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Abstract
We show that the triply graded Khovanov–Rozansky homology of knots and links over a field of positive odd
characteristic p descends to an invariant in the homotopy category finite-dimensional p-complexes.

A p-extended differential on the triply graded homology discovered by Cautis is compatible with the p-DG
structure. As a consequence, we get a categorification of the Jones polynomial evaluated at a 2𝑝th root of unity.
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1. Introduction

1.1. Background

The Jones polynomial is a quantum invariant of oriented links which may be defined using the natural
two-dimensional representation of quantum 𝔰𝔩2. Coloring the components of a link with other represen-
tations of this quantum group leads to a definition of the colored Jones polynomial. Witten constructed
an invariant of three-dimensional manifolds in a physical setting coming from Chern–Simons theory
[Wit89] with a fixed level. If the 3-manifold is defined as surgery on a link L, Reshetikhin and Turaev
[RT90] reconstructed Witten’s invariant by summing over colored Jones polynomials of L. In order for
this summation to be finite, it is important that the colored Jones polynomials are evaluated at a root of
unity, the order of which is determined by the level of Witten’s theory. The Witten–Reshetikhin–Turaev
(WRT) 3-manifold invariant fits into the framework of a (2 + 1)-dimensional topological quantum field
theories (TQFT).

Crane and Frenkel [CF94] initiated the categorification program with the aim of lifting the (2 + 1)-d
WRT-TQFT to a (3+1)-d TQFT. The first major success in this program was Khovanov’s categorification
of the Jones polynomial [Kho00]. Khovanov homology is a bigraded homology theory of links whose
graded Euler characteristic is the Jones polynomial. Since this discovery, there have been many other
categorifications of the Jones polynomial as well as their quantum 𝔰𝔩𝑛 generalizations. One such
construction was Khovanov and Rozansky’s categorification of the 𝔰𝔩𝑛 and HOMFLYPT polynomials
using matrix factorizations [KR08a, KR08b]. The HOMFLYPT homology theory is triply graded and
the graded Euler characteristic recovers the two-variable HOMFLYPT polynomial. Khovanov later
recast this construction in the language of Soergel bimodules [Kho07] building upon earlier work of
Rouquier [Rou04] who gave a categorical construction of the braid group. This was later reproved by
Rouquier in [Rou17]. In these constructions, one represents a link as the closure of a braid. To the braid,
one associates a complex of Soergel bimodules. Taking Hochschild homology of each term yields a
complex of bigraded vector spaces. Taking homology of this complex results in a triply graded theory.

The categorification of quantum groups and their associated link invariants at generic values of
the quantum parameter has been the focus of a lot of research since Crane and Frenkel’s work. The
first approach towards categorically specializing the quantum parameter to a root of unity was due to
Khovanov [Kho16] and later expanded upon in [Qi14]. In this setup, one should consider algebraic
structures over a field of characteristic p and search for a derivation 𝜕 such that 𝜕 𝑝 = 0. This enhances
the algebraic structure to a module category over the tensor category of graded modules over a particular
Hopf algebra 𝐻 = k[𝜕]/(𝜕 𝑝). Taking an appropriate homotopy or derived category gives rise to an
action of the stable category 𝐻−mod. Khovanov [Kho16] showed that the Grothendieck group of this
stable category is isomorphic to the cyclotomic ring for the prime p, thus categorifying a structure at a
prime root of unity.

The first successful implementation of this idea was the categorification of the upper half of the
small quantum group for 𝔰𝔩2 in [KQ15] by endowing the nil-Hecke algebra with a p-DG structure. It is
an interesting open question how to import p-DG theory into the construction of Khovanov homology.
A clearer path towards categorifying link invariants at roots unity was described in [KQ15], where a
p-differential was defined on Webster’s algebras [Web17]. One step in this direction was a categorifica-
tion of the Burau representation of the braid group at a prime root of unity which used a very special
p-DG Webster algebra [QS16]. We also refer the reader to [QS17] for a survey in this direction.
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1.2. Methodology

In this paper, we propose a construction of a p-DG version of HOMFLYPT homology and its categorical
specializations. We closely mimic the work of Khovanov and Rozansky in [KR16], where an action
of the Witt algebra on HOMFLYPT homology is constructed, and adapt their framework in the
p-DG setting. In particular, the action of one of their Witt algebra generators (denoted 𝐿1 in [KR16])
corresponds to the p-differential 𝜕 considered in this work.

