ON THE ORDER OF AUTOMORPHISM GROUPS OF KLEIN SURFACES

by J. J. ETAYO GORDEJUELA
(Received 18 November, 1983)

1. Introduction. A problem of special interest in the study of automorphism groups of surfaces are the bounds of the orders of the groups as a function of the genus of the surface.

May has proved that a Klein surface with boundary of algebraic genus p has at most $12(p-1)$ automorphisms [9].

In this paper we study the highest possible prime order for a group of automorphisms of a Klein surface. This problem was solved for Riemann surfaces by Moore in [10]. We shall use his results for studying the Klein surfaces that are not Riemann surfaces. The more general result that we obtain is the following: if X is a Klein surface of algebraic genus p, and G is a group of automorphisms of X, of prime order n, then $n \leqslant p+1$.
2. Preliminaries. A Klein surface X is a surface with or without boundary, with an open covering $\mathscr{U}=\left\{U_{i}\right\}_{i \in I}$ that fulfills the following two conditions:
(i) For each $U_{i} \in \mathscr{U}$ there exists a homeomorphism ϕ_{i} from U_{i} onto an open subset of \mathbb{C}.
(ii) If $U_{i}, U_{i} \in U, U_{i} \cap U_{i} \neq \varnothing$, then $\phi_{i} \phi_{i}^{-1}$ is an analytic or anti-analytic application defined in $\phi_{i}\left(U_{i} \cap U_{j}\right)$.

An automorphism of the surface is a homeomorphism $f: X \rightarrow X$ such that $\phi_{i} f \phi_{j}^{-1}$ is analytic or anti-analytic.

Orientable Klein surfaces without boundary are Riemann surfaces.
A non-orientable Klein surface X with topological genus g and k boundary components has algebraic genus $p=g+k-1$; if X is orientable with boundary, its algebraic genus is $p=2 g+k-1$.

Klein surfaces and their automorphisms may be studied by means of non-Euclidean crystallographic groups (NEC groups). An NEC group is a discrete subgroup of isometries of the non-Euclidean plane with compact quotient space. NEC groups include reversing orientation isometries, reflections and glide-reflections.

NEC groups are classified according to their signatures. The signature of an NEC group is of the form

$$
\begin{equation*}
\left(\mathrm{g}, \pm,\left[m_{1}, \ldots, m_{r}\right],\left\{\left(n_{11}, \ldots, n_{1 s_{1}}\right), \ldots,\left(n_{k 1}, \ldots, n_{k s_{k}}\right)\right\}\right) \tag{*}
\end{equation*}
$$

The number g is the genus, the m_{i} are the proper periods, and the brackets ($n_{i 1}, \ldots, n_{i_{i}}$) are the period-cycles.

The group Γ with signature ($*$) has a presentation given by generators
(i) $x_{i}, i=1, \ldots, r$
(ii) $e_{i}, i=1, \ldots, k$
(iii) $c_{i j}, i=1, \ldots, k, j=0, \ldots, s_{i}$
(iv) (with sign ' + ') $a_{j}, b_{j}, j=1, \ldots, g$
(with sign ' - ') $d_{j}, j=1, \ldots, g$
and relations
(i) $x_{i}^{m_{i}}=1, i=1, \ldots, r$
(ii) $e_{i}^{-1} c_{i 0} e_{i} c_{i_{\mathrm{s}_{\mathrm{i}}}}=1, i=1, \ldots, k$
(iii) $c_{i, j-1}^{2}=c_{i \mathrm{ij}}^{2}=\left(c_{i, j-1} c_{i j}\right)^{n_{i j}}=1, i=1, \ldots, k, j=1, \ldots, s_{i}$
(iv) (with sign ' + ') $x_{1} \ldots x_{r} e_{1} \ldots e_{k} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{\mathrm{g}} b_{\mathrm{g}} a_{\mathrm{g}}^{-1} b_{\mathrm{g}}^{-1}=1$ (with sign '-') $x_{1} \ldots x_{r} e_{1} \ldots e_{k} d_{1}^{2} \ldots d_{\mathrm{g}}^{2}=1$.
The area of a fundamental region for an NEC group Γ is given by

$$
|\Gamma|=2 \pi\left(\alpha g+k-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)+\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_{i}}\left(1-\frac{1}{n_{i j}}\right)\right),
$$

where $\alpha=1$ if the sign is ' - ' and $\alpha=2$ if the sign is ' + '.
The relation between Klein surfaces and NEC groups comes from the following two results:

Theorem A. [12]. Let X be a Klein surface of topological genus g, k boundary components, and algebraic genus $\geqslant 2$. Then X may be represented as D / K, where $D=$ $\{z \in \mathbb{C}, \operatorname{im} z>0\}$ and K is an NEC group with signature ($\mathrm{g}, \pm,[-],\{(-), \ldots,(-)\}$) with sign ' + ' if X is orientable, and ' - ' if X is non-orientable.

Theorem B. [8]. A finite group G is a group of automorphisms of the Klein surface D / K if and only if $G=\Gamma / K$, where Γ is an NEC group from which K is a normal subgroup.

We shall establish first of all a result about normal subgroups of NEC groups.
Lemma 1. Let Γ be an NEC group, with signature ($\mathrm{g}, \pm,\left[m_{1}, \ldots, m_{r}\right],\{(-), \ldots,(-)\}$), and let Γ_{0} be a normal subgroup of Γ, such that $\left|\Gamma: \Gamma_{0}\right|=N$. If q_{i} is the least integer such that $e_{i}^{q_{i}} \in \Gamma_{0}, i=1, \ldots, k$, and if $c_{10}, \ldots, c_{k 0}$ belong to Γ_{0}, then the signature of Γ_{0} has $\left(N / q_{1}\right)+\ldots+\left(N / q_{k}\right)$ period-cycles, all of them empty.

Proof. If Δ is an NEC group with empty period-cycles, then the number of them is equal to the number of conjugacy classes of reflections in Δ, as both equal the number of holes in D / Δ. In our case Γ_{0} has empty period-cycles, and we need only find the number of conjugacy classes of reflections in Γ_{0}. We will show that there are N / q_{i} conjugacy classes of reflections in Γ_{0} which are conjugate to $c_{i 0}$, for $i=1, \ldots, k$.

The centralizer of $c_{i 0}$ in Γ is the abelian group A_{i} generated by e_{i} and $c_{i 0}$ [13]. If $\theta: \Gamma \rightarrow \Gamma / \Gamma_{0}$ is the canonical homomorphism, then as $c_{i 0} \in \Gamma_{0}, \theta\left(A_{i}\right)=\left\{1, e_{i}, \ldots, e_{i}^{q_{i}-1}\right\}$ which has index N / q_{i} in Γ / Γ_{0}. To prove the result we need only show that if $g, h \in \Gamma$ then $\mathrm{g} c_{i 0} \mathrm{~g}^{-1}$ and $h c_{i 0} h^{-1}$ are conjugate in Γ_{0} if and only if $\theta(g)$ and $\theta(h)$ lie in the same coset of $\theta\left(A_{i}\right)$ in Γ / Γ_{0}, i.e., $\theta\left(h^{-1} g\right) \in \theta\left(A_{i}\right)$. This result holds for $\theta\left(h^{-1} g\right) \in \theta\left(A_{i}\right)$ is equivalent to $h^{-1} g=\lambda_{0} b$ where $\lambda_{0} \in \Gamma_{0}, b \in A_{i}$, and then $g c_{i 0} g^{-1}=h \lambda_{0} b c_{i 0} b^{-1} \lambda_{0}^{-1} h^{-1}=h \lambda_{0} c_{i 0} \lambda_{0}^{-1} h^{-1}=$ $\gamma_{0} h c_{i 0} b^{-1} \gamma_{0}^{-1} h^{-1}=h \lambda_{0} c_{i 0} \lambda_{0}^{-1} h^{-1}=\gamma_{0} h c_{i 0} h^{-1} \gamma_{0}^{-1}$, where $h \lambda_{0} h^{-1}=\gamma_{0} \in \Gamma_{0}$.

Thus we have shown that the number of conjugacy classes of reflections in Γ_{0} conjugate to $c_{i 0}$ is N / q_{i} and so the number of conjugacy classes of reflections in Γ_{0} is $\left(N / q_{1}\right)+\ldots+\left(N / q_{k}\right)$.
3. Prime order groups of automorphisms. Let X be a Klein surface that is not a Riemann surface. Then X may be represented as D / K, where K is an NEC group with signature (i) (g,-,[-],\{-\}), (ii) (g,+,[-],\{(-),...,(-)\}) or (iii) (g,-,[-],\{(-), $\ldots,(-)\})$ if X is (i) without boundary, (ii) orientable with boundary, or (iii) nonorientable with boundary.

