A Determinantal Expansion for a Class of Definite Integral

Part 3. Generalised Continued Fractions

By L. R. Silenton
(Received 2nd March 1953.)

1. We have shown in [1] that under certain conditions the definite integral $\int_{a}^{b} \frac{A^{2}(x) w(x)}{C(x)} d x$ may be approximated by a determinantal ratio. It is our object now to develop the theory when $C(x)$ is a polynomial, showing the relation to the continued fraction form for $\int_{a}^{t} \frac{w(x) d x}{z-x}$. In particular we shall give various forms for the approximants, and an integral form for the numerator.
2. From [1] we have the expansion

$$
\begin{align*}
F\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\int_{a}^{b} \frac{w(x) d x}{\prod_{1}^{n}\left(z_{j}-x\right)} & =\left.\sum_{s=0}^{\infty} \frac{\mid \alpha_{0}, \gamma_{11}, \gamma_{12}, \ldots, \gamma_{s-1, s}}{\Delta_{s-1} \Delta_{s}}\right|^{2} \tag{1}\\
& =-\lim _{s \rightarrow \infty}\left|\begin{array}{ccccc}
0 & \alpha_{0} & a_{1} & \ldots & a_{s} \\
\alpha_{0} & \gamma_{00} & \gamma_{01} & \ldots & \gamma_{0 s} \\
\alpha_{1} & \gamma_{10} & \gamma_{11} & \ldots & \gamma_{18} \\
\cdot & \cdot & . \\
\cdot & \cdot & . \\
\cdot & \cdot & . \\
\alpha_{s} & \gamma_{s 0} & \gamma_{s 1} & \ldots & \gamma_{s s}
\end{array}\right| \div \Delta s \tag{2}
\end{align*}
$$

where ${ }^{1}$

$$
\begin{gathered}
\alpha_{s}=\int_{a}^{b} \theta_{s}(z) w(x) d x, \quad \gamma_{r, s}=\int_{a}^{b} \theta_{r}(x) \theta_{s}(x) w(x) \prod_{1}^{n}\left(z_{j}-x\right) d x, \\
\Delta_{s}=D_{s+1}(z)=\left|\gamma_{00}, \gamma_{11}, \ldots, \gamma_{s s}\right|, \\
w(x) \geqq 0 \text { for } a \leqq x \leqq b \quad \text { (a,b finite), } \\
\int_{a}^{b} w(x) d x \text { cxists and is positive }
\end{gathered}
$$

[^0]$\prod_{1}^{n}\left(z_{j}-x\right) \equiv\left(z_{1}-x\right)\left(z_{2}-x\right) \ldots\left(z_{n}-x\right)>0$ and the $z ' s$ are distinct,
$\theta_{8}(x)$ is an arbitrary polynomial of precise degree s with highest. coefficient λ_{g}.

We shall refer to (1) and (2) as continued fractions (C.F.'s) of the nth order, and $R_{s}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=N_{s} / D_{s}$ as the s th approximant or convergent.

The expansions (1) and (2) arise from a consideration of the minimum value of

$$
\begin{equation*}
S^{2}=\int_{a}^{b} w(x) \Pi(z-x)\left\{\frac{1}{\Pi(z-x)}-\sum_{s=0}^{r-1} A_{s} q_{s}(x)\right\}^{2} d x \tag{4}
\end{equation*}
$$

where $q_{8}(x)=\left|\theta_{0}(x), \gamma_{01}, \gamma_{12}, \ldots, \gamma_{s-1, s}\right| /\left\{(-)^{8} \lambda_{s} \Delta_{s-1}\right\}$,
and $\left\{q_{s}(x)\right\}$ is an orthogonal system with respect to the weight function $w(x) \Pi(z-x)$, the highest coefficient in $q_{s}(x)$ being unity. Indeed if we write

$$
\begin{equation*}
\phi_{r}=\int_{a}^{b} w\left(x ; \prod_{1}^{n}\left(z_{j}-x\right) q_{r}^{2}(x) d x\right. \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
A_{r} \phi_{r}=\int_{a}^{b} q_{r}(x) w(x) d x \tag{7}
\end{equation*}
$$