Let 𝑅 = k[𝑥1, . . . , 𝑥𝑛] be the polynomial algebra generated by elements of degree two. The category
of regular Soergel bimodules for 𝔤𝔩𝑛 is the idempotent completion of the subcategory of (𝑅, 𝑅)-
bimodules generated by the so-called Bott–Samelson bimodules. The Hopf algebra H acts on the
polynomial algebra R determined by 𝜕 (𝑥𝑖) = 𝑥2

𝑖 . By the Leibniz rule, H also acts on tensor products
of Bott–Samelson bimodules. We may then form the category (𝑅, 𝑅)#𝐻 of such p-DG bimodules. We
show that in an appropriate homotopy category there is a categorical braid group action, extending
the result of Rouquier [Rou04]. For the proof, we follow the exposition of the braid group action
in [KR16] very closely. Using a certain p-extension functor, we then obtain a braid group action on a
relative p-homotopy category. It follows that, to any braid group element 𝛽, there is a p-chain complex of
H-equivariant Soergel bimodules 𝑝𝑇𝛽 associated to 𝛽 that is well defined up to p-homotopy equivalences.

We next turn our attention to extracting link invariants by taking various versions of Hochschild
homology. A p-analogue of the usual Hochschild homology 𝑝HH•, which goes back to the work of
Mayer [May42a, May42b], is utilized. In the p-extended setting, we need to collapse the Hochschild
and topological gradings into a single grading because of the Markov II invariance constraint. Thus, the
construction yields just a doubly graded categorification of the HOMFLYPT polynomial, where the a
variable is now specialized to a prime root of unity.

Let 𝜁𝐶 :=
∑𝑛

𝑖=1 𝑥2
𝑖

𝜕
𝜕𝑥𝑖

∈ HH1 (𝑅) be a Hochschild cohomology element of degree two, regarded
as a derivation on R. The cap product of 𝜁𝐶 with an element in Hochschild homology yields a dif-
ferential 𝑑𝐶 : HH𝑖 (𝑀) → HH𝑖−1(𝑀) of q-degree 2 and a-degree −1. This differential gives rise to,
via p-extension, a p-differential 𝜕𝐶 action on the p-Hochschild homology groups of any H-equivariant
Soergel bimodule. For a braid 𝛽, one may form a total p-differential 𝜕𝑇 := 𝜕𝑡 + 𝜕𝐶 + 𝜕𝑞 combining the
topological differential 𝜕𝑡 coming from the Rouquier complex with the derivation actions arising from
𝜕𝐶 and H. The total differential acts on 𝑝HH•(𝑝𝑇𝛽) and gives rise to an invariant upon taking homology.
Theorem. Let L be a link presented as the closure of a braid 𝛽. The slash homology of 𝑝HH•(𝑝𝑇𝛽)

with respect to 𝜕𝑇 is a finite-dimensional framed link invariant whose Euler characteristic is the Jones
polynomial evaluated at a prime root of unity.

The link invariant using the action of the usual differential 𝑑𝐶 on Hochschild homology (ignoring
the action of H) was first constructed by Cautis [Cau17] and further considered in other contexts by
Robert and Wagner [RW20] and Queffelec, Rose and Sartori [QRS18]. The latter authors showed that
it categorifies the Jones polynomial for a generic value of the quantum parameter and is distinct from
Khovanov homology. These works actually utilized a degree 2𝑁 differential and categorified the link
invariant arising from quantum 𝔰𝔩𝑁 . We restrict to the case 𝑁 = 2 due to the fact that 𝜕𝑞 and 𝜕𝐶 do not
commute for arbitrary values of N. One may view this work as a combination of the results of [KR16]
with [Cau17, QRS18, RW20].

It is a natural problem to extend our result to categorify the colored Jones and 𝔰𝔩𝑛 polynomials eval-
uated at a prime root of unity. The first technical obstacle to overcome in that setting, is the construction
of Koszul resolutions of the algebra of symmetric functions in the presence of a p-differential. We plan
to explore these questions in follow-up works.

