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We investigate through numerical simulations the hydrodynamic interactions between
two rigid spherical particles suspended on the axis of a cylindrical tube filled with an
elastoviscoplastic fluid subjected to pressure-driven flow. The simulations are performed
by the finite-element method with the arbitrary Lagrangian–Eulerian formulation. We
carry out a parametric analysis to examine the impact of the yield stress and relaxation
time of the fluid and of particle confinement on the dynamics of the system. We identify
master curves of the particle relative velocity as a function of the inter-particle distance.
When the yield stress of the suspending phase is much lower than the viscous stress, those
curves highlight short-range attractive interactions and long-range repulsive interactions
between particles, with the latter specifically promoting their alignment. As the yield stress
increases, the attractive interaction is replaced by stasis at short distance, characterised by
a vanishing relative velocity and the formation of an unyielded region that connects the
two spheres, where the fluid behaves like a viscoelastic solid. Additionally, the combined
effects of plasticity and elasticity enhance the repulsion between the particles, promoting
their ordering. Also, increasing the confinement of the particles enhances repulsion, thus
allowing us to achieve ordering within shorter lengths in the flow direction. Reducing
shear thinning amplifies peak relative velocities and expands the attractive region due to
increased viscoelastic stresses and stress gradients. While a stable equilibrium may appear
at larger separations, its impact is limited by low relative velocities.
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1. Introduction
The dynamics of multiphase systems involving rigid particles suspended in rheologically
complex matrices is of considerable interest both from a fundamental perspective and in
practical applications, particularly within the field of microfluidics (Van Dinther et al.
2012; Shaqfeh 2019). Understanding the hydrodynamic interactions among particles is
essential for predicting and controlling their distribution within a suspension, which is
critical for optimising processes in many fields, including material science, biotechnology
and the pharmaceutical industry.

It is well known that rigid spheres suspended in Newtonian fluids under creeping
flow conditions do not exhibit cross-flow migration due to the linearity of the Stokes
equations that mathematically describe the system (Happel & Brenner (1983)). However,
introducing nonlinearity, either through inertia (Ho & Leal (1974)), complex rheology
of the suspending fluid, such as viscoelasticity (D’Avino et al. 2017), or particle
deformability (Villone & Maffettone 2019), enables particle migration. Numerous studies
have investigated the motion and migration of rigid particles in non-Newtonian fluids
(see, e.g. Lu et al. 2017). The combined lateral and axial motions of particles in pressure-
driven flow of non-Newtonian liquids can be harnessed to induce ordered structures (Del
Giudice et al. 2018; Liu et al. 2020), whose formation is influenced by factors such as the
flow rate and rheological properties of the suspending medium (Del Giudice et al. 2018)
and the geometry of the domain (Jeyasountharan et al. 2022). Notably, viscoelastic liquids
promote particle repulsion, leading to the formation of uniformly spaced trains of both
rigid (D’Avino et al. 2013) and deformable (Esposito et al. 2024a) particles. Motivated
by the works cited above, this study aims to explore particle interactions in a different
rheological context, i.e. yield-stress fluids. These materials exhibit a transition from solid-
like to liquid-like behaviour when subjected to a stress that exceeds a critical (yield) value.
The physical mechanism underlying this transition is associated with the microstructure
of the material, often comprising a network of interacting constituents that maintain a
solid-like state under static conditions (Bonn et al. 2017), but, once a critical stress state is
exceeded, the material ‘yields’ and starts to flow.

The dual nature of yield-stress fluids has significant potential for applications such
as particle trapping and controlled release (Chaparian & Tammisola (2020)). In recent
experiments, yield-stress materials have been employed for particle sorting in microfluidic
devices, leveraging the combination of solid-like behaviour at rest and fluidity under
applied stress to selectively transport or trap particles based on size or applied force
(Ovarlez et al. 2015). The dynamics of particles in yield-stress fluids has important
implications also in various industrial processes, including drilling, cement slurry flows
and food manufacturing. The ability to control particle motion in yield-stress materials is
crucial for ensuring uniformity, preventing clogging and optimising product consistency
(Ruan et al. 2021). Previous studies have revealed some key mechanisms that govern
particle migration, interaction and suspension stability. For instance, the velocity and stress
fields around particles in yield-stress fluids are significantly influenced by the presence
of unyielded regions, which resist flow until the applied stress surpasses the yield-stress
threshold (Putz et al. 2008; Fraggedakis et al. 2016). The size of unyielded regions, along
with the capacity of particles to deform the surrounding material, plays a critical role in
determining particle motion and interactions. Recently, Chaparian & Tammisola (2020)
demonstrated that, depending on flow conditions and material properties, rigid particles
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Figure 1. Schematic representation of the system investigated in this work: two rigid spherical particles with
diameter Dp , whose surfaces are initially separated by a distance d0, are placed on the axis of symmetry of a
tube with diameter Dc filled with an EVP fluid under pressure-driven flow, with flow rate Q, in the positive z
direction (from left to right).

can either experience intermittent flow or become completely arrested in yield-stress
fluids. In this study, the authors have shown that the stability of individual particles in
Poiseuille flow of a yield-stress fluid depends strongly on their position relative to the yield
surface (Chaparian & Tammisola 2020). Particles may either migrate within the yielded
regions or remain trapped in the unyielded plug if the yield stress is sufficiently high.
Compared with sedimentation in a quiescent yield-stress fluid, the presence of shear stress
in Poiseuille flow destabilises particles at lower buoyancy. Neutrally buoyant particles
remain stable only if they are fully contained within the unyielded plug, but the plug
can locally expand to accommodate them. These findings suggest that both elasticity
and the local stress distribution play crucial roles in particle transport and structuring in
yield-stress suspensions. Additionally, recent experiments revealed that even slight fluid
elasticity significantly impacts the flow around interacting particles in yield-stress fluids,
highlighting the need to better describe the rheological response of these materials through
a coupling between elastic and plastic behaviours (Firouznia et al. 2018).

