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1. Introduction. A problem of special interest in the study of automorphism groups
of surfaces are the bounds of the orders of the groups as a function of the genus of the
surface.

May has proved that a Klein surface with boundary of algebraic genus p has at most
12(p - 1 ) automorphisms [9].

In this paper we study the highest possible prime order for a group of automorphisms
of a Klein surface. This problem was solved for Riemann surfaces by Moore in [10]. We
shall use his results for studying the Klein surfaces that are not Riemann surfaces. The
more general result that we obtain is the following: if X is a Klein surface of algebraic
genus p, and G is a group of automorphisms of X, of prime order n, then n ^ p + 1.

2. Preliminaries. A Klein surface X is a surface with or without boundary, with an
open covering % = {Cj}is/ that fulfills the following two conditions:

(i) For each C/f e % there exists a homeomorphism <fo from Ut onto an open subset
of C.

(ii) If [/j, Ute% [/; r\Ujj= 0 , then (ftc^"1 is an analytic or anti-analytic application
defined in <f>j(U; C\ Uj).

An automorphism of the surface is a homeomorphism f:X—*X such that <&/<£,"' is
analytic or anti-analytic.

Orientable Klein surfaces without boundary are Riemann surfaces.
A non-orientable Klein surface X with topological genus g and k boundary compo-

nents has algebraic genus p = g + fc - 1 ; if X is orientable with boundary, its algebraic
genus is p = 2g + k — 1.

Klein surfaces and their automorphisms may be studied by means of non-Euclidean
crystallographic groups (NEC groups). An NEC group is a discrete subgroup of isometries
of the non-Euclidean plane with compact quotient space. NEC groups include reversing
orientation isometries, reflections and glide-reflections.

NEC groups are classified according to their signatures. The signature of an NEC
group is of the form

(*) (g, ±, h i , • • •, mr], {(n,,,..., nls),... ,(nku ..., nksj}).

The number g is the genus, the m( are the proper periods, and the brackets (ly^,..., niSl)
are the period-cycles.

The group F with signature (*) has a presentation given by generators
(i) Xi, i = 1 , . . . , r

(ii) et, i = 1 , . . . , k
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(i i i ) c y , i = l,...,k, j = O , . . . , s ,
(iv) (with sign '+') a,, b,, j = 1 , . . . , g

(with sign ' - ' ) a), j = 1,..., g
and relations

(i) x5- = l , i = l , . . . , r
(ii) er^joCiCu, = 1, i = 1 , . . . , k

(iii) c ^ = cy = (cy-iCy)"" = 1, J = 1 , . . . , k, j = 1 , . . . , Si
(iv) (with sign '+') xx... x,ex... eka1b1a71b71... ajj^a^b'1 = 1

(with sign ' - ' ) xx... xre1 . . . ekd\ ... d\ = 1.
The area of a fundamental region for an NEC group F is given by

where a = 1 if the sign is ' - ' and a = 2 if the sign is '+'.
The relation between Klein surfaces and NEC groups comes from the following two

results:

THEOREM A. [12]. Let X be a Klein surface of topological genus g, k boundary
components, and algebraic genus 3=2. Then X may be represented as D/K, where D =

{z eC, im z >0} and K is an NEC group with signature (g, ±, [—], {(—),..., (—)}) with
sign '+' if X is orientable, and ' - ' if X is non-orientable.

THEOREM B. [8]. A finite group G is a group of automorphisms of the Klein surface
DIK if and only if G = T/K, where T is an NEC group from which Kis a normal subgroup.

We shall establish first of all a result about normal subgroups of NEC groups.
k

LEMMA 1. Let F be an NEC group, with signature (g, ±, [m 1 ; . . . , mr], {(—),..., (—)}),
and let Fo be a normal subgroup of T, such that |F: Fo| = N. If qt is the least integer such
that e?'eF0, i = 1 , . . . , k, and if cw,..., ck0 belong to Fo, then the signature of Fo has

+ .. . + (N/qk) period-cycles, all of them empty.

Proof. If A is an NEC group with empty period-cycles, then the number of them is
equal to the number of conjugacy classes of reflections in A, as both equal the number of
holes in D/A. In our case Fo has empty period-cycles, and we need only find the number
of conjugacy classes of reflections in Fo. We will show that there are N/qf conjugacy
classes of reflections in Fo which are conjugate to ci0, for i = 1 , . . . , k.

