard argument using Bergman’s Diamond Lemma shows that
Sk(Vn) is a freek-supermodule with the obvious basis. Using this basis, one can verify
that the maps given in Section 5.2 and the functor G are still defined, and that the above
arguments go through without change.

6.4 p-Web and the marked Brauer category

We now explain how the marked Brauer category introduced in [20] can be viewed
as a subcategory of p-Web. It should be noted that in [20] diagrams were read top-to-
bottom, contrary to the convention here. However, using the functor refl described in
Section 4.4, one can easily translate between the two conventions. In this section, we
assume that k is a field of characteristic different from two.

Definition 6.4.1 The marked Brauer category B is the k-linear strict monoidal
supercategory generated by a single object ●. For k ∈ Z≥0, we will use the notation
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[k] to designate the object ●⊗k . The category B has generating morphisms:

We call these morphisms twist, cap, and cup, respectively. The Z2-grading is given
by declaring twists to have parity 0̄, and caps and cups to have parity 1̄. The defining
relations of B are:

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

Let p(n)-ModV denote the monoidal supercategory of p(n)-modules generated
by the natural module Vn . That is, p(n)-modV is the full subcategory of p(n)-mod
consisting of objects of the form {V⊗k

n ∣ k ∈ Z≥0}.

Theorem 6.4.2 [20, Theorem 5.2.1] There is a well-defined functor of monoidal
supercategories

F ∶ B→p(n)-ModV

given by F(●) = Vn and on morphisms by

Theorem 6.4.3 If k is a field of characteristic zero, then the functor F is full. That is,
for all a, b ∈ Z≥0, the induced map of superspaces,

F ∶ HomB([a], [b])
∼�→ Homp(n)(V⊗a

n , V⊗b
n ),

is surjective.
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Proof Whenk = C, the statement follows from [15, Section 4.9] (see the proof of [12,
Theorem 5.2.1] for details). The basis theorem for B given in [20, Theorem 2.3.1] and
straightforward base change arguments show that the functor is full for an arbitrary
characteristic zero field. ∎

Let p-Web1 be the full monoidal sub-supercategory of p-Web whose objects are
tuples consisting of only ones, including the empty tuple.

Theorem 6.4.4 There is an isomorphism of monoidal supercategories

F′ ∶ B→p-Web1

given on objects by ● ↦ 1 and on morphisms by

Proof We first check that relations (6.2)–(6.6) are satisfied in p-Web. Relation (6.2)
holds by (3.2). The relations (6.3) and (6.4) hold by Theorem 2.3.3. The relations (6.5)
and (6.6) hold by Lemma 3.4.2.

The functor F′ restricts to an isomorphism on Hom spaces, as F′ sends the
basis morphisms described in [20, Theorem 2.3.1] to the basis morphisms of
Corollary 6.3.2. ∎

6.5 The functor G↑↓ ∶ p-Web↑↓→p(n)-modS,S∗

Theorem 6.5.1 There is a well-defined functor of monoidal supercategories

G↑↓ ∶ p-Web↑↓→p(n)-modS,S∗

given on objects by G↑↓(↑a) = Sa(Vn) and G↑↓(↓a) = Sa(Vn)∗. The functor is given on
morphisms by

Proof Note that upward caps, upward cups, and upward antennas are sent to ∪, ∩,
and ant, respectively, so the defining up-arrow relations of p-Web↑↓ are preserved by
G↑↓ thanks to Theorem 6.1.1. We now check (4.1)–(4.3).

Let Ba be a homogeneous k-basis for Sa(Vn), with dual basis {x∗ ∣ x ∈ Ba} for
Sa(Vn)∗. Then, for x , y ∈ Ba , we have

evala(x∗ ⊗ y) = δx , y , and coevala(1) = ∑
x∈Ba

x ⊗ x∗ .
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So, for all x ∈ Ba , we have

(id ⊗ evala) ○ (coevala ⊗ id)(x) = ∑
y∈Ba

(id ⊗ evala)(y ⊗ y∗ ⊗ x) = ∑
y∈Ba

δy ,x y = x

and

(evala ⊗ id) ○ (id⊗ coevala)(x∗) = ∑
y∈Ba

(evala ⊗ id)(x∗ ⊗ y ⊗ y∗) = ∑
y∈Ba

δx , y y∗ = x∗ ,

proving (4.1).
By Lemma 6.2.1, we have

From this, it is immediate that for all x ∈ Ba , y ∈ Bb , the image of the leftward crossing
under G↑↓ is τS a(Vn)∗ ,Sb(Vn), and thus we have that relation (4.2) is preserved.