Incorporating elasticity into yield-stress materials adds further complexity to their flow
behaviour. In elastoviscoplastic (EVP) fluids, the interplay among elastic, viscous and
plastic effects results in an intricate dynamics, wherein both elastic deformations and
yielding significantly influence particle motion. Recent numerical (Fraggedakis et al. 2016;
Moschopoulos et al. 2021; Esposito et al. 2024b; Kordalis et al. 2024) and experimental
studies (Holenberg et al. 2012; Lopez et al. 2018) have highlighted the need to take elastic
effects into account in the modelling of yield-stress materials to accurately capture distinct
phenomena, e.g. the formation of a negative wake (i.e. flow reversal) behind a rigid sphere
settling in moderately concentrated Carbopol solutions, which ‘pure’ viscoplastic models
(that neglect elasticity) fail to predict.

In this work, we perform numerical simulations to study the hydrodynamic interactions
between two rigid spheres suspended on the axis of a cylindrical tube filled with a yield-
stress fluid exhibiting elastic effects, namely, an EVP fluid, subjected to pressure-driven
flow. Section 2 is devoted to the description of the problem and the numerical method
adopted to solve it, with a validation of our code. In § 3, we present and discuss the results
of the study, investigating the role of plasticity, elasticity and confinement through an
extensive parametric analysis. Finally, in § 4, we summarise our findings and discuss ideas
for future work.

2. Mathematical model

2.1. Governing equations
The geometry of the computational domain is illustrated in figure 1: two non-Brownian
rigid spherical particles, both having diameter Dp, are placed on the axis of a cylindrical
tube with diameter Dc filled with an EVP fluid undergoing pressure-driven flow. The
initial distance between the surfaces of the particles is d0. The assumption that particles
are located along the axis of the tube is supported by previous studies demonstrating
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that the elasticity of the suspending fluid promotes lateral migration toward the centre
of cylindrical channels (D’Avino et al. 2017). Furthermore, a numerical study on the role
of the yield stress on the migration of a single particle in channel flow of EVP fluids
(Chaparian et al. 2020) has indicated that, when inertial forces are not dominant, also the
plasticity of the carrier fluid facilitates particle migration toward the centre. This arises
from particle rotation, which induces localised yielding within the plug region.

Consequently, we assume that the particles underwent hydrodynamic focusing in a
sufficiently long portion of the channel upstream that of our interest here. This allows
us to exploit the axial symmetry of the system and reduce the computational domain from
three to two dimensions.

The suspending liquid is considered incompressible. In typical microfluidic
applications, where highly viscous fluids and small-scale devices are common, the effects
of inertia and gravity are negligible, thus we do not include such forces in the mathematical
description of the problem. Therefore, the dynamics of the fluid is governed by the mass
and momentum balance equations in the following formulation:

∇ · u = 0, (2.1)
∇ · T = 0, (2.2)

where u is the velocity vector and T is the total stress tensor, which can be decomposed
as

T = −p I + 2ηsD + τ , (2.3)

with p the pressure, I the identity tensor, ηs the Newtonian solvent contribution to the
viscosity of the fluid, D = (∇u + (∇u)T)/2 the rate-of-deformation tensor and τ the extra
stress due to the polymeric nature of the EVP fluid. The rheological behaviour of the
latter is modelled by a Giesekus-like modification of the Saramito constitutive equation,
predicting shear thinning, bounded extensional viscosity and yield stress (Saramito 2007).
This reads as

λ
∇
τ + max

(
0,

|τ d| − τy

|τ d|
) (

τ + αλ

ηp
τ · τ

)
= 2ηpD, (2.4)

where |τ d| = √
(τ d : τ d)/2 is the second invariant of the deviatoric part of the extra stress

tensor, in turn defined as

τ d = τ − 1
3

tr(τ )I, (2.5)

with ‘tr’ the trace operator. In (2.4), the operator ‘max’ embeds the comparison between
|τ d| and the yield stress of the material τy, incorporating the von Mises criterion (Hill
1998), whereas λ indicates the relaxation time, ηp is the polymeric contribution to the
viscosity and α is the ‘mobility’ parameter, which modulates the shear-thinning behaviour
of the material. According to (2.4), the yield surface, i.e. the envelope denoting the
transition from a viscoelastic solid to a viscoelastic liquid behaviour, is obtained where
|τ d| = τy. The symbol (∇) denotes the upper-convected time derivative, defined as

∇
τ≡ ∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u. (2.6)

To close the problem, we impose the following boundary conditions:

u = (0, 0, UL ,T ) on ΓL ,T , (2.7)
u = 0 on Γ3, (2.8)

(T · n)|Γ1 = −(T · n)|Γ2 − �pn, (2.9)
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u|Γ1 = u|Γ2, (2.10)

Q = −
∫

Γ1

u · n dS, (2.11)

(n · T · t)|Γ4 = 0, (2.12)
(n · u)|Γ4 = 0. (2.13)

Equation (2.7) expresses the no-slip/no-penetration and rigid-body motion conditions on
the surfaces of the particles ΓL and ΓT, where the subscripts ‘L’ and ‘T’ stand for ‘leading’
and ‘trailing’, respectively, and UT and UL are the axial components of the translational
velocities of the particles (to be computed). On the tube wall Γ3, we impose the no-
slip/no-penetration condition through (2.8). The periodicity of velocity and stress between
the inflow and outflow boundaries Γ1 and Γ2 is applied through (2.9)–(2.10), where �p
indicates the pressure drop between those boundaries (to be computed). A fixed flow
rate Q is imposed at the inlet section, see (2.11). Finally, axial symmetry conditions
are imposed on Γ4, see (2.12) and (2.13). In the equations expressing the boundary
conditions, n identifies the unit vector normal to the boundary pointing toward the liquid
phase, whereas t is the unit vector tangential to the boundary. Because of the absence of
inertial terms, no initial condition is needed on the velocity field, but an appropriate initial
condition is required on the extra stress tensor τ . We assume the EVP fluid is initially
stress free, namely,

τ |t=0 = 0. (2.14)

The hydrodynamic force acting on each particle is specified under the assumption of
absence of inertia and external forces. Furthermore, the radial and angular components
of such force are identically zero due to the symmetry of the system. Accordingly, the
z-component of the total force acting on each spherical surface must be zero, i.e.