If G is a group of automorphisms of X, with prime order $\neq 2$, then $G=\Gamma / K$, where Γ is an NEC group with signature (i) $\left(\gamma,-,\left[\mu_{1}, \ldots, \mu_{r}\right],\{-\}\right)$, (ii) $\left(\gamma,+,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-)\right.$, $\ldots,(-)\})$ or (iii) $\left(\gamma,-,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-), \ldots,(-)\}\right)[3]$.

Let Γ^{+}and K^{+}be the canonical fuchsian subgroups associated to Γ and K, i.e., the subgroups formed by the elements which preserve orientation, [13]. Then, by [7, Cor. 1], if $t \in \Gamma / K$ has N fixed points, $t \in \Gamma^{+} / K^{+}$has $2 N$ fixed points. We shall denote by $N(t)$ the number of fixed points of t.

We shall indicate now the main result obtained by Moore for Riemann surfaces, that will be used throughout this paper.

Lemma 2 [10]. Let S be a Riemann surface of genus g. Let K be the fuchsian group with signature ($\mathrm{g},+,[-],\{-\}$), and G a group of automorphisms of S, with prime order $n \neq 2$. Then $G=\Gamma / K$, where Γ has signature ($\gamma,+,\left[\mu_{1}, \ldots, \mu_{r}\right],\{-\}$); and $n \geqslant g$ only in the next four cases:
(i) $n=2 \mathrm{~g}+1, N(t)=3, \gamma=0$,
(ii) $n=g+1, N(t)=4, \gamma=0$,
(iii) $n=g=3, N(t)=5, \gamma=0$, or
(iv) $n=g, N(t)=2, \gamma=1$,
where t is a generator of the group G.
Theorem 1. Let X be a Klein surface of algebraic genus $p \geqslant 2$. Let G be a group of automorphisms of X, of prime order n. Then if X is without boundary, or orientable with boundary, $n \leqslant p+1$; and if X is non-orientable with boundary, $n \leqslant p$.

Proof. 1. Let X be non-orientable, without boundary, of genus g. Then $X=D / K$, $G=\Gamma / K$, and the signatures of K and Γ are ($g,-,[-],\{-\}$) and $\left(\gamma,-,\left[\mu_{1}, \ldots, \mu_{r}\right],\{-\}\right)$. From [13], the subgroups Γ^{+}and K^{+}have signatures, respectively, $\left(\gamma-1,+,\left[\mu_{1}, \mu_{1}, \ldots, \mu_{r}, \mu_{r}\right],\{-\}\right)$ and $(g-1,+,[-],\{-\})$. Also $\left|\Gamma^{+}: K^{+}\right|=n$, and so by Lemma 2, if $n>g-1$, we must have
(i) $n=2(g-1)+1, N(t)=3, \gamma-1=0$, or
(ii) $n=(g-1)+1, N(t)=4, \gamma-1=0$.

If case (i) holds, by [7, Corollary 1] $t \in \Gamma / K$ would have $3 / 2$ fixed points, impossible. So the highest possible prime n, is $n=(g-1)+1=g=p+1$, and then $N(t)=4 / 2=2, \gamma=1$.

This bound is attained for every $p+1$ prime: The group Γ with signature
(1, $-,[p+1, p+1],\{-\})$ fulfills the conditions of [4, Theorem 3.7] and hence there is an epimorphism from Γ onto $Z / p+1$ whose kernel has signature ($g,-,[-],\{-\}$). By the relation of areas [13],

$$
1+p=\frac{g-2}{1-2+2\left(1-\frac{1}{p+1}\right)}=\frac{g-2}{1-\frac{2}{p+1}}=\frac{(g-2)(p+1)}{p-1}
$$

so, $g=p+1$.
2. Let X be orientable, with boundary, of algebraic genus p. Then $X=D / K$, $G=\Gamma / K$, and the signatures of Γ and K are $\left(\gamma,+,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-), \ldots,(-)\}\right)$ and $\left(g,+,[-],\left\{(-), \ldots^{k},(-)\right\}\right)$. The canonical fuchsian subgroups Γ^{+}and K^{+}have signature $\left(2 \gamma+k^{\prime}-1,+,\left[\mu_{1}, \mu_{1}, \ldots, \mu_{r}, \mu_{r}\right],\{-\}\right)$ and $(2 g+k-1,+,[-],\{-\})$, i.e., the signature of K^{+}is $(p,+,[-],\{-\})$.

By Lemma 2, if $n>p$, we must have
(i) $n=2 p+1, N(t)=3,2 \gamma+k^{\prime}-1=0$, or
(ii) $n=p+1, N(t)=4,2 \gamma+k^{\prime}-1=0$.

As before, the case (i) is impossible, and the highest possible prime n is $n=p+1$, and then $N(t)=4 / 2=2,2 \gamma+k^{\prime}-1=0$. As $k^{\prime} \neq 0$, it is $\gamma=0, k^{\prime}=1$.
3. Let X be non-orientable, with boundary, of algebraic genus p. Then $X=D / K$, $G=\Gamma / K$, and the signatures of Γ and K are $\left(\gamma,-,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-), \ldots,(-)\}\right)$ and $(g,-,[-],\{(-), \ldots,(-)\})$. The subgroups Γ^{+}and K^{+}have signatures $\left(\gamma+k^{\prime}-\right.$ $\left.1,+,\left[\mu_{1}, \mu_{1}, \ldots, \mu_{r}, \mu_{r}\right],\{-\}\right)$ and ($p,+,[-],\{-\}$). By Lemma 2, if $n>p$, it must be
(i) $n=2 p+1, N(t)=3, \gamma+k^{\prime}-1=0$, or
(ii) $n=p+1, N(t)=4, \gamma+k^{\prime}-1=0$.

As before, the case (i) is impossible; but as $\gamma \geqslant 1, k^{\prime} \geqslant 1, \gamma+k^{\prime}-1$ is different from 0 , and so the case (ii) is also impossible. Hence in no case is $n>p$.

Let us see now when $n=p$. By Lemma 2, we must have
(i) $n=p=3, N(t)=5, \gamma+k^{\prime}-1=0$, or
(ii) $n=p, N(t)=2, \gamma+k^{\prime}-1=1$.

The case (i) is again impossible, and thus the only possible case is $n=p, N(t)=2 / 2=1$, $\gamma=k^{\prime}=1$.

We have obtained the bounds of the order as a function of the algebraic genus of the surface. We shall calculate now which are the values of the topological genus and boundary components that attain these bounds.

In the non-orientable surfaces without boundary the algebraic and topological genera are mutually determined. So we have seen that every prime g attains the bound.

Let us now study the surfaces with boundary.
Propostrion 1. Let X be an orientable Klein surface with boundary of algebraic genus p. (1) If $p+1$ is prime, there is a group of automorphisms of X, of order $p+1$, if and only if X has 1 or $p+1$ boundary components, and topological genus $p / 2$ and 0 , respectively. (2) If p is prime, there is a group of automorphisms of X, or order p, if and only if X has 2 or $p+1$
boundary components, and topological genus ($p-1) / 2$ and 0 , respectively. (3) Otherwise, any automorphisms group of X with prime order has order smaller than p.

Proof. Let n be the order of the group, say G. By Theorem 1, if $n>p$, we have $n=p+1$. Also $X=D / K, G=\Gamma / K$, and Γ and K have signatures $\left(0,+,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-)\}\right)$ and $(\mathrm{g},+,[-],\{(-), \ldots,(-)\})$, with $2 \mathrm{~g}+k-1=p$. Hence by Lemma $1, k \mid p+1$, and so $k=1$ or $k=p+1$.

If $k=1, K$ has signature $(p / 2,+,[-],\{(-)\})$. The group Γ with signature $(0,+,[p+$ $1, p+1],\{(-)\})$ fulfills the conditions of [5, Theorem 3.5] and hence there is an epimorphism θ from Γ onto $Z / p+1$ whose kernel has signature $(g,+,[-],\{(-)\})$. By the relation of areas,

$$
p+1=\frac{2 g-1}{-1+2(1-(1 / p+1))}=\frac{(2 g-1)(p+1)}{p-1}
$$

thus $\mathrm{g}=p / 2$ and so $\operatorname{ker} \theta=K$.
If $k=p+1, K$ has signature $(0,+,[-],\{(-), \stackrel{p+1}{\cdots},(-)\})$. Let Γ be the group with signature $(0,+,[p+1, p+1],\{(-)\})$. The epimorphism θ from Γ onto $Z / p+1$ given by $\theta\left(x_{1}\right)=\overline{1}, \theta\left(x_{2}\right)=\bar{p}, \theta\left(e_{1}\right)=\theta\left(c_{10}\right)=\overline{0}$, verifies that its kernel has signature $(g,+,[-]$, $\{(-), \ldots,(-)\}$, and

$$
p+1=\frac{2 g+p-1}{-1+2(1-(1 / p+1))}=\frac{(2 g+p-1)(p+1)}{p-1}
$$

thus $g=0$, and so $\operatorname{ker} \theta=K$.
Let us see now when $n=p$, prime. By Lemma 2 , we have $2 \gamma+k^{\prime}-1=1$, and so $\gamma=0, k^{\prime}=2$. Thus Γ has signature $\left(0,+,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-)(-)\}\right)$. By Lemma $1, k=$ $k_{1}+k_{2}$, where $k_{i} \mid p$, and hence $k=2, k=p+1$, or $k=2 p$. As $2 g+k-1=p, k=2 p$ is impossible.

If $k=2, K$ has signature $((p-1) / 2,+,[-],\{(-)(-)\})$. Let Γ be the group with signature $(0,+,[p],\{(-)(-)\})$. The epimorphism θ form Γ onto Z / p given by $\theta\left(x_{1}\right)=\overline{1}$, $\theta\left(e_{1}\right)=\theta\left(e_{2}\right)=\overline{(p-1) / 2}, \theta\left(c_{10}\right)=\theta\left(c_{20}\right)=\overline{0}$, verifies that its kernel has signature $(\mathrm{g},+,[-]$, $\{(-)(-)\})$, and

$$
p=\frac{2 g}{1-(1 / p)}=\frac{2 g p}{p-1}
$$

thus $g=(p-1) / 2$ and so $\operatorname{ker} \theta=K$.
If $k=p+1, K$ has signature $(0,+,[-],\{(-), \stackrel{p+1}{\cdots},(-)\})$. Let Γ be the group with signature $(0,+,[p],\{(-)(-)\})$. The epimorphism θ from Γ onto Z / p given by $\theta\left(x_{1}\right)=\overline{1}$, $\theta\left(e_{1}\right)=\overline{p-1}, \theta\left(e_{2}\right)=\theta\left(c_{10}\right)=\theta\left(c_{20}\right)=\overline{0}$, verifies that its kernel has signature $(g,+,[-]$, $\{(-), \stackrel{p+1}{\cdots},(-)\})$, and

$$
p=\frac{2 g+p-1}{1-(1 / p)}=\frac{(2 g+p-1) p}{p-1}
$$

thus $g=0$, and so $\operatorname{ker} \theta=K$.

Proposition 2. Let X be a non-orientable Klein surface with boundary, of algebraic genus p. (1). If p is prime, there is a group of automorphisms of X, of order p, if and only if X has 1 or p boundary components, and topological genus p and 1, respectively. (2) Otherwise, any automorphisms group of X with prime order has order smaller than p.

Proof. Let n be the order of the group, say G. By Theorem 1, if $n=p, X=D / K$, $G=\Gamma / K$, and Γ and K have signatures ($\left.1,-,\left[\mu_{1}, \ldots, \mu_{r}\right],\{(-)\}\right)$ and ($g,-,[-],\{(-)$, $\left.{ }^{k} .,(-)\right\}$), with $g+k-1=p$. Hence by Lemma $1, k \mid p$, and so $k=1$ or $k=p$.