Finally, to check relation (4.3), we note that

evala ○ τS a(Vn)∗ ,S a(Vn) ○ coevala(1) = ∑
x∈Ba

evala ○ τS a(Vn)∗ ,S a(Vn)(x ⊗ x∗)

= ∑
x∈Ba

(−1)∣x ∣evala(x∗ ⊗ x) = ∑
x∈Ba

(−1)∣x ∣ = 0,

completing the proof. ∎

6.6 Explosion and contraction

In this section, k can be an integral domain. For short, given k ≥ 1, we write yk ∈
Homp-Web(k, 1k) and zk ∈ Homp-Web(1k , k) for the morphisms defined by (3.11).

Lemma 6.6.1 For all k ≥ 1, we have zk ○ yk = k! ⋅ idk .

Proof Follows from repeated application of (2.2). ∎

Let k ∈ Z≥0 and a = (a1 , . . . , ak) ∈ Zk
≥0. We identify a with the object (a1 , . . . , ak)

of p-Web. We will also use the following associated notation:

∣a∣ ∶= a1 + ⋅ ⋅ ⋅ + ak , a! ∶= a1! ⋅ ⋅ ⋅ ak ! ya ∶= ya1 ⊗ ⋅ ⋅ ⋅ ⊗ yak , za ∶= za1 ⊗ ⋅ ⋅ ⋅ ⊗ zak .

For any objects a, b in p-Web, we have linear maps:

expa ,b ∶ Homp-Web(a, b)→Homp-Web(1∣a∣ , 1∣b∣), f ↦ yb ○ f ○ za ,

and

cona ,b ∶ Homp-Web(1∣a∣ , 1∣b∣)→Homp-Web(a, b), g ↦ zb ○ g ○ ya .

We refer to these maps as explosion and contraction, respectively. See the proof of [24,
Theorem 1.10] for a picture showing them in use.

Lemma 6.6.2 For every f ∈ Homp-Web(a, b), we have (cona ,b ○ expa ,b) ( f ) =
a!b! f .
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Proof Follows from Lemma 6.6.1. ∎
It should be noted that the explosion and contraction morphisms only involve

gl-Web morphisms and calculations. They first appear in [24] and are now a standard
tool in this area.

6.7 Putting things together, p-Web edition

Let r, s ∈ Z≥0, a ∈ Zr
≥0, b ∈ Zs

≥0. By Theorem 6.1.1, we may define linear maps:

ẽxpa ,b ∶ Homp(n) (Sa(Vn), Sb(Vn))→Homp(n) (V ∣a∣n , V ∣b∣n ) ,
f ↦ G (yb) ○ f ○ G (za) ,

and

c̃ona ,b ∶ Homp(n) (V ∣a∣n , V ∣b∣n )→Homp(n) (Sa(Vn), Sb(Vn)) ,
g ↦ G (zb) ○ g ○ G (ya) .

Lemma 6.7.1 For all objects a and b in p-Web, the following diagram commutes:

Homp-Web(a, b)

Homp-Web(a, b) Homp-Web1(1
∣a∣ , 1∣b∣)

HomB([∣a∣], [∣b∣])

Homp(n)(Sa(Vn), Sb(Vn)) Homp(n)(V ∣a∣n , V ∣b∣n )

Homp(n)(Sa(Vn), Sb(Vn))

a!b!⋅id

ex pa ,b

G

cona ,b

G

F′

F
ẽx pa ,b

a!b!⋅id
c̃ona ,b

Proof The top and bottom triangles and the middle rectangle commute by Lemma
6.6.2 and Theorem 6.1.1. The triangle on the right can be seen to commute by checking
the definitions of F , F′ , G on generating morphisms, together with (5.4). ∎
Theorem 6.7.2 If a, b are such that ∣a∣ + ∣b∣ ≤ 2n, then the map

G ∶ Homp-Web(a, b)→Homp(n) (Sa(Vn), Sb(Vn))
is injective. If k is a field of characteristic zero, then the functor G is full.