FL ,T =
∫

ΓL ,T

(T · n) · ez dS = 0, (2.15)

with ez the unit vector pointing in the z-direction. To obtain the positions of the particles
at each time step, we integrate the kinematic equations

dzL ,T

dt
= UL ,T , (2.16)

where zL and zT identify the axial positions of the centres of the particles. The initial
conditions associated with (2.16) are imposed by specifying the initial positions of the
particles zL ,T |t=0 = z0

L ,T .

2.2. Dimensionless equations
To make the mathematical model of the system dimensionless, we choose the diameter
of the cylindrical tube Dc as the characteristic length, the average inlet velocity of the
continuous phase Ū = 4Q/(π D2

c ) as the characteristic velocity and η0Ū/Dc, with η0 =
ηs + ηp the zero-shear viscosity, as the characteristic stress (viscous scaling). Hence, the
balance equations can be rewritten in dimensionless form as

∇∗ · u∗ = 0, (2.17)

− ∇∗ p∗ + ηr∇∗2u∗ + ∇∗ · τ ∗ = 0, (2.18)
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where the asterisks denote dimensionless quantities. The dimensionless constitutive
equation of the EVP fluid is

De
∇
τ ∗ + max

(
0,

|τ ∗
d| − Bn
|τ ∗

d|
) (

τ ∗ + αDe
1 − ηr

τ ∗ · τ ∗
)

= 2(1 − ηr)D∗. (2.19)

In the equations reported above, three dimensionless parameters appear, namely, the
Deborah number, the Bingham number and the viscosity ratio, defined as follows:

De = 4λQ

π D3
c
, (2.20)

Bn = πτy D3
c

4η0 Q
, (2.21)

ηr = ηs

η0
. (2.22)

The Deborah number measures the ratio between the characteristic times of the fluid and
of the flow, the Bingham number measures the ratio between the yield stress (plasticity)
and the viscous stress in the fluid and, finally, the viscosity ratio measures the relevance
of the solvent contribution to the total viscosity of the material. In addition, two other
dimensionless quantities play a role in the problem, i.e. the mobility parameter α and the
confinement ratio β = Dp/Dc.

In this work, we fix ηr = 0.1. The dynamics of the particle pair is studied as De, Bn, β

and α are varied in realistic ranges that might be attained in experiments. All the results
reported below are dimensionless; for brevity, the asterisks are omitted.

2.3. Numerical method, convergence and validation
We solve the equations governing the system by means of a mixed finite-element
method, incorporating the discrete elastic viscous stress splitting stabilisation technique
(Guénette & Fortin 1995; Bogaerds et al. 2002; Kynch & Phillips 2017) and the streamline–
upwind/Petrov Galerkin technique to stabilise the convective term in the constitutive
equation (Brooks & Hughes (1982)). A continuous quadratic interpolation for the velocity
and a continuous linear interpolation for the pressure, the stress tensor and the auxiliary
velocity gradient are used to satisfy the Ladyzhenskaya–Babuška–Brezzi condition (Boffi
et al. 2013). To enhance convergence at high Deborah number, we utilise the log-
conformation formulation (Fattal & Kupferman 2004). The rigid-body motion is enforced
through constraints applied at each node on the surfaces of the particles by using Lagrange
multipliers. The arbitrary Lagrangian–Eulerian method is employed to accommodate
the motion of the mesh nodes around the particles (Hu et al. 2001).The continuity
and momentum balance equations are decoupled from the constitutive equation. In this
formulation, the time-discretised constitutive equation is substituted into the momentum
balance equation in order to obtain a linear Stokes-like system. The constitutive equation
is discretised by a second-order semi-implicit Gear scheme. At each time step, after the
assembly of the finite-element matrices, the two resulting linear non-symmetric sparse
systems are solved employing the parallel direct solver PARDISO (Schenk & Gärtner
2004). To mitigate mesh distortion resulting from particle motion, we rigidly translate
the mesh in the flow direction with a velocity equal to the average velocity of the two
particles. This ensures that any remaining mesh distortion is primarily due to the gradual
variation of the distance between the particles.

We discretise the computational domain with an unstructured mesh made of quadratic
triangular elements, an example of which is displayed in figure 2. Furthermore, to ensure
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Figure 2. Example of a typical mesh used in the simulations. The region around the particles is displayed.

that our calculations are accurate even when the particles get close, we impose that a
minimum number of mesh elements must be present between the surfaces of the particles,
where larger gradients of velocity and stresses are expected. Preliminary tests show that 5–
6 elements in the gap are sufficient to obtain grid-independent results even in the hardest
case, i.e. when the particles are separated by a minimal distance d0 = 0.05. When the
interparticle distance increases, the number of elements in the gap is increased accordingly
to maintain an adequate distribution of the computational nodes. The effect of the grid size
is explored through a mesh independence analysis.

The results of an example case are reported in figure 3. In panel (a), we vary the number
of elements on the boundaries of the particles N and track the evolution of the most
relevant kinematic quantity, the particle relative velocity �U = UL − UT, as a function of
time, the values of the parameters being given in the caption. From the superposition of the
curves, we deduce that even a mesh having 30 elements on the boundaries of the particles
would be adequate, but, for ‘safety’, we employ meshes with N = 45 in our simulations,
except in critical cases having a very short inter-particle distance, where finer meshes
having N = 60 are used. In panel (b), further tests are carried out on another very sensitive
quantity, the second invariant of the deviatoric part of the extra stress tensor, |τ d|, whose
values are tracked along the axis of symmetry at t = 60 for the three different meshes.
Panel (c) presents the temporal evolution of the percentage error in the relative velocity
between the particles for different mesh resolutions, specifically N = 30 (M1), N = 45
(M2) and N = 60 (M3). The distributions of yielded/unyielded regions corresponding to
the three meshes are displayed in panels (d) to (f ). Again, the fair agreement of the data
suggests that a mesh having N = 45 is adequate for our calculations.