1.3. Outline

We now summarize the contents of each section.
In Section 2, we review some constructions known in p-DG theory and develop some new ones

such as the p-extension functor, the totalization functor, the relative p-homotopy category and (relative)
p-Hochschild homology.
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A review of Soergel bimodules is given in Section 3, where a p-categorical braid group action is
constructed. Many of the techniques in this section parallel methods used in [KR16].

Section 4 contains the construction of the categorification of the HOMFLYPT polynomial at a root
of unity. The main technical result in this section is invariance under the second Markov move. The
proof builds upon the techniques in [RW20] which in turn used ideas from [Rou17] adapted to the
H-equivariant and hopfological setting.

A categorification of the Jones polynomial at a prime root of unity is developed in Section 5. We
revisit the proof of the second Markov move given in the previous section but now accounting for
the extra differential 𝜕𝐶 . Here, again, we build upon ideas from [Cau17, RW20, QRS18].

We conclude in Section 5 with the calculation of the homology theories developed in this work for
(2, 𝑛) torus links. In particular, we exhibit nontrivial p-complexes as p-homologies of these links.

2. Hopfological constructions

In this section, we recall some basic hopfological algebraic facts introduced in [Kho16, Qi14]. We also
develop the necessary constructions of p-analogues of classical Hochschild homology in the hopfological
setting.

There will be several (super) differentials utilized in this section. We reserved the normal d for the
super differential (𝑑2 = 0) and the symbol 𝜕 to denote a p-differential (𝜕 𝑝 = 0) over a field of finite
characteristic 𝑝 > 0. Various differentials will also be labeled with different subscripts to indicate their
different meanings.

2.1. Some exact functors

Let A be an algebra over the ground field k of characteristic 𝑝 > 0. We equip A with the trivial
(p-)differential graded structure by declaring that 𝑑0 ≡ 0, 𝜕0 ≡ 0 and A sits in degree zero. In this
subsection, we study a functor relating the usual homotopy category C (𝐴, 𝑑0) of A with its p-DG
homotopy category C (𝐴, 𝜕0).

To do this, recall that a chain complex of A-modules consists of a collection of A-modules and
homomorphisms 𝑑𝑀 : 𝑀𝑖−→𝑀𝑖−1 called boundary maps

· · ·
𝑑𝑀 �� 𝑀𝑖+1

𝑑𝑀 �� 𝑀𝑖
𝑑𝑀 �� 𝑀𝑖−1

𝑑𝑀 �� 𝑀𝑖−2
𝑑𝑀 �� · · · ,

satisfying 𝑑2
𝑀 = 0 for all 𝑖 ∈ Z. A null-homotopic map is a sequence of A-module maps 𝑓𝑖 : 𝑀𝑖−→𝑁𝑖 ,

𝑖 ∈ Z, of A-modules, as depicted in the diagram below:

· · ·
𝑑𝑀 �� 𝑀𝑖+1

ℎ𝑖+1
���
�

�����
�

𝑑𝑀 ��

𝑓𝑖+1
��

𝑀𝑖

ℎ𝑖
��
�

����
�

𝑑𝑀 ��

𝑓𝑖

��

𝑀𝑖−1

ℎ𝑖−1
��
�

����
�

𝑑𝑀 ��

𝑓𝑖−1
��

𝑀𝑖−2
𝑑𝑀 ��

ℎ𝑖−2
��
�

����
� 𝑓𝑖−2

��

· · ·

ℎ𝑖−3
���
�

�����
�

· · ·
𝑑𝑁

�� 𝑁𝑖+1
𝑑𝑁

�� 𝑁𝑖
𝑑𝑁

�� 𝑁𝑖−1
𝑑𝑁

�� 𝑁𝑖−2
𝑑𝑁

�� · · ·

which satisfy 𝑓𝑖 = 𝑑𝑁 ◦ ℎ𝑖 + ℎ𝑖−1 ◦ 𝑑𝑀 for all 𝑖 ∈ Z. The homotopy category C (𝐴, 𝑑0), by construction,
is the quotient of the category of chain complexes over A by the ideal of null-homotopic morphisms.