and

It may be remarked in passing that a consideration of the minimum value of $\int_{a}^{b}(z-x) w(x)\left\{(z-x)^{-1}-\Sigma A_{g} q_{s}(x)\right\}^{2} d x$ and of $\int_{a}^{b} x(z-x) w(x)\left\{(z-x)^{-1}-\Sigma A_{s}^{1} q_{8}^{1}(x)\right\}^{2} d x$ leads to continued fractions for $\int_{a}^{b}(z-x)^{-1} w(x) d x$ related to the 'even' and 'odd' parts of a Stieltjes type of continued fraction. The present approach shows immediately the central part played by orthogonal polynomials, and although in essence both these expressions were considered by Stieltjes [2], it is only at a later stage that the orthogonality property emerges.
3. We shall now consider various forms for $N_{s}(z)$ and $D_{s}(z)$. These arise by taking $(a) \theta_{s}(x)=(\nu-x)^{2}$;

$$
\text { (b) } \theta_{s}(x)=p_{s}(x)
$$

where $\left\{p_{s}(x)\right.$ \} is an orthonormal system with respect to $w(x)$, and $p_{s}(x)$ has highest_coefficient k_{s};
(c) $\theta_{s}(x)=q_{s}(x)=\frac{\left|p_{s}(x), p_{s+1}\left(z_{1}\right), p_{s+2}\left(z_{2}\right), \ldots, p_{s+n}\left(z_{n}\right)\right|}{k_{s+n} \Pi(z-x) \mid p_{s}\left(z_{1} j, p_{s+1}\left(z_{2}\right), \ldots p_{s+n-1}\left(z_{n}\right) \mid\right.}$
and the system $\left\{q_{s}(x)\right\}$ is orthogonal with respect to $u(x) \Pi(z-x)$.
(a) Here $\quad \alpha_{s}=\int_{a}^{b}(\nu-x)^{s} w(x) d x=m_{s}$ say,

$$
\begin{equation*}
\gamma_{r, s}=\int_{a}^{b}(\nu-x)^{r+s} w(x) \Pi(z-x) d x=M_{r+s+n} \text { say. } \tag{10}
\end{equation*}
$$

For particular choices of $w^{\prime}(x), m_{g}$ is an Appell polynomial.
Further, if $z_{1}=z_{2}=\ldots=z_{n}=\nu$ then $\gamma_{r, s}=m_{r+s+n}$.
From (8) we have, in the notation of persymmetric determinants,

$$
\begin{equation*}
\phi_{r}=\frac{P_{r+1}\left(M_{n}, M_{n+1}, \ldots, M_{n+2 r}\right)}{P_{r}\left(M_{n}, M_{n+1}, \ldots, M_{n+2 r-2}\right)} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \text { and }{ }^{r=1} A_{s=0}^{2} \phi_{s} \\
& =-\left|\begin{array}{llll}
0 & m_{0} & m_{1} \ldots & m_{r-1} \\
m_{0} & M_{n} & M_{n+1} \ldots & M_{n+r-1} \\
m_{1} & M_{n+1} & M_{n+2} \ldots & M_{n+r-2} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
m_{r-1} & M_{n+r-1} & M_{n+r} \ldots & M_{n+2 r-2}
\end{array}\right| \div P_{r}\left(M_{n}, M_{n+1, \ldots}, M_{n+2 r-2}\right) . \tag{13}
\end{align*}
$$

If the roots z_{j} are equal and $z_{j}=\nu, M_{g}$ is to be replaced by m_{s}.
(b) The polynomials $p_{s}(x)$ follow a recurrence relation

$$
\begin{array}{ll}
p_{s}(x)=\left(A_{s} x+B_{s}\right) p_{s-1}(x)-C_{s} p_{s-2}(x), & s=2,3, \ldots \\
p_{1}(x)=\left(A_{1} x+B_{1}\right) p_{0}, & p_{0}=k_{0} \\
A_{r}=k_{r} / k_{r-1}>0, & C_{r}=A_{r} / A_{r-1}>0, \tag{15}
\end{array}
$$

which may be written
$\left(x-z_{1}\right) p_{s-1}(x)=A_{s}^{-1} p_{s}(x)-\left(z_{1}+B_{s} A_{s}^{-1}\right) p_{s-1}(x)+A_{s-1}^{-1} p_{s-2}(x)$.
We require the following generalisation of (15):