Finally, due to the periodic boundary conditions applied on the inlet and outlet sections
of the channel, we verify that the length of the computational domain L is sufficiently
large to avoid any interaction between the particles and their periodic images along the
flow direction. A channel length L = 100Dp is found to be adequate and used in all the
calculations presented in this work. The whole set of simulations has been performed on
blades with two hexacore processors Intel Xeon E5649@2.53 GHz and 48 Gb of RAM,
requiring computational times between 2 and 4 days depending on the values of the
parameters, the cases at De = 2.0 and Bn = 0.4 being the most demanding.

3. Results
In this section, we present and discuss the results obtained from our simulations.
Subsection 3.1 is dedicated to the analysis of the transient dynamics of the system,
comparing cases at a given set of values of the dimensionless parameters and different
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Figure 3. Mesh convergence results. (a) Time evolution of the particle relative velocity �U = UL − UT and
(b) profile of |τ d| at t = 60 along the axis of symmetry of the channel (where z = 0 represents the midpoint
between the surfaces of the particles) for three meshes characterised by a different number of elements on the
boundaries of the particles (N = 30, 45 and 60, see legend). (c) Time evolution of the percentage error in
the relative velocities between N = 30 (M1), N = 45 (M2) and N = 60 (M3). (d)–(f ) Yielded (grey) and
unyielded (black) regions at t = 60 for N = 30, 45 and 60, respectively. The dimensionless parameters are
De = 1.0, Bn = 0.1, ηr = 0.1, β = 0.4, d0 = 0.25; the time step is �t = 10−3.

inter-particle initial distances. We find that, beyond an initial start-up due to the
development of viscoelastic stresses, the relative velocities of the particles obtained at
different initial distances collapse onto a single master curve as a function of the relative
distance, similarly to what happens to pairs of rigid particles in viscoelastic liquids
(D’Avino et al. 2013) and pairs of soft particles in both Newtonian and viscoelastic
matrices (Villone & Maffettone (2019); Esposito et al. 2024a). The analysis of such master
curves at different values of the dimensionless parameters is reported in § 3.2, exploring,
in particular, the effects of plasticity (i.e. yield stress), elasticity (i.e. relaxation time) and
confinement.

3.1. Transient dynamics
To investigate the transient evolution of particle relative velocities and distances, we
establish a ‘base case’ with given flow conditions, material properties of the suspending
fluid and confinement of the particles. Specifically, we set De = 0.5, Bn = 0.2 and β = 0.4.
These values of the dimensionless parameters can be obtained, for example, in a realistic
system where particles with a diameter Dp = 160 μm are suspended in an EVP fluid
characterised by a yield stress τy = 1 Pa, a relaxation time λ= 0.25 s and a zero-shear
viscosity η0 = 2.22 pas, flowing with flow rate Q = 6 μl min−1 in a cylindrical channel
with diameter Dc = 400 μm . To validate the assumption of inertialess conditions, we cal-
culate the corresponding Reynolds number, defined as Re = 4ρQ/(π Dcη0) = 1.4 × 10−4,
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t

Figure 4. Transient evolution of the particle relative velocity �U at De = 0.5, Bn = 0.2, β = 0.4 and d0 = 0.1,
0.4, 0.9 (see legend). The initial oscillations are caused by the development of viscoelastic stresses around the
particles.

with ρ ∼ 103 Kg m−3 the fluid density. Since this value is extremely small, the inertial
effects are indeed negligible.

In figure 4, we report the transient evolution of the particle relative velocity at three
different inter-particle initial distances, namely, d0 = 0.1, 0.4 and 0.9. The relative velocity
of two particles starting at d0 = 0.1 is always negative, i.e. they always attract. On the other
hand, when the initial inter-particle distance is larger, the relative velocity is positive, thus
the particles progressively separate.

To better identify what determines an attractive or a repulsive inter-particle interaction,
we analyse the extra stress contribution to the axial component of the force acting on the
two particles

FEVP|L,T =
∫

ΓL,T

(τ · n) · ez dS. (3.1)

The outward-pointing normal vector to the particle surface can be decomposed as

n= sin(φ)er + cos(φ)ez, (3.2)

where φ is the polar angle with respect to a reference frame with origin in the particle
centre. Hence, (3.1) can be rewritten (in dimensionless form) as

FEVP|L,T = πβ2

2

∫ π

0
(sin2(φ)τrz + sin(φ) cos(φ)τzz)dφ. (3.3)

Therefore, the hoop stresses do not directly contribute to the EVP force in the z-direction
and the only terms are the shear τrz and axial τzz components. Figure 5(a) shows the trends
of the axial (black) and shear (green) components of the extra stress tensor as a function
of the polar angle for the trailing (lines) and leading (symbols) particles for d0 = 0.2.
Figure 5(b) reports the same quantities multiplied by the corresponding pre-factors as in
(3.3). It turns out that the predominant contribution is the axial one whereas they become
comparable when multiplied by the surface normal unit vector. However, the quantitative
differences between the stress components acting on the leading and trailing particles are
minimal, with nearly identical values observed regardless of the interparticle distance.
Similar trends are observed for larger separation distances. This observation suggests that
the stress state within the interparticle gap, rather than the direct action of the EVP force on
the particle surfaces, primarily dictates the attractive or repulsive nature of the interparticle
interaction.
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Figure 5. (a) Axial and shear components of the extra stress tensor as a function of the polar angle for the
trailing and leading particles for d0 = 0.2. (b) The same stress components multiplied by pre-factors as in (3.3).
The other parameters are De = 0.5, Bn = 0.2, β = 0.4, t = 45.