Proof The injectivity statement follows from Theorem 6.3.1 and Corollary 6.3.2.
Now, assume that k has characteristic zero and consider the diagram in

Lemma 6.7.1. Since F′ is an isomorphism by Theorem 6.4.4 and F is surjective by
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Theorem 6.4.3, the map G on the right is surjective. To see surjectivity of G along
the left side, let φ ∈ Homp(n)(Sa(Vn), Sb(Vn)). Then, by surjectivity of the G on the
right, there exists θ ∈ Homp-Web+1 (1∣a∣ , 1∣b∣) such that

G (θ) = ẽxpa ,b(φ) = G (yb) ○ φ ○ G (za) .

Then we compute

G ( cona ,b(θ)
a!b!

) = 1
a!b!

G(zb ○ θ ○ ya) =
1

a!b!
Gzb ○ Gθ ○ Gya =

1
a!b!

Gzb ○ Gyb ○ φ ○ Gza . ○ Gya

= 1
a!b!

G(zb ○ yb) ○ φ ○ G(za ○ ya) =
1

a!b!
G (b! ⋅ idb) ○ φ ○ G (a! ⋅ ida) = φ,

as desired. That is, G along the left side of the diagram is surjective, completing the
proof. ∎

Via the functor G, Theorem 6.7.2 shows that the basis for Homp-Web(a, b) given
in Corollary 6.3.2 could be considered a “stable basis,” or a “basis at infinity” for
Homp(n) (Sa(Vn), Sb(Vn)) in characteristic zero, since G defines an isomorphism
whenever n ≫ 0.
Remark 6.7.3 The functor G need not be full over a field k of positive characteristic.
For example, if char(k) = 3 and v is a nonzero even vector in Vn , then there is a
nonzero p(n)-module homomorphism k→S3(Vn) given by 1 ↦ v3, but the image of
G in Homp(n)(k, S3(Vn)) is zero.

6.8 Putting things together, p-Web↑↓ edition

Let r, s ∈ Z≥0 and a ∈ Zr , b ∈ Zs . Given a nonnegative integer a, it will be convenient
to adopt the notation Sa(Vn) ∶= Sa(Vn), S−a(Vn) ∶= Sa(Vn)∗, and, more generally,

Sa(Vn) ∶= Sa1(Vn) ⊗ ⋅ ⋅ ⋅ ⊗ Sar(Vn).

Let c, d , φ1 , φ2 be as in Lemma 4.4.1. By Theorem 6.5.1, we have an invertible linear
map:

Φ̃ ∶ Homp(n) (Sa(Vn), Sb(Vn))
∼�→ Homp(n) (Sc(Vn), Sd(Vn))

f ↦ G↑↓ (φ2) ○ f ○ G↑↓ (φ1) .

Lemma 6.8.1 For any a ∈ Zr and b ∈ Zs , let c and d be as above. Then the following
diagram commutes:

Homp-Web↑↓(∣a , ∣b) Homp-Web↑(↑c , ↑d)

Homp-Web(c, d)

Homp(n)(Sa(Vn), Sb(Vn)) Homp(n)(Sc(Vn), Sd(Vn))

Φ

G↑↓ G↑↓

ι↑

G
Φ̃

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000688


Webs of type P 45

Proof The left rectangle commutes by Theorem 6.5.1. The triangle on the right
can be seen to commute by checking the definitions of ι↑, G , G↑↓ on generating
morphisms. ∎

Theorem 6.8.2 If a ∈ Zr and b ∈ Zs are such that ∣a∣ + ∣b∣ ≤ 2n, then the map

G↑↓ ∶ Homp-Web↑↓ (∣a , ∣b)→Homp(n) (Sa(Vn), Sb(Vn))

is injective. If k is a field of characteristic zero, then the functor G↑↓ is full.

Proof Consider the diagram in Lemma 6.8.1, with c, d as in Lemma 4.4.1. We have
∣c∣ + ∣d∣ ≤ 2n, so the map G is injective by Theorem 6.7.2. Therefore, the map ι↑ is
injective, and is surjective by Theorem 4.5.2, so the map G↑↓ on the right must be
injective. As Φ and Φ̃ are isomorphisms, we have that the map G↑↓ is injective as well.

Moreover, if k is a field of characteristic zero, then by Theorem 6.7.2, the map G is
surjective, which, in turn, forces all maps in the diagram to be surjective and so G↑↓ is
full, as claimed. ∎

Theorem 6.8.3 The functor

ι↑ ∶ p-Web→p-Web↑

is an isomorphism of categories.