The centralizer of ci0 in F is the abelian group Af generated by e{ and ci0 [13]. If
6:T—>T/T0 is the canonical homomorphism, then as ciOero, 0(Af) = {l, e f , . . . , c?'"1}
which has index N/q, in F/Fo. To prove the result we need only show that if g, h e F then
gCjog"1 and hqoH"1 are conjugate in Fo if and only if 6(g) and 0(h) lie in the same coset of
e(Af) in F/Fo, i.e., 6(h~1g)e6(Ai). This result holds for d{h~1g)e0(Ai) is equivalent to
h~1g = A.ob where X0

£ro, b&A{, and then gciOg~^ = h\QbciOb~1ko1h~1 =
h"1 = yohc^h^yo1, where hkoh'1 = yoeTo.
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Thus we have shown that the number of conjugacy classes of reflections in Fo

conjugate to cj0 is N/q{ and so the number of conjugacy classes of reflections in Fo is
. . . + (N/qfc).

3. Prime order groups of automorphisms. Let X be a Klein surface that is not a
Riemann surface. Then X may be represented as D/K, where K is an NEC group with

signature (i) (g, - , [ - ] , { - } ) , (ii) (&+,[ - ] ,{( - ) , .*• , ( - )}) or (iii) ( g , - , [ - ] , {(-) ,
I.

• • •, (—)}) if X is (i) without boundary, (ii) orientable with boundary, or (iii) non-
orientable with boundary.

If G is a group of automorphisms of X, with prime order j= 2, then G = T/K, where F
is an NEC group with signature (i) (7, - , [ > „ . . . , /xr],{—}), (ii) (7, +, [/xl5..., /v],{(—),
. ?'., (-)}) or (iii) (7, - , [ m , . . . , n,], {(-) , ." ' . , (-)}) [3].

Let F+ and K+ be the canonical fuchsian subgroups associated to F and K, i.e., the
subgroups formed by the elements which preserve orientation, [13]. Then, by [7, Cor. 1], if
t € V/K has N fixed points, t e T+/K+ has 2N fixed points. We shall denote by N(t) the
number of fixed points of t.

We shall indicate now the main result obtained by Moore for Riemann surfaces, that
will be used throughout this paper.

LEMMA 2 [10]. Let S be a Riemann surface of genus g. Let K be the fuchsian group
with signature (g, +,[—], {—}), and G a group of automorphisms of S, with prime order
ni=2. Then G = T/K, where T has signature (y, +, [jxl5. . . , /xr], {—}); and n ^ g only in the
next four cases:

(i) n = 2g + l ,N(0 = 3, 7 = 0,
(ii) n = g + l, N(t) = 4, 7 = 0,

(iii) n = g = 3, N(t) = 5, 7 = 0, or
(iv) n = g, MO = 2, 7 = 1,

where t is a generator of the group G.

THEOREM 1. Let X be a Klein surface of algebraic genus ps=2. Let G be a group of
automorphisms of X, of prime order n. Then if X is without boundary, or orientable with
boundary, n=£p + l; and if X is non-orientable with boundary, n^p.

Proof. 1. Let X be non-orientable, without boundary, of genus g. Then X = D/K,
G = T/K, and the signatures of K and F are (g, - , [—], {—}) and (7, - , [ ( i , , . . . , /xr], {—}).
From [13], the subgroups F+ and K+ have signatures, respectively,
(Y- l ,+ , |> i , Hi,--•,»*„ »**],{—}) and (g-l,+,[—],{—}). Also \Y+:K+\ = n, and so by
Lemma 2, if n > g — 1, we must have

(i) n = 2 ( g - l ) + l , N(0 = 3, 7 - 1 = 0, or
(ii) n = ( g - l ) + l , M 0 = 4, 7 - 1 = 0.

If case (i) holds, by [7, Corollary 1] t € T/K would have 3/2 fixed points, impossible. So the
highest possible prime n, is n = ( g - l ) + l = g = p + l, and then N{t) = 4/2 = 2, 7 = 1.

This bound is attained for every p +1 prime: The group F with signature
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(1, - , [p+1, p+1], {—}) fulfills the conditions of [4, Theorem 3.7] and hence there is an
epimorphism from F onto Z/p + 1 whose kernel has signature (g, - , [—], {—}). By the
relation of areas [13],

1+ g - 2 g - 2 =(g-2)(p + l)

1 \ 1 2 p - 1 '
p + 1/ p + 1

so, g = p + l.
2. Let X be orientable, with boundary, of algebraic genus p. Then X = DIK,

k'
G = T/K, a n d t h e s i g n a t u r e s of F a n d K a r e ( 7 , + , [ j x , , . . . , /x r ] , { ( — ) , . . . , ( — ) } ) a n d

1 .