τzz(z, r) – τzz∞(r)

–1.0 0 0.5 1.0 2.0

Figure 6. Perturbation of the axial normal extra stress field at De = 0.5, Bn = 0.2, β = 0.4, t = 45 and
d0 = 0.9, 0.4, and 0.1 (from top to bottom). The particles move from left to right.

We then examine the extra stress field around the particles by plotting in figure 6 the
long-time (t = 45) maps of the particle-caused perturbation of the axial normal component
of the extra stress, denoted as τzz(r, z) − τzz∞(r), where τzz∞ represents the value of τzz
in the absence of particles (only depending on r ). Once the viscoelastic stresses have
fully developed, a similar stress field is observed at the back of the trailing particle and
at the front of the leading one whatever the initial inter-particle distance: behind the
trailing particle, a region where τzz − τzz∞ is negative is generated, indicating compressive
stresses, whereas an extended region where τzz − τzz∞ is positive appears in front of the
leading particle, denoting tensile stresses. A key qualitative difference emerges in the fluid
region in between the particles if we compare the case with the smallest initial distance
(d0 = 0.1, bottom row in figure 6) and those with larger distances (d0 = 0.4 and 0.9, top
and medium rows in figure 6). At d0 = 0.1, the particles are connected through a region
where τzz − τzz∞ is negative; in contrast, at d0 = 0.4 and 0.9, the greater distance between
the particles allows high tensile stresses to develop in front of the trailing particle, which
may potentially push the particles apart. These observations suggest that the distribution of
τzz in the gap between the particles may play a crucial role in driving their dynamics. It is
also interesting to remark that, as the initial distance between the particles increases from
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–1.0 0 0.5 1.0 2.0

τrz(z, r) – τrz∞(r)

Figure 7. Perturbation of the shear extra stress field at De = 0.5, Bn = 0.2, β = 0.4, t = 45 and d0 = 0.9, 0.4,
and 0.1 (from top to bottom). The particles move from left to right.

0.4 to 0.9, the repulsive interaction weakens and the stress fields around the two particles
become more similar: it is, of course, expected that, as the distance between the particles
increases, the stress distribution around each particle converges to that of an isolated one,
with the relative velocity approaching zero.

Also the distribution of the perturbed shear stress, τrz − τrz∞, presented in figure 7,
offers valuable insights. At small interparticle distances (e.g. d0 = 0.1), a shear bridge
forms, connecting the front of the trailing particle with the back of the leading one. This
shear bridge diminishes in intensity as the interparticle distance increases. The influence
of shear bridges on the attractive dynamics has been extensively investigated for two rising
bubbles in EVP materials (see Kordalis et al. 2023, 2024).

From the stress field distributions, it appears that the distinction in the stress state
is more pronounced in terms of the axial perturbed normal stress component than
in the shear perturbed stress. Furthermore, it is noteworthy that previous simulations
employing the exponential Phan–Thien–Tanner (e-PTT) viscoelastic constitutive model
have demonstrated a significant suppression of attractive dynamics (De Micco et al.
2024). A key distinction between the Giesekus and e-PTT models lies in their extensional
rheological behaviour: at high extension rates, the e-PTT model exhibits extension-rate
thinning, whereas the Giesekus model exhibits extension-rate hardening. In contrast,
the shear predictions of both models are similar, exhibiting shear-thinning behaviour at
higher shear rates. Consequently, it is reasonable to deduce that the extensional behaviour,
particularly along the axis of symmetry in the interconnecting space between the particles,
is responsible for the observed differences in the dynamics.

Examining the contours of the second invariant of the deviatoric component of the extra
stress tensor is crucial for distinguishing yielded regions, where the material behaves as a
shear-thinning viscoelastic liquid, from unyielded regions that exhibit a viscoelastic solid
behaviour. We recall that the condition that separates the two regimes is |τ d| = Bn (with
Bn = 0.2, in this case). In figure 8(a), we show the contours of |τ d| at t = 45 and d0 =
0.4, identifying the yield surface as a solid black line. Notably, we observe the formation
of an unyielded island in between the two particles, whose existence can be understood
by inspecting separately the normal components of the extra stress. The axial symmetry
condition implies that the components τrz and τrr are identically zero on the axis of
the channel and, consequently, very small around it. On the other hand, the axial and
angular normal components of the extra stress, τzz and τθθ , are not negligible and exhibit
a sign change while crossing the yield surface. Specifically, the axial stress component τzz
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Figure 8. (a) Map of the second invariant of the deviatoric part of the extra stress tensor |τ d| around
the particles at De = 0.5, Bn = 0.2, β = 0.4, t = 45 and d0 = 0.4. The yield surface, i.e. the region where
|τ d| = Bn, is indicated with a black continuous line. Distribution of τzz (b), τθθ (c) and of the magnitude of the
rate-of-deformation tensor |D| (d) around the particles for the same values of the parameters.

switches from positive values in front of the trailing particle to negative values behind the
leading particle, see figure 8(b), whereas the angular component τθθ does the opposite,
see figure 8(c). The net result is a balance between the two stress components leading
to the condition |τ d| = Bn. Furthermore, six small unyielded islands are observed on the
surfaces of the spheres, where the material behaves as a viscoelastic solid, showing an
almost null rate of deformation, as shown in figure 8(d), where the map of the magnitude
of the rate-of-deformation tensor |D| is reported. Indeed, in the proximity of these regions,
the components τzz and τθθ change their sign, while the shear component τrz (not shown)
is not sufficiently strong to make the material yield.