Proof The functor is bijective on objects, and full by Theorem 4.5.2. For any fixed
pair of objects c and d in p-Web, we may choose n such that 2n ≥ ∣c∣ + ∣d∣ and consider
the diagram in Lemma 6.8.1. Then the map G is injective by Theorem 6.7.2, forcing

Homp-Web (c, d) ∼�→ Homp-Web↑ (↑c , ↑d) ,

as required. ∎

Conjecture 6.8.4 It is interesting to consider the precise conditions which imply the
injectivity and fullness statements of Theorems 6.7.2 and 6.8.2. We conjecture that the
fullness statement holds whenever k is a field with characteristic greater than ∣a∣ + ∣b∣.

6.9 A particular spanning set

In the follow-up paper [13], it will be useful to work with a particular spanning set
for Homp-Web↑↓ (∅, ↑a↓b). As the relevant diagrammatics are already defined herein,
we request the reader’s indulgence in including the necessary result here. In light
of the results of Section 6.4, readers familiar with explosion/contraction arguments
will note that the spanning set is a contraction of the Brauer diagram basis for
HomB (∅, ∣a∣ + ∣b∣) given in [20].

Lemma 6.9.1 Assume that k is a field of characteristic zero, and a, b ∈ Zm
≥0. Then

Homp-Web↑↓ (∅, ↑a↓b) is spanned by diagrams of the form
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(6.7)

where all strands except those at the very top of the diagram are thin, the diagram has
0 ≤ j ≤ ∣a∣/2 upward-oriented cups, ∣b∣/2 − ∣a∣/2 + j downward-oriented cups, ∣a∣ − 2 j
leftward-oriented cups, σ consists only of upward-oriented crossings, and τ consists only
of downward-oriented crossings.

Proof Let b′ = (bm , . . . , b1). We first consider Homp-Web↑↓ (↑b′ , ↑a). It follows from
Theorem 6.4.4 and Lemma 6.7.1 that this morphism space is spanned by diagrams of
the form

where D is a marked Brauer diagram as defined in [20, Section 2.2]. Using the relations
discussed in loc. cit., one can replace D with σ ○ E ○ τ′, where σ and τ′ consist of only
upward-oriented crossings, and where E is a diagram of the form

By Lemma 4.4.1, there is an isomorphism of superspaces

Homp-Web↑↓ (↑
b′ , ↑a) ≅ Homp-Web↑↓ (∅, ↑a↓b)

given by
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Applying this map to the elements of our spanning set and using the relations in
Theorem 4.3.1 to pull τ′ and the upward-oriented caps to the right side of the diagram,
it follows that Homp-Web↑↓ (∅, ↑a↓b) is spanned by diagrams of the form (6.7). ∎

7 Category equivalences

7.1 Faithfulness

Throughout this section, k is an algebraically closed field of characteristic zero. The
assumption that k is algebraically closed allows us to cite the results from [10] used
below. We expect that it is not necessary. We also remark that Coulembier describes
how to construct the morphism fn+1. It would be interesting to describe it explicitly
in terms of diagrams.

Let In denote the kernel of the functor

F ∶ B→p(n)-modules.

That is, In is the tensor ideal given by

In ([a], [b]) = {g ∈ HomB ([a], [b]) ∣ F(g) = 0}

for all objects [a] and [b] in B. The following is a reformulation of [10, Theorem 8.3.1]
so that it applies to the category B.

Theorem 7.1.1 Let n ≥ 1 and set � = (n + 1)(n + 2)/2. Then, In is generated as a tensor
ideal by a single morphism which lies in EndB ([�]).

Proof By [10, Theorem 8.3.1], there is a morphism fn+1 ∈ EndB ([�]) which is in the
kernel of the functor F. Since F is a functor of k-linear monoidal categories, the tensor
ideal generated by fn+1 is also contained in the kernel of F.