For ease of notation, we will use bullet points to stand for a general (p)-chain complex index in
what follows. Similarly, a p-chain complex of A-modules consists of a collection of A-modules and
homomorphisms 𝜕𝑀 : 𝑀𝑖−→𝑀𝑖−1 called p-boundary maps

· · ·
𝜕𝑀 �� 𝑀𝑖+1

𝜕𝑀 �� 𝑀𝑖
𝜕𝑀 �� 𝑀𝑖−1

𝜕𝑀 �� 𝑀𝑖−2
𝜕𝑀 �� · · · ,

satisfying 𝜕 𝑝
𝑀 ≡ 0. A p-chain complex can also be regarded as a graded module over the tensor product

algebra 𝐴⊗𝐻0, where 𝐻0 = k[𝜕0]/(𝜕
𝑝
0 ) is a graded Hopf algebra, where deg(𝜕0) = −1 and deg(𝐴) = 0.
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We introduce some special notation for some specific indecomposable p-chain complexes over k, by
setting

𝑈𝑖 := 𝐻0/(𝜕
𝑖+1
0 ), 0 ≤ 𝑖 ≤ 𝑝 − 1. (2.1)

In particular, 𝑈𝑖 has dimension 𝑖+1. We will also use these modules with degree shifted up by an integer
𝑛 ∈ Z, which we denote by 𝑈𝑖{𝑎}. Then 𝑈𝑖{𝑎} is concentrated in degrees 𝑎, 𝑎 − 1, . . . , 𝑎 − 𝑖:

𝑎
k

𝑎−1
k · · ·

𝑎−𝑖
k .

A map of p-complexes 𝑓 : 𝑀•−→𝑁• of A-modules is said to be null-homotopic if there exists

ℎ : 𝑀•−→𝑁•+𝑝−1

such that

𝑓 =
𝑝−1∑
𝑖=0

𝜕𝑖
𝑁 ◦ ℎ ◦ 𝜕 𝑝−1−𝑖

𝑀 . (2.2)

The p-homotopy category, C (𝐴, 𝜕0), is then the quotient of p-chain complexes of A-modules by the
ideal of null-homotopic morphisms. It is a triangulated category, whose homological shift functor [1]𝜕
is defined by

𝑀 [1]𝜕 := 𝑀 ⊗ 𝑈𝑝−2{𝑝 − 1} (2.3)

for any p-complex of A-modules. The inverse functor [−1]𝜕 is given by

𝑀 [−1]𝜕 := 𝑀 ⊗ 𝑈𝑝−2{−1}, (2.4)

which is a consequence of the fact that 𝑈𝑝−2 ⊗ 𝑈𝑝−2 decomposes into a direct sum of k{2 − 𝑝} and
copies of free 𝐻0-modules.

Slash homology.
As an analogue of the usual homology functor, we have the notion of slash homology groups [KQ15] of a
p-complex. To recall its definition, let us set 𝐴 = k. For each 0 ≤ 𝑘 ≤ 𝑝−2 form the graded vector space

H/𝑘 (𝑀) =
Ker(𝜕𝑘+1

𝑀 )

Im(𝜕 𝑝−𝑘−1
𝑀 ) + Ker(𝜕𝑘

𝑀 )
.

The original Z-grading on M gives a decomposition

H/𝑘
• (𝑀) =

⊕
𝑖∈Z

H/𝑘
𝑖 (𝑀).

The differential 𝜕𝑀 induces a map, also denoted 𝜕𝑀 , which takes H/𝑘
𝑖 (𝑈) to H/𝑘−1

𝑖−1 (𝑈). Define the slash
homology of M as

H/
•(𝑀) =

𝑝−2⊕
𝑘=0

H/𝑘
• (𝑀). (2.5)

Also, let

H/
𝑖 (𝑀) :=

𝑝−2⊕
𝑘=0

H/𝑘
𝑖 (𝑀).
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We have the decompositions

H/
•(𝑀) =

⊕
𝑖∈Z

H/
𝑖 (𝑀) =

𝑝−2⊕
𝑘=0

H/𝑘
𝑖 (𝑀) =

⊕
𝑖∈Z

𝑝−2⊕
𝑘=0

H/𝑘
𝑖 (𝑀). (2.6)

H/
•(𝑀) is a bigraded k-vector space, equipped with an operator 𝜕𝑀 of bidegree (−1,−1),

𝜕𝑀 : H/𝑘
𝑖 −→H/𝑘−1

𝑖−1 .
Forgetting the k-grading gives us a graded vector space H/

•(𝑀) with differential 𝜕𝑀 , which we can
view as a graded 𝐻0-module. H/

•(𝑀) is isomorphic to M in the homotopy category of p-complexes
C (k, 𝜕0), and we can decompose