By running simulations at various initial inter-particle distances, we observe that, after
the exhaustion of the initial oscillations (like those appearing in figure 4), the long-
time dynamics of the particle relative velocity as a function of the inter-particle distance
converges onto a single master curve, indicating that, given the confinement and the
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Figure 9. Master curve of the particle relative velocity �U as a function of the inter-particle distance d
at De = 0.5, Bn = 0.2 and β = 0.4. The coloured curves correspond to simulations having different initial
distances d0 (time is implicit). The empty circles identify data taken at ‘long time’ (i.e. well beyond the initial
build-up of viscoelastic stresses) from simulations at different values of d0 . The continuous black line (master
curve) is obtained through a polynomial fit of the data.

material and operating parameters, once the viscoelastic stresses have fully developed, the
dynamics of the particles is completely determined by their current separation distance.
This is illustrated in figure 9, where we report the evolution of the relative velocity
as a function of the distance between the particles, showing the superposition of the
curves corresponding to different initial distances d0. The dual dynamics (repulsion and
attraction) described in figure 4 is clearly visible: there is, indeed, a critical inter-particle
distance, d ≈ 0.25, below which the particles exhibit an attractive behaviour (�U < 0) and
above which they repel each other (�U > 0). This critical distance represents an unstable
equilibrium point, where any small perturbation would lead to either attraction or repulsion
between the particles. At very large distances, d � 2, the particles behave as if they were
isolated, with their relative velocity approaching zero.

3.2. Effect of the parameters
Let us now explore the effects of the interplay among plasticity, elasticity and confinement
on the particle pair dynamics. In figure 10, we display the particle relative velocity master
curves at β = 0.4, two values of De (1.0 on the left and 2.0 on the right) and, for each, four
values of Bn (as reported in the legends). Notably, at De = 1.0 (figure 10a), we observe
that, in the ‘purely’ viscoelastic case (Bn = 0), the particles attract at separation distance
d � 0.18; conversely, in ‘fully’ EVP cases (Bn 	= 0), the attractive region is replaced by
a range of separation distance values characterised by a zero relative velocity, i.e. the
particles travel at fixed distance. At De = 2.0 (figure 10b), the particles always repel at
Bn = 0, whereas, at Bn > 0, a range of d values characterised by �U = 0 appears again.

To further inspect this scenario, we examine the transient evolution of �U at
De = 1.0, Bn = 0.2, β = 0.4 and d0 = 0.05, 0.1, 0.15, see figure 11. Whatever the initial
separation distance, the velocity oscillations induced by the fluid stress build-up persist
for approximately 5 time units; after that, a relevant difference is observed: indeed, at
d0 = 0.05 and 0.1, the relative velocity decays to zero (thus, the separation distance
does not change anymore), whereas, at d0 = 0.15, it tends to a quasi-steady positive
value, indicating repulsion. This can be physically explained by looking at the yielded and
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Figure 10. Master curves of the particle relative velocity �U as a function of the inter-particle distance d at
β = 0.4, panel (a) De = 1.0 and panel (b) De = 2.0, and different values of Bn (see legends).
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Figure 11. (a) Time evolution of the particle relative velocity �U at De = 1.0, Bn = 0.2, β = 0.4 and
d0 = 0.05, 0.1, 0.15 (see legend). On the right, the yielded (red) and unyielded (blue) fluid regions around
the particles are shown at t = 40 and d0 = 0.05 (b), 0.1 (c) and 0.15 (d).

unyielded regions in the three cases, see figure 11(b–d). At d0 = 0.05 and 0.1 (panels b
and c), the particles are connected by an unyielded region, where the material behaves
as a viscoelastic solid: in this zone, the suspending phase undergoes moderate elastic
deformation, which forces the particles to stay close to each other, leading to a nearly
null relative velocity. In contrast, at d0 = 0.15 (panel d), there is still an unyielded region
between the particles, yet this is detached from their surfaces, thus allowing them to
separate at a finite rate, as shown by the green curve in figure 11(a).

By looking at figure 11, it can be observed that, whatever the final relative velocity
of the particles, there is always a negative undershoot at short time. As a consequence,
starting from the initial condition where their velocity is null and the fluid is stress free,
the particles approach during the initial stages of their dynamics. The time scale of such
behaviour is comparable to the relaxation time of the fluid, during which the velocity
profile of the suspending phase evolves to its fully developed shape. An explanation for the
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Figure 12. (a) Short-time evolution of the particle relative velocity �U at De = 1.0, Bn = 0.2, β = 0.4 and
d0 = 0.1. (b) Radial profiles of the axial velocity of a pure Saramito–Giesekus fluid during the initial stress
build-up at the same values of De and Bn as in panel (a). (c) Perturbation of the pressure field around the
particles at the same values of the parameters as in panel (a) and t = 0.3, 0.6, 1.0, 2.5 (from left to right).

short-time attraction is illustrated in figure 12, where the case with d0 = 0.10 is presented.
Panel (a) presents a magnified view of the short-time evolution (t ∈ [0, 3]) of the particle
relative velocity. Here, negative values of �U are observed for t � 1.4. Notably, the slope
of the curve is negative for t � 0.5, indicating that the particles are accelerating toward
each other in this time span. By looking at the radial profiles of the axial velocity of the
material in the absence of particles, in figure 12(b) we see that, for t < 1.0, the profile
progressively flattens in a region around the tube axis: this effect is due to the local shear
rate approaching zero where an unyielded island forms, causing the material to behave
as a viscoelastic solid; afterwards, the maximum velocity of the fluid increases and the
velocity profile reaches its fully developed shape. Correspondingly, particle attraction is
replaced by repulsion. In figure 12(c), we display the contours of the perturbed pressure
field around the particles, calculated as p(z, r) − p∞(z), where the undisturbed pressure
field of the fluid in absence of the spheres is calculated as p∞(z) = �p − (�p/L)z, at
four progressively increasing time values, i.e. t = 0.3, 0.6, 1.0, 2.5. In the earlier stages
(t = 0.3, 0.6), we observe positive values of the pressure perturbation behind the leading
particle and negative values in front of the trailing particle, indicating a compression of the
fluid in the region in between the particles that makes these approach. Later (t = 1.0, 2.5),
the pressure difference significantly diminishes, with a consequent reduction in particle
attraction.