On the other hand, let g ∈ HomB ([a], [b]) be a nonzero element in the kernel of
F. By pre- and post-composing with cup and cap diagrams much as in Section 4.4, one
can define an isomorphism of superspaces

HomB ([a], [b]) ≅�→ HomB ([r] , [r]) ,(7.1)

where r = (a + b)/2. Let g′ ∈ HomB ([r] , [r]) be the image of g under this iso-
morphism. Since F is a monoidal functor, g′ is in the kernel of the map F ∶
EndB ([r])→Homp(n) (V⊗r). By [10, Theorem 8.3.1], r ≥ � and the kernel of this
superalgebra homomorphism is generated as an ideal by fn+1 ⊗ Id⊗(r−�)● . Thus, g′ =
∑i a i ( fn+1 ⊗ Id⊗(r−�)● ) b i for some a i , b i ∈ EndB ([r]). Applying the inverse of (7.1)
to this expression shows that g lies in the tensor ideal generated by fn+1, proving the
claim. ∎

We abuse notation and write fn+1 for the morphism F′( fn+1) and ι↑(F′( fn+1)) in
p-Web and p-Web↑↓, respectively.

Theorem 7.1.2 For any n ≥ 1, the tensor ideal generated by the morphism fn+1 in p-Web
and p-Web↑↓ is the kernel of the functors G and G↑↓, respectively.

https://doi.org/10.4153/S0008414X23000688 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000688


48 N. Davidson, J. R. Kujawa, and R. Muth

Proof This follow directly from the previous result and standard
explosion/contraction arguments. To explain, consider p-Web and the commutative
diagram from Lemma 6.7.1. A simple diagram chase along with the fact that F′ is
an isomorphism and fn+1 is in the kernel of F shows this morphism and, hence, the
tensor ideal it generates, lies in the kernel of G.

On the other hand, let a and b be objects of p-Web and let f ∈ Homp-Web(a, b)
satisfy G( f ) = 0. Then G(expa ,b( f )) = 0. Since F′ is an isomorphism, there is a g ∈
HomB([∣a∣], [∣b∣]) such that F′(g) = expa ,b( f ). By the commutativity of the right-
hand triangle, F(g) = 0 and hence, by Theorem 7.1.1, g lies in the tensor ideal of
B generated by fn+1. Applying the isomorphism F′, this implies that expa ,b( f ) lies
in the tensor ideal of p-Web generated by fn+1. Since the map cona,b is given by
pre- and post-composing with morphisms, tensor ideals are preserved. Therefore,
cona ,b(expa ,b( f )) = a!b! f lies in the tensor ideal of p-Web generated by fn+1. Hence,
so does f. This proves the claim regarding the functor G.

Diagram chase arguments using the commutative diagram in Lemma 6.8.1 along
with the fact that relevant the maps are given by pre- and post- composing with
morphisms (and, hence, preserve tensor ideals) proves the statement for G↑↓. ∎

We end this section by pointing out that under the assumptions of the present
section, the injectivity statements of Theorems 6.7.2 and 6.8.2 can be made sharp.

Proposition 7.1.3 Let n ≥ 1 and set � = (n + 1)(n + 2)/2. Then, the maps

G ∶ Homp-Web(a, b)→Homp(n)(Sa(Vn), Sb(Vn)),

G↑↓ ∶ Homp-Web↑↓(∣a , ∣b)→Homp(n)(Sa(Vn), Sb(Vn))

are injective if and only if ∣a∣ + ∣b∣ < (n + 1)(n + 2).

Proof Doing a diagram chase using Lemmas 6.7.1 and 6.8.1, one can show that the
injectivity of these maps is equivalent to the injectivity of the map

F ∶ EndB ([r], [r])→Endp(n) (V⊗r , V⊗r) ,

where r = (∣a∣ + ∣b∣) /2. However, by [10, Theorem 8.3.1], this map is injective if and
only if r < �. This proves the claim. ∎

7.2 Category equivalences

Let

B(n), p(n)-Web, and p(n)-Web↑↓
be the quotient of B, p-Web, and p-Web↑↓, respectively, by the tensor ideal generated
by fn+1, where fn+1 is the morphism given in Section 7.1.

As fn+1 is in the kernel of the functors F, G, and G↑↓, they induce well-defined
functors which we call by the same name:

F ∶ B(n)→p(n)-ModV ,
G ∶ p(n)-Web→p(n)-modS ,

G↑↓ ∶ p(n)-Web↑↓→p(n)-modS,S∗ .
(7.2)
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Theorem 7.2.1 The functors given in (7.2) are equivalences of monoidal supercategories.

Proof Taken collectively, the previous theorems show that the functors F, G, and G↑↓
are essentially surjective, full, and faithful, proving the claim. ∎

Acknowledgment The authors thank the anonymous referee for their detailed and
helpful comments.
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