(g, +, [—],{(—),..., (—)}). The canonical fuchsian subgroups F + and K+ have signature
( 2 7 + k'-1, +, [fti, m . • • •. Mr, Hr], {—» and (2g + k - 1 , +, [—], {—}), i.e., the signature of
K+ is (p, +,[—],{—})•

By Lemma 2, if n > p, we must have
(i) n = 2p + l, N(t) = 3, 27 + k ' - l = 0, or

(ii) n = p + 1, N(t) = 4, 2-y + k' - 1 = 0.
As before, the case (i) is impossible, and the highest possible prime n is n = p + l , and
then JV(r) = 4/2 = 2, 27 + fc'-l = 0. As k ' ^ 0 , it is 7 = 0, fc' = l.

3. Let X be non-orientable, with boundary, of algebraic genus p. Then X = D/K,

G = T/K, and the signatures of F and K are ( 7 , - , [HI , • • •, Hrl {(—),•••»(—)}) and
( g , - , [ — ] , {(—), . k . , (—)}). The subgroups F + and K+ have signatures (7 + k ' -
1, +, [(x1; Hi, • • •, Hr> Hr], {—}) and (p, +, [—]. {—})• By Lemma 2, if n > p, it must be

(i) n = 2p + 1 , N(t) = 3, 7 + k' - 1 = 0, or
(ii) n = p + 1 , N(t) = 4, 7 + k' — 1 = 0.

As before, the case (i) is impossible; but as 7 3= 1, k'2= 1, 7 + k ' - 1 is different from 0, and
so the case (ii) is also impossible. Hence in no case is n>p.

Let us see now when n = p. By Lemma 2, we must have
(i) n = p = 3, N(t) = 5, 7 + fc' - 1 = 0, or

(ii) n = p, N(t) = 2, y + k' —1 = 1.
The case (i) is again impossible, and thus the only possible case is n = p, N(t) = 2/2 = 1,

We have obtained the bounds of the order as a function of the algebraic genus of the
surface. We shall calculate now which are the values of the topological genus and
boundary components that attain these bounds.

In the non-orientable surfaces without boundary the algebraic and topological genera
are mutually determined. So we have seen that every prime g attains the bound.

Let us now study the surfaces with boundary.

PROPOSITION 1. Let X be an orientable Klein surface with boundary of algebraic genus
p. (1) If p + 1 is prime, there is a group of automorphisms of X, of order p + 1, if and only if
X has 1 or p + 1 boundary components, and topological genus p/2 and 0, respectively. (2) / /
p is prime, there is a group of automorphisms of X, or order p, if and only if X has 2 or p + 1
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boundary components, and topological genus (p —1)/2 and 0, respectively. (3) Otherwise, any
automorphisms group of X with prime order has order smaller than p.

Proof. Let n be the order of the group, say G. By Theorem 1, if n>p, we have
n = p + 1 . Also X = D/K, G = T/K, and F and K have signatures (0, +, [fx, , . . . , /j,r], {(—)})

and (g, +, [—], {(—), . . . , (—)}), with 2g + k — 1 = p. Hence by Lemma 1, k\p + l, and so
fc = l or k = p + l.

If k = 1, K has signature (p/2, +, [—], {(—)}). The group F with signature (0, +, [p +
1, p +1], {(—)}) fulfills the conditions of [5, Theorem 3.5] and hence there is an epimorph-
ism 0 from F onto Zip + 1 whose kernel has signature (g, +, [—], {(—)}). By the relation of
areas,

2 g - l
P -

thus g = p/2 and so ker 0 = K.
If fc = p + l, K has signature (0, +,[—],{(—), ?T!,(—)}). Let F be the group with

signature (0,+,[p + l, p + 1], {(—)}). The epimorphism 0 from F onto Z/p + 1 given by
0(x,) = l, 0(x2) = p, 0(ei) = 0(clo) = O, verifies that its kernel has signature (g,+, [—],
{ ( - ) , : : ! , ( - ) } ) , and

2g + p - l J 2 g + p - l ) ( p + l)
P - 1 + 2(1-(1/p + D) p - 1

thus g = 0, and so ker 8 = K.
Let us see now when n = p, prime. By Lemma 2, we have 2y + fc'-l = l, and so

7 = 0, fc' = 2. Thus F has signature (0, +, [fxu..., /xr], {(—)(—)}). By Lemma 1, k =
kx + k2, where k{ \ p, and hence k=2, k = p + l, or fc=2p. As 2g + fc-l = p, fc = 2p is
impossible.