𝑀 � H/
•(𝑀) ⊕ 𝑃(𝑀) (2.7)

in the abelian category of H-modules, where 𝑃(𝑀) is a maximal projective direct summand of M. In
particular, we have

H/
•(𝑈𝑖) =

{
𝑈𝑖 , 𝑖 = 0, . . . , 𝑝 − 2,

0 𝑖 = 𝑝 − 1.
(2.8)

The slash homology group H/
•(𝑀), viewed as an 𝐻0-module, does not contain any direct summand

isomorphic to a free 𝐻0-module.
The assignment 𝑀 ↦→ H/

•(𝑀) is functorial in M and can be viewed as a functor 𝐻0-mod−→C (k, 𝜕0)
or as a functor C (k, 𝜕0)−→C (k, 𝜕0). The latter functor is then isomorphic to the identity functor.

As in the usual homological algebra case, we say a morphism 𝑓 : 𝑀−→𝑁 of p-complexes of
A-modules is a quasi-isomorphism if, upon taking slash homology, f induces an isomorphism 𝑓 / :
H/
•(𝑀) � H/

•(𝑁). The class of quasi-isomorphisms constitutes a localizing class in C (𝐴, 𝜕0) ([Kho16,
Proposition 4]).

Definition 2.1. The p-derived category D(𝐴, 𝜕0) is the localization of C (𝐴, 𝜕0) at the class of quasi-
isomorphisms.

Alternatively, D(𝐴, 𝜕0) is the Verdier quotient of C (𝐴, 𝜕0) by the class of acyclic p-complexes, that
is, those p-complexes of A-modules annihilated by the slash-homology functor.

p-Extension.
We now define the p-extension functor

P : C (𝐴, 𝑑0)−→C (𝐴, 𝜕0) (2.9)

as follows. Given a chain complex of A-modules, we repeat every term sitting in odd homological
degrees (𝑝 − 1) times. More explicitly, for a given complex

· · ·
𝑑2𝑘+2 �� 𝑀2𝑘+1

𝑑2𝑘+1 �� 𝑀2𝑘
𝑑2𝑘 �� 𝑀2𝑘−1

𝑑2𝑘−1 �� 𝑀2𝑘−2
𝑑2𝑘−2 �� · · · ,

the p-extended complex looks like

· · ·
𝑑2𝑘+2 �� 𝑀2𝑘+1 · · · 𝑀2𝑘+1

𝑑2𝑘+1 ���� 𝑀2𝑘 ����
��

𝑑2𝑘

�	
�������� 𝑀2𝑘−1 · · · 𝑀2𝑘−1

𝑑2𝑘−1 �� 𝑀2𝑘−2
𝑑2𝑘−2 �� · · ·

.
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Likewise, for a chain map

· · ·
𝑑2𝑘+3 �� 𝑀2𝑘+2

𝑑2𝑘+2 ��

𝑓2𝑘+2
��

𝑀2𝑘+1
𝑑2𝑘+1 ��

𝑓2𝑘+1
��

𝑀2𝑘
𝑑2𝑘 ��

𝑓2𝑘
��

· · ·

· · ·
𝑑2𝑘+3

�� 𝑁2𝑘+2
𝑑2𝑘+2

�� 𝑁2𝑘+1
𝑑2𝑘+1

�� 𝑁2𝑘
𝑑2𝑘

�� · · ·

the obtained morphism of p-complexes of A-modules is given by

· · ·
𝑑2𝑘+3 �� 𝑀2𝑘+2

𝑑2𝑘+2 ��

𝑓2𝑘+2
��

𝑀2𝑘+1

𝑓2𝑘+1
��

· · · 𝑀2𝑘+1
𝑑2𝑘+1 ��

𝑓2𝑘+1
��

𝑀2𝑘
𝑑2𝑘 ��

𝑓2𝑘
��

· · ·

· · ·
𝑑2𝑘+3

�� 𝑁2𝑘+2
𝑑2𝑘+2

�� 𝑁2𝑘+1 · · · 𝑁2𝑘+1
𝑑2𝑘+1

�� 𝑁2𝑘
𝑑2𝑘

�� · · ·

.