If $k=1, K$ has signature ($p,-,[-],\{(-)\}$). The group Γ with signature ($1,-,[p]$, $\{(-)\})$ fulfills the conditions of [5, Theorem 3.6] and hence there is an epimorphism θ from Γ onto Z / p whose kernel has signature ($\mathrm{g},-,[-],\{(-)\}$). By the relation of areas,

$$
p=\frac{g-1}{1-(1 / p)}=\frac{(g-1) p}{p-1} ;
$$

thus, $g=p$, and so $\operatorname{ker} \theta=K$.
If $k=p, K$ has signature (1, $,[-],\left\{(-), .^{p},(-)\right\}$). Let Γ be the group with signature $(1,-,[p],\{(-)\})$. The epimorphism θ from Γ onto Z / p given by $\theta\left(x_{1}\right)=\overline{1}$, $\theta\left(d_{1}\right)=\overline{(p-1) / 2}, \quad \theta\left(e_{1}\right)=\theta\left(c_{10}\right)=\overline{0}$, verifies that its kernel has signature $(g,-,[-]$, $\{(-), \ldots,(-)\})$, and

$$
p=\frac{g+p-2}{1-(1 / p)}=\frac{(g+p-2) p}{p-1}
$$

thus $g=1$, and so $\operatorname{ker} \theta=K$.
4. Real algebraic curves. These results may be rewritten in terms of real algebraic curves, as follows:

Corollary 1. Let V be an irreducible real algebraic curve of genus $g \geqslant 2$, and let $V_{\mathbb{C}}$ be its complexification. If $V_{\mathbb{C}} \backslash V$ is not connected, then,

1. If $g+1$ is prime, there is a group of automorphisms of V, of order $g+1$, if and only if V is connected or has $g+1$ connected components.
2. If g is prime, there is a group of automorphisms of V, of order g, if and only if V has 2 or $g+1$ connected components.
3. Otherwise, any automorphisms group of V with prime order has order smaller than g .

Corollary 2. Let V be an irreducible real algebraic curve of genus $g \geqslant 2$, and let $V_{\mathbb{C}}$ be its complexification. If $V_{\mathbb{C}} \backslash V$ is connected, then

1. If g is prime, there is a group of automorphisms of V, of order g, if and only if V is connected or has g connected components.
2. Otherwise, any automorphisms group of V with prime order has order smaller than g.

Proof of Both Corollaries. By [1,2] there is a functorial equivalence between the category of compact Klein surfaces with boundary, and that of irreducible real algebraic curves. So, each compact Klein surface with k boundary components has associated an
irreducible real algebraic curve that admits a bounded smooth model with k connected components, and conversely.

From [11], the surface is orientable if and only if the curve disconnects its complexification.

Further, the groups of automorphisms of the curve and of the surface are isomorphic [6].

Hence, it suffices to rewrite Theorem 1 and Propositions 1 and 2, in this language.
This paper forms part of the doctoral thesis of the author, directed by Professor E. Bujalance. I express him my acknowledgement. Thanks are also due to the referee for his suggestions on shortening the proof of Lemma 1.

REFERENCES

1. N. L. Alling, Real elliptic curves. Notes of Math. 54, (North-Holland, 1981).
2. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces. Lecture Notes in Math. 219, (Springer-Verlag, 1971).
3. E. Bujalance, Normal subgroups of NEC groups, Math. Z. 178 (1981) 331-341.
4. E. Bujalance, Cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary, Pacific J. of Math. 109 (1983) 279-289.
5. E. Bujalance, Automorphisms groups of compact Klein surfaces with one boundary component, (to appear).
6. E. Bujalance and J. M. Gamboa, Automorphisms groups of algebraic curves of \mathbb{R}^{n} of genus 2, Archiv der Math. 42 (1984) 229-237.
7. J. J. Etayo, NEC subgroups in Klein surfaces. Bol. Soc. Mat. Mex. (to appear).
8. C. L. May, Large automorphism groups of compact Klein surfaces with boundary, Glasgow Math. J. 18 (1977) 1-10.
9. C. L. May, A bound for the number of automorphisms of a compact Klein surface with boundary, Proc. Amer. Math. Soc. 63 (1977) 273-280.
10. M. J. Moore, Fixed points of automorphisms of compact Riemann surfaces, Can. J. Math. 22 (1970) 922-932.
11. S. M. Natanzon, Automorphisms of the Riemann surface of an M-curve, Funct. Anal. and Appl. 12 (1978) 228-229.
12. R. Preston, Projective structures and fundamental domains on compact Klein surfaces, (Ph.D. thesis. Univ. of Texas, 1975).
13. D. Singerman, On the structure of non-euclidean crystallographic groups, Proc. Cambridge Phil. Soc. 76 (1974) 233-240.

Departamento de Geometría y Topología

Facultad de Ciencias Matemáticas
Universidad Complutense
Madrid, Spain