$$
\begin{align*}
& \prod_{j=1}^{n}\left(x-z_{j}\right) p_{s-1}(x)=e_{s-1, n} p_{s+n-1}+e_{s-1, n-1} p_{s+n-2}+\ldots \\
& \quad+e_{s-1,0} p_{s-1}+e_{s-2,1} p_{s-2}+e_{s-3,2} p_{s-3}+\ldots+e_{s-n-1, n} p_{s-n-1} \tag{16}
\end{align*}
$$

where $e_{s-1, n}=k_{s-1} / k_{s+n-1}$, and $e_{s, r}$ is to be taken as zero if $s<0$. The notation is justified by the identity
$\int_{a}^{b}\left[p_{s-1}(x) \Pi(x-z)\right] p_{\tau}(x) w(x) d x=\int_{a}^{b}\left[p_{\tau}(x) \Pi(x-z)\right] p_{s-1}(x) w(x) d x$.
For example,

$$
\begin{align*}
\left(x-z_{1}\right)\left(x-z_{t}\right) p_{s-1}(x) & =f_{s-1} p_{s+1}+g_{s-1} p_{s}+h_{s-1} p_{s-1} \\
& +g_{s-2} p_{s-2}+f_{s-3} p_{s-3} \quad(s=1,2, \ldots), \tag{17}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
f_{s-1}=A_{s}^{-1} A_{s+1}^{-1}, s=1,2, \ldots \\
-A_{s} g_{s-1}=B_{s+1} A_{s+1}^{-1}+z_{1}+z_{2}+B_{s} A_{s}^{-1}, s=1,2, \ldots \\
h_{s-1}=A_{s}^{-2}+\left(z_{1}+B_{s} A_{z}^{-1}\right)\left(z_{2}+B_{s} A_{s}^{-1}\right)+A_{s-1}^{-2}, s=2,3, \ldots \\
h_{0}=A_{1}^{-2}+\left(z_{1}+B_{1} A_{1}^{-1}\right)\left(z_{2}+B_{1} A_{1}^{-1}\right)
\end{array}\right.
$$

From (6) and (7) we find, after using (16),

$$
\begin{equation*}
\phi_{r}=\frac{(-)^{n}}{k_{r}^{2}} \quad-K_{r+1}\left(e_{00}, e_{01}, e_{02}, \ldots, e_{i n}\right), r=0,1, \ldots \tag{18}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{s=0}^{-1} A_{s}^{2} \phi_{s}= \\
(-)^{n} k_{0}^{-2} \frac{K_{r-1}\left(e_{10}, e_{11}, \ldots, e_{1 n}\right)}{K_{r}\left(e_{00}, e_{01}, \ldots, e_{0 n}\right)} \tag{19}\\
r=1,2, \ldots, K_{0}=1
\end{gather*}
$$

where we have introduced the notation $K_{r}\left(e_{09}, e_{01}, \ldots, e_{0 n}\right)$ for a generalised continuant determinant of order r, symmetric, with elements $e_{00}, e_{10}, e_{20}, \ldots$ in the diagonal through (1,1), $e_{01}, e_{13}, e_{21}, \ldots$ in the diagonal through (1,2), and so on. We shall refer to these as continuants of the nth kind. Thus the ratio of continuants of the 1st kind is related to C.F's of the first order, the determinants concerned consisting of elements in three diagonals only. Similarly C.F.'s of the second order are associated with the ratio of continuants of the 2nd kind which in turn have elements in five diagonals only.
(c) Writing for simplicity
we have

$$
\left|p_{8}(x), p_{s+1}\left(z_{1}\right), \ldots, p_{s+n}\left(z_{n}\right)\right|=A_{8}\left(x, z_{1}, z_{2}, \ldots, z_{n}\right)
$$

$$
q_{s}(x)=\frac{A_{8}\left(x, z_{1}, \ldots, z_{n}\right)}{k_{8+n} \prod_{1}^{n}\left(z_{j}-x\right) A_{8}\left(z_{1}, z_{2}, \ldots, z_{n}\right)}
$$

$=\frac{1}{k_{s} A_{s}\left(z_{1}, \ldots, z_{n}\right)} \sum_{r=0}^{s}\left|p_{r}\left(z_{1}\right), p_{8+1}\left(z_{2}\right), p_{s+2}\left(z_{3}\right), \ldots, p_{s+n-1}\left(z_{n}\right)\right| p_{r}(x)$ (20)
by a generalisation of a theorem of Darboux quoted in [1], (17).
Hence from (6) and (7) we find

$$
\begin{equation*}
\phi_{r}=\frac{1}{n_{n_{r}} k_{r+n}} \frac{A_{r+1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{A_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{r-1} A_{s}^{2} \phi_{s}=\sum_{s=0}^{r-1} \frac{k_{s+n}\left|z_{1}^{0}, p_{s+1}\left(z_{2}\right), p_{s+2}\left(z_{3}\right), \ldots, p_{s+n-1}\left(z_{n}\right)\right|^{2}}{k_{s} A_{s}\left(z_{1}, z_{2}, \ldots, z_{n}\right) A_{s+1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)} \tag{22}
\end{equation*}
$$

4. If we now consider the value of $\prod_{0}^{r-1} \phi_{j}$, we have from (18) and (21)

$$
D_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=(-)^{r n} K_{r}\left(e_{00}, e_{01}, \ldots, e_{0 n}\right)
$$

$$
\begin{equation*}
=\frac{A_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\left|z_{1}^{n}, z_{2}^{1}, \ldots, z_{n}^{n-1}\right|_{r}^{n+r-1} k_{j}^{1}} \tag{23}
\end{equation*}
$$

since $A_{0}\left(z_{1}, \ldots, z_{n}\right)=\prod_{0}^{-1} k_{j}\left|z_{1}^{0}, z_{2}^{1}, \ldots, z_{n}^{n-1}\right|$, and from (12) and (21)

$$
\begin{equation*}
D_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\prod_{j=0}^{r-1} k_{j}^{2} P_{r}\left(M_{n}, M_{n+1}, \ldots, M_{n+2 r-2}\right) \tag{24}
\end{equation*}
$$

and as a consequence

$$
\begin{align*}
& N_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=(-)^{r n} k_{0}^{-2} K_{r-1}\left(e_{10}, e_{11}, \ldots, e_{1 n}\right) \\
& =-\prod_{j=0}^{r-1} k_{j}^{2}\left|\begin{array}{llll}
0 & m_{0} & m_{1} \ldots & m_{r-1} \\
m_{0} & M_{n} & M_{n+1} \ldots & M_{n+r-1} \\
m_{1} & M_{n+1} & \\
\vdots & \vdots & \\
m_{r-1} & M_{n+r-1} & M_{n+2 r-2}
\end{array}\right| \tag{25}\\
& =\frac{A_{r}\left(z_{1}, \ldots, z_{n}\right)}{\prod_{r}^{+n} k_{j}\left|z_{1}^{0}, z_{2}^{1}, \ldots, z_{n}^{n-1}\right|} \\
& \times \sum_{s=0}^{r} \sum^{1} \frac{k_{s+n}\left|z_{1}^{0}, p_{8+1}\left(z_{2}\right), \ldots, p_{s+n-1}\left(z_{n}\right)\right|^{2}}{k_{s} A_{s}\left(z_{1}, \ldots, z_{n}\right) A_{s+1}\left(z_{1}, \ldots, z_{n}\right)}, \tag{25a}\\
& r=1,2, \ldots
\end{align*}
$$

When the roots z_{j} are equal, the only change required in (23) is. to replace

$$
\frac{A_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\left|z_{1}^{0}, z_{2}^{1}, \ldots z_{n}^{n-1}\right|}
$$

by

$$
\frac{\left|p_{r}\left(z_{1}\right) \cdot p_{r+1}^{(1)}\left(z_{1}\right) \cdot p_{r+2}^{(2)}\left(z_{1}\right) \cdot \ldots, p_{r+n-1}^{(n-1)}\left(z_{n}\right)\right|}{(n-1)!!}
$$

where superscripts refer to derivatives and

$$
(n-1)!!=(n-1)!(n-2)!\ldots 1!0!
$$

A similar modification is required in ($25 a$).
As an illustration we take $w(x)=1 / \sqrt{ }\left(1-x^{2}\right), a=-1, b=1$,