In figure 13, six sets of master curves of the particle relative velocity as a function of
the inter-particle distance are shown at De = 0.5 (top row) and 1.0 (bottom row), β = 0.25
(left column), 0.4 (central column) and 0.5 (right column), and four different Bn values, as
reported in the legends. All the panels on each row (i.e. at given De) have the same scale
to emphasise the quantitative differences due to the variation of the confinement ratio:
indeed, a higher confinement accelerates the repulsive dynamics between the particles,
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Figure 13. Master curves of the particle relative velocity �U as a function of the inter-particle distance d at
De = 0.5 (top row) and 1.0 (bottom row), β = 0.25 (left column), 0.4 (central column) and 0.5 (right column)
and four different Bn values (see legend).

with the maximum positive relative velocity at β = 0.5 being nearly an order of magnitude
greater than at β = 0.25. Additionally, the repulsive velocity shows a clear increase with
De, as it emerges from the comparison between the panels on each column. Analogous
effects are obtained by increasing Bn, indicating that fluid plasticity and elasticity act
synergistically to amplify particle repulsion, so facilitating the ordering process in multi-
particle systems. This observation is in agreement with previous studies where the yield
strain parameter εy = τyλ/ηp is identified as a measure of the synergy between elastic and
plastic effects (Varchanis et al. 2020; Kordalis et al. 2021; Mousavi et al. 2024).

The influence of yield stress on enhancing elastic effects of complex fluids has been
already discussed for single-phase systems (Abdelgawad et al. 2024), and we posit that
a similar rationale applies to our findings. In the yielded regions, where the ‘max’
term multiplying the extra stress tensor in the Saramito–Giesekus constitutive model
is non-zero, a division of both sides of the constitutive equation by such term yields
a Giesekus model with a locally increased Deborah number compared with the purely
viscoelastic case. In the context of single-particle migration, Chaparian et al. (2020)
similarly claimed that EVP materials exhibit more pronounced elastic effects than their
viscoelastic counterparts at the same Deborah number. This observation aligns with the
argument proposed by Cheddadi et al. (2011), who suggested that the plastic nature of
the material constrains the extensional deformation behind a moving object, inducing an
asymmetry typically observed in viscoelastic fluids when the deformation rate exceeds a
critical threshold, which, in turn, is correlated with the yield strain εy.

Notably, when De = 1 (and Bn > 0), the relative velocity is significantly different from
zero even at large inter-particle distances, leading to an increased spacing between particles
and enhancing the overall efficiency of the ordering process.

Figure 14(a) presents the time evolution of the particle relative velocity at De = 1.0,
Bn = 0.4, d0 = 1.5 and confinement ratios β = 0.25, 0.4 and 0.5. As previously noted, an
increase in β corresponds to a higher repulsive velocity. The upper halves of figure 14(b–d)
depict the spatial distribution of the second invariant of the deviatoric component of the
extra stress tensor in the fluid surrounding the particles at t = 50 (i.e. the final time point
considered in panel a) and β = 0.25, 0.4 and 0.5 (from top to bottom). As β increases,
the reduced gap between the surfaces of the particles and the channel wall enhances the
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Figure 14. (a) Time evolution of the particle relative velocity �U at De = 1.0, Bn = 0.4, d0 = 1.5 and
β = 0.25, 0.4, 0.5 (see legend). (b–d) Maps of the second invariant of the deviatoric part of the extra stress
tensor |τ d| (upper halves) and zz-component of the rate-of-deformation tensor Dzz (lower halves) in the fluid
around the particles at De = 1.0, Bn = 0.4, d0 = 1.5, β = 0.25, 0.4, 0.5 (from top to bottom) and t = 50. The
yield surface is indicated with a continuous black line.

zz-component of the rate-of-deformation tensor, which is illustrated in the lower halves
of figure 14(b–d). This, in turn, results in increased viscoelastic stress. The heightened
stress levels in the region between the particles lead to a more pronounced variation in
|τ d|, particularly between the front of the trailing particle and the rear of the leading
one. In figure 14(b–d), the yield surface is indicated by a solid black line, whose axial
extent increases as β decreases. Specifically, at the lowest β value, the suspending phase
forms a solid-like region connecting the two particles, leading to a significantly slower
variation in their relative velocity. Conversely, at higher β values, the elevated stress
levels in the inter-particle region facilitate material yielding. Notably, at β = 0.4 and 0.5,
the stress distributions around the particles are nearly identical, leading to very similar
long-term values of the particle relative velocity, as shown by the red and green lines
in figure 14(a). Our analysis is restricted to medium confinement ratio (β � 0.5) for two
primary reasons: first, higher confinement increases the likelihood of clogging, which can
disrupt particle ordering, as reported in previous studies (Jeyasountharan et al. 2022);
second, previous works on particles suspended in viscoelastic materials demonstrated that
higher confinement facilitates the lateral migration of particles toward the channel walls
(D’Avino et al. 2017).

Finally, we examine the influence of shear thinning, governed by the mobility parameter
α in the Saramito–Giesekus constitutive equation. The physical meaning of this parameter
is linked to the degree of anisotropy in the drag exerted on the molecules of the
liquid (Giesekus (1982)). An increase in α implies that the shear-thinning behaviour
manifests itself at lower shear rate. When α = 0, the Saramito–Giesekus model reduces
to the standard Saramito model, wherein the yielded material behaves as an Oldroyd-like
viscoelastic fluid. In this limiting case, shear-thinning effects are absent, and the molecules
experience isotropic drag. To systematically analyse how shear thinning affects the particle
pair dynamics, we consider four representative parameter sets, obtained by combining
two De values (0.5 and 1.0) and two Bn values (0.1 and 0.2), while maintaining a fixed
confinement ratio of 0.4. For each De–Bn couple, we consider 5 α values. The results of
this investigation are summarised in figure 15. At De = 0.5, the results indicate that a lower
degree of shear thinning enhances both the repulsive and attractive dynamics, leading to
an increase in the magnitude of the undershoot and overshoot. Additionally, the attractive
region expands. Notably, for large initial separations (d0 > 1.3), the case corresponding
to α = 0 exhibits a secondary attractive region with a stable equilibrium point. These
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Figure 15. Particle relative velocity �U as a function of interparticle distance d for four combinations of the
Deborah number De and Bingham number Bn, with the corresponding values indicated in the panels, and five
different values of the mobility parameter α (see legend).