If fc = 2, K has signature ( (p- l ) /2 , +,[—],{(—)(—)})• Let F be the group with
signature (0, +, [p], {(—)(—)}). The epimorphism 6 form T onto Zip given by d(x^) = 1,
0(e,) = 0(e2) = (p - l)/2, 0(clo) = 0(c2O) = 0, verifies that its kernel has signature (g, +, [—],
{(—)(—)}), and

2g = 2gp
P 1-U/p) p - 1 '

thus g = (p -1) /2 and so ker 0 = K.

If fc = p + l, K has signature (0, +,[—],{(—), .P^.\ (—)})• Let F be the group with
signature (0, +, [p], {(—)(—)}). The epimorphism 6 from F onto Zip given by 0(x,) = T,
S(ex) = p-1, 0(e2) = 0(cw) = d(c2o) = 0, verifies that its kernel has signature (g,+,[—],
{(-), .": . ' , (-)}), and

= 2g + p - l _(2g + p - l ) p
P l

thus g = 0, and so ker 6 = K.
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PROPOSITION 2. Let X be a non-orientable Klein surface with boundary, of algebraic
genus p. (1). If p is prime, there is a group of automorphisms of X, of order p, if and only if
X has 1 or p boundary components, and topological genus p and 1, respectively. (2)
Otherwise, any automorphisms group of X with prime order has order smaller than p.

Proof. Let n be the order of the group, say G. By Theorem 1, if n = p, X = D/K,
G = TIK, and Y and K have signatures (1, - , [ j i , , . . . , p,], {(—)}) and (g, -,[—],{(—),

• • • , (—)})> with g + k — 1 = p. Hence by Lemma 1, k \ p, and so k = 1 or k = p.
If fc = l, K has signature (p, - , [—] , {(—)}). The group F with signature (1, —, [p],

{(—)}) fulfills the conditions of [5, Theorem 3.6] and hence there is an epimorphism 6
from F onto Z/p whose kernel has signature (g, - , [—],{(—)}). By the relation of areas,

g - 1 = ( g - l ) p
P 1-U/p) p - 1 '

thus, g = p, and so ker 6 = K.
If k = p, K has signature (1 , —, [—], {(—),.".. ,(—)}). Let T be the group with

signature (1,- ,[p], {(—)}). The epimorphism 8 from T onto Zip given by 0(x,) = T,
0(d1) = (p- l) /2 , 0(ei) = 6(c10) = 0, verifies that its kernel has signature (g, - , [—] ,
{(_), . : . , (_)}) , and

+ p-2)p

thus g = 1, and so ker 6 = K.

4. Real algebraic curves. These results may be rewritten in terms of real algebraic
curves, as follows:

COROLLARY 1. Let V be an irreducible real algebraic curve of genus g^=2, and let Vc

be its complexification. If V C \ V is not connected, then,
1. If g + 1 is prime, there is a group of automorphisms of V, of order g +1, if and only if

V is connected or has g + 1 connected components.
2. If g is prime, there is a group of automorphisms of V, of order g, if and only if V has

2 or g +1 connected components.
3. Otherwise, any automorphisms group of V with prime order has order smaller than g.

COROLLARY 2. Let V be an irreducible real algebraic curve of genus gs=2, and let Vc

be its complexification. If V c \ V is connected, then
1. If gis prime, there is a group of automorphisms of V, of order g, if and only if V is

connected or has g connected components.
2. Otherwise, any automorphisms group of V with prime order has order smaller than g.

Proof of Both Corollaries. By [1,2] there is a functorial equivalence between the
category of compact Klein surfaces with boundary, and that of irreducible real algebraic
curves. So, each compact Klein surface with k boundary components has associated an
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irreducible real algebraic curve that admits a bounded smooth model with k connected
components, and conversely.

•From [11], the surface is orientable if and only if the curve disconnects its complexifi-
cation.

Further, the groups of automorphisms of the curve and of the surface are isomorphic
[6].

Hence, it suffices to rewrite Theorem 1 and Propositions 1 and 2, in this language.
This paper forms part of the doctoral thesis of the author, directed by Professor E.

Bujalance. I express him my acknowledgement. Thanks are also due to the referee for his
suggestions on shortening the proof of Lemma 1.
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