This is clearly a functor from the abelian category of chain complexes over A into the category of p-DG
modules over (𝐴, 𝜕0), (p-complexes of A-modules). Denote this functor by P̂ .

Lemma 2.2. The functor P̂ preserves the ideal of null-homotopic morphisms.

Proof. It suffices to show that P̂ sends null-homotopic morphisms in C (𝐴, 𝑑0) to null-homotopic
morphisms in C (𝐴, 𝜕0). Suppose 𝑓 = 𝑑ℎ + ℎ𝑑 is a null-homotopic morphism in C (𝐴, 𝑑0). We first
extend ℎ : 𝑀•−→𝑁•+1 to a map

P̂ (ℎ) : P̂ (𝑀)•−→P̂ (𝑁)•+𝑝−1.

On unrepeated terms, P̂ (ℎ) sends 𝑀2𝑘 to the copy of 𝑁2𝑘+1 sitting as the leftmost term in the repeated
𝑁2𝑘+1’s, while on the repeated terms, it only sends the rightmost 𝑀2𝑘+1 to the unrepeated 𝑁2𝑘+2 and
acts by zero on the other repeated 𝑀2𝑘+1’s. Schematically, this has the effect as in the diagram below:

· · · 𝑀2𝑘+3
𝑑2𝑘+3 �� 𝑀2𝑘+2

𝑑2𝑘+2 �� 𝑀2𝑘+1

0���
�����

�����
�

��������
�����

���

· · · 𝑀2𝑘+1
𝑑2𝑘+1 ��

ℎ2𝑘+1
�����

�����
�

�������
�����

�

𝑀2𝑘
𝑑2𝑘 ��

ℎ2𝑘
�����

�����
��

�������
�����

��

𝑀2𝑘−1

0���
�����

�����

�������
�����

���

· · ·

· · · 𝑁2𝑘+3
𝑑2𝑘+3

�� 𝑁2𝑘+2
𝑑2𝑘+2

�� 𝑁2𝑘+1 · · · 𝑁2𝑘+1
𝑑2𝑘+1

�� 𝑁2𝑘
𝑑2𝑘

�� 𝑁2𝑘−1 · · ·

.

Now, it is an easy exercise to check that

P̂ ( 𝑓 ) =
𝑝−1∑
𝑖=0

𝜕 𝑝−1−𝑖
𝑀 ◦ P̂ (ℎ) ◦ 𝜕𝑖

𝑁 , (2.10)

where 𝜕𝑀 denotes the extended p-differential on P̂ (𝑀), and similarly for 𝜕𝑁 . For instance, between
the rightmost repeated 𝑀2𝑘+1 and 𝑁2𝑘+1, the left-hand side of equation (2.10) equals 𝑓2𝑘+1, while there
are only two nonzero terms contributing to the right-hand side of equation (2.10), which are equal to,
respectively,

𝜕 𝑝−1
𝑁 ◦ P̂ (ℎ) = 𝑑2𝑘+2 ◦ ℎ2𝑘+1, 𝜕 𝑝−2

𝑁 ◦ P̂ (ℎ) ◦ 𝜕𝑀 = ℎ2𝑘 ◦ 𝑑2𝑘+1.

The sum of these two nonzero terms is precisely 𝑓2𝑘+1 by the null-homotopy assumption on h. One
similarly checks for the other repeated and unrepeated terms, and the lemma follows. �
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This lemma implies that P̂ descends to a functor

P : C (𝐴, 𝑑0)−→C (𝐴, 𝜕0), (2.11)

which we call the p-extension functor.

Proposition 2.3. The p-extension functor P is exact.

Proof. It suffices to show that P commutes with homological shifts in both categories and sends
distinguished triangles to distinguished triangles.

On C (𝐴, 𝑑0), the homological shift [1]𝑑 moves every term of a complex one step to the left, while the
homological shift [1]𝜕 on C (𝐴, 𝜕0) is given by tensoring a p-complex of A-modules with the (𝑝 − 1)-
dimensional complex

𝑈𝑝−2{𝑝 − 1} =
(
k · · · k

)
,

where the underlined k sits in degree 𝑝 − 1. Note that the collection of repeated terms can be identified
with (

𝑀2𝑘−1 · · · 𝑀2𝑘−1,
)
� 𝑀2𝑘−1 ⊗ 𝑈𝑝−2{𝑘 𝑝 − 1},

where the underlined term sits in degree 𝑘 𝑝 − 1. Using the fact that

𝑈𝑝−2{𝑝 − 1} ⊗ 𝑈𝑝−2{𝑘 𝑝 − 1} � 𝑈0{𝑘 𝑝} ⊕ 𝐹,

where F is a direct sum of graded free 𝐻0-modules, we see that

𝑈𝑝−2{𝑝 − 1} ⊗ (𝑀2𝑘−1 ⊗ 𝑈𝑝−2{𝑘 𝑝 − 1}) � 𝑀2𝑘−1{𝑘 𝑝}

in the homotopy category C (𝐴, 𝜕0). From this, it follows that 𝑈𝑝−2{𝑝 − 1} ⊗ P (𝑀) is homotopy
equivalent to the p-complex P (𝑀 [1]𝑑). Thus, P commutes with homological shifts.

To show that P sends distinguished triangles in C (𝐴, 𝑑0) to those in C (𝐴, 𝜕0), we use the charac-
terization of distinguished triangles in C (𝐴, 𝑑0). Recall that a distinguished triangle 𝑃 → 𝑄 → 𝑅 in
C (𝐴, 𝑑0) is a short exact sequence 0 → 𝑃 → 𝑄 → 𝑅 → 0 of complexes of A-modules which split
when ignoring the differentials. After applying the p-extension functor P to 0 → 𝑃 → 𝑄 → 𝑅 → 0,
one gets a short exact sequences of p-complexes which splits when ignoring the p-differentials. This is
precisely the condition that P (𝑃) → P (𝑄) → P (𝑅) is a distinguished triangle in C (𝐴, 𝜕0) (see [Qi14,
Lemma 4.3]). �

Totalization.
Another useful functor is the totalization functor T , which we introduce next. To do so, we will need
the following result.

Lemma 2.4. Let (𝐾•, 𝜕𝐾 ) be a p-complex of modules over A. Then 𝐾• is null-homotopic if and only if
there exists an A-module map 𝜎 : 𝐾•−→𝐾•+1 such that 𝜕𝐾 𝜎 − 𝜎𝜕𝐾 = Id𝐾 .

Proof. By definition (see equation (2.2)), a p-complex is null-homotopic if and only if there is an
A-linear map ℎ : 𝐾•−→𝐾•+𝑝−1 such that

Id𝐾 =
𝑝−1∑
𝑖=0

𝜕 𝑝−1−𝑖
𝐾 ◦ ℎ ◦ 𝜕𝑖

𝐾 .
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For any linear map 𝜙 on 𝐾•, let ad𝜕 (𝜙) := [𝜕𝐾 , 𝜙]. Now, if 𝜎 is as given satisfies [𝜕𝐾 , 𝜎] = Id𝐾 , then
the map ℎ := −𝜎𝑝−1 satisfies [𝜕𝐾 , ℎ] = −(𝑝 − 1)𝜎𝑝−2, and, inductively,

ad𝑟
𝜕 (ℎ) = −(𝑝 − 1) . . . (𝑝 − 𝑟)𝜎𝑝−𝑟−1.

In particular, we have

𝑝−1∑
𝑖=0

(−1)𝑖
(
𝑝 − 1

𝑖

)
𝜕 𝑝−1−𝑖

𝐾 ◦ ℎ ◦ 𝜕𝑖
𝐾 = ad𝑝−1

𝜕
(ℎ) = −(𝑝 − 1)!Id𝐾 = Id𝐾 .

Since
(𝑝−1

𝑖

)
= (−1)𝑖 in characteristic p, the null-homotopy formula follows.

Conversely, if h is an A-linear null-homotopy map, then 𝜎 := ad𝑝−2
𝜕

(ℎ) satisfies [𝜕𝐾 , 𝜎] = Id𝐾 . As
the iterated commutator of A-linear maps, 𝜎 is also A-linear. The lemma follows. �

Let (𝐴, 𝜕𝐴) be a p-DG algebra, where 𝜕𝐴 has degree two.1 We regard A as an algebra object in the
graded module category of the graded Hopf algebra 𝐻𝑞 = k[𝜕𝑞]/(𝜕

𝑝
𝑞 ) in which deg(𝜕𝑞) = 2. The

smash product algebra 𝐴#𝐻𝑞 is then the graded algebra 