Deterninantal Expansion for a Class of Definite Integral 130
with

$$
\prod_{1}^{n}\left(z_{j}-x\right) \equiv(z-x)^{n}, \quad z>1
$$

$$
\begin{array}{lll}
p_{s}(x)=\sqrt{\frac{2}{\pi}} \cos s \theta, & \cos \theta=x, & s=1,2, \ldots \\
p_{0}(x)=\sqrt{\frac{1}{\pi}}=k_{0} ; & k_{s}=2^{s-1} \sqrt{\frac{2}{\pi}}, & s=1,2, \ldots
\end{array}
$$

$$
m_{s}=\int_{-1}^{1} \frac{(z-x)^{s}}{\sqrt{ }\left(1-x^{2}\right)} d x=\Pi\left(z^{2}-1\right)^{\ell^{2} \bar{P}^{s}}\left(\frac{z}{\sqrt{ }\left(z^{2}-1\right)}\right)
$$

where $\bar{P}_{s}(x)$ is Legendre's polynomial. With $t=z / \sqrt{ }\left(z^{2}-1\right)$ we find from the modified form of (23), and (24),

Then
$\int_{a}^{b} \frac{\left|x^{0}, p_{r}\left(z_{1}\right), \ldots, p_{r+n-1}\left(z_{n}\right)\right|}{\prod_{1}^{n}\left(z_{j}-x\right) A_{r}\left(z_{1}, \ldots, z_{n}\right)} w(x) d x=\sum_{s=0}^{r-1} \frac{k_{s+n}\left|z_{1}^{\prime}, p_{s+1}\left(z_{2}\right), \ldots, p_{s+n-1}\left(z_{n}\right)\right|^{2}}{k_{s} A_{s}\left(z_{i}, \ldots, z_{n}\right) A_{s+1}\left(z_{1}, \ldots, z_{n}\right)}$.
Hence from (22) it follows that

$$
\begin{equation*}
N_{r}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\int_{a}^{b} \frac{\left|x^{0}, p_{r}\left(z_{1}\right) \cdot p_{r+1}\left(z_{2}\right), \ldots, p_{r+n-1}\left(z_{n}\right)\right|}{\prod_{r}^{r+n-1} k_{j}\left|x^{0}, z_{1}^{1}, z_{2}^{\mathrm{s}}, \ldots, z_{n}^{n}\right|} w(x) d x \tag{28}
\end{equation*}
$$

since $\prod_{1}^{n}\left(z_{j}-x\right)\left|z_{1}^{0}, z_{2}^{1}, \ldots, z_{n}^{n-1}\right|=\left|x^{0}, z_{1}^{1}, z_{2}^{2}, \ldots, z_{n}^{n}\right|$.
When $z_{1}=z_{2}=\ldots=z_{n}=z$, the determinant in the numerator of (28) is to be replaced by $\left|x^{0}, p_{r}(z), p_{r+1}^{(1)}(z), \ldots, p_{r+n-1}^{(n-1)}(z)\right|$, and that in the denominator by $(z-x)^{n}(n-1)!!$.

In tho particular case $n=1$ we have the well-known formula

$$
N_{r}(z)=k_{r}^{-1} \int_{a}^{b} \frac{p_{r}(z)-p_{r}(x)}{z-x} w(x) d x
$$

and from (23) $D_{r}(z)=k_{r}^{-1} p_{r}(z)$, the ratio of these being the r th convergent of the C.F.

$$
\frac{A_{1} k_{0}-2}{A_{1} z+B_{1}}-\frac{C_{2}}{A_{2} z+B_{2}}-\frac{C_{3}}{A_{3} z+B_{3}}-\ldots
$$

We shall consider the recurrence relations for tho numerators and denominators of generalised C.F.'s, and some special properties of second order C.F.'s in Part 4.

REFERENCES.

1. Shenton, L. R., "A determinantal expansion for a class of definite integral, Part 1," Proc. Edinburgh Math. Soc. (2), 9 (1953), 44-52.
2. Stieltjes, Thomas Jan, Recherches sur les fractions continues Chapter VIII (Oeuvres Completes, Tome II).
3. Geronimus, J., "On some persymmetric determinants," Journal London Math. Soc., 6 (1931), 5̄-59.

College of Technology, Manchester, 1.

[^0]: ${ }^{1} N_{8}\left(z_{1}, z_{z}, \ldots, z n\right)$ and $D_{s}\left(z, z_{2}, \ldots z_{n}\right)$ etc. will be abbreviated to $N_{\delta}(z)$ and $D_{\delta}(z)$ when ambiguity is unlikely.