observations are consistent with previous studies on viscoelastic fluids (D’Avino &
Maffettone 2019). The influence of the Bingham number is primarily quantitative, slightly
affecting the magnitude of the undershoot. Specifically, at Bn = 0.1, the undershoot is
more pronounced compared with the case at Bn = 0.2. At α > 0.1, the master curves nearly
collapse on each other. This behaviour is expected, as α predominantly modulates the
minimum shear rate above which shear-thinning effects become significant. The observed
increase in the peak relative velocity for both repulsive and attractive interactions is
attributed to the higher viscoelastic stress levels and steeper stress gradients generated by
fluids exhibiting weaker shear-thinning behaviour. Analogously, the extensional viscosity
of the suspending fluid, and thus its extension-rate hardening behaviour, is correlated with
the mobility parameter, α. Specifically, increasing α results in a decrease in extensional
viscosity at high extension rates. This interpretation further supports the explanation that
viscoelastic stresses govern the relative displacement of the particles. To further investigate
this effect, we conduct an additional set of simulations at an increased Deborah number,
while restricting the minimum value of α to 0.005. This constraint arises from the nature
of the constitutive model itself: at α = 0, the standard Saramito model predicts diverging
polymeric stresses beyond a critical threshold of De when the material is subjected to
extensional flows, due to the fact that the extensional viscosity grows unbounded.

Indeed, the kinematics of the flow in the interstitial region between particle surfaces
is predominantly extensional, as can be characterised using the flow-type parameter ξ

(Astarita 1979) defined as

ξ = ||D|| − ||Ω||
||D|| + ||Ω|| , (3.4)
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Figure 16. Flow type parameter for a representative case having De = 1, Bn = 0.4, β = 0.5 and d0 = 1.50.

where ||D|| and ||Ω|| denote the magnitude of the rate-of-deformation tensor and the
vorticity tensor, respectively. The local value of this parameter varies between −1 and 1,
depending on the dominant flow type. Specifically, ξ = 1 corresponds to purely extensional
flow, as ||Ω|| is zero, ξ = 0 indicates shear-dominated flow and ξ = −1 represents purely
rotational flow. The map of ξ for a representative case (De = 1.0, Bn = 0.4, β = 0.5 and
d0 = 1.5) is presented in figure 16, indicating that the flow is predominantly extensional
along the axis connecting the particles, whereas shear-dominated regions are observed in
the gaps between each particle and the lateral wall of the channel. At De = 1.0, we observe
an increase in both repulsive and attractive relative velocities, along with an expansion of
the attractive region. However, the stable equilibrium point at larger separation distance,
deq, appears beyond the distance range analysed in this study. While the existence of this
equilibrium point is an intriguing finding, its practical relevance remains limited, since, at
d > deq, the relative velocity is very small, implying that an extremely long time would be
required for the particles to appreciably migrate toward this equilibrium position.

4. Summary and conclusions
In this work, we perform arbitrary Lagrangian–Eulerian finite-element simulations
to investigate the hydrodynamic interactions between two equal non-Brownian rigid
spherical particles suspended on the symmetry axis of a cylindrical tube filled with an
EVP fluid subjected to pressure-driven flow with a prescribed flow rate.

By examining the dynamics of particle pairs at different values of the operating,
constitutive and geometrical parameters that describe the system, we identify master
curves of the particle relative velocity as a function of the inter-particle distance. From
those, three regimes can be identified, governed by the fluid yield stress and the separation
between the particles. At low Bingham number (low yield-stress materials), the particles
exhibit attractive interactions at small separation distance, ultimately merging, whereas,
at larger separation distance, repulsive interactions are observed, which would promote
particle ordering in a multi-particle system. As the Bingham number increases, i.e. the
yield stress of the fluid becomes significant, the behaviour at short separation distance
is modified, the attractive dynamics being replaced by a stagnation regime, where the
particles remain at almost constant distance. In this case, the surfaces of the particles
are connected by an unyielded region in which the fluid behaves as a viscoelastic
solid, experiencing only minimal deformations. This phenomenon is here reported for
the first time and represents a significant deviation from previous studies on polymeric
(viscoelastic) suspending fluids (Jeyasountharan et al. 2022).
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As the Bingham (plasticity) or Deborah (elasticity) number increases, i.e. the yield
strain (given by the product of Bingham and Deborah numbers) increases, the repulsive
dynamics dominates even at short inter-particle distance, promoting more efficient particle
ordering. When the particle confinement (β) is increased, the enhanced deformation rate
between the surfaces of the particles and the tube walls correspondingly enhances the
stress in the fluid, which, in turn, facilitates the yielding of the material in the region
between the particles. This leads to higher relative velocity and the possible formation of
ordered structures over shorter channel lengths.

Finally, our analysis shows that decreasing the shear-thinning extent amplifies both
repulsive and attractive forces, resulting in larger peak relative velocities and an expansion
of the attractive region. This effect is attributed to the higher viscoelastic stresses and stress
gradients present in less shear-thinning fluids. While a stable equilibrium point at larger
interparticle distances is observed in some cases, its practical significance is limited by the
extremely low relative particle velocities at such separations.

These findings offer valuable insights for the design of microfluidic devices aimed
at non-intrusive particle ordering and controlled structure formation. Future work will
extend the analysis to explore interactions involving particle triplets and trains of particles.
Additionally, we plan to investigate the hydrodynamic interactions among deformable
particles, addressing applications such as the flow cytometry of soft cells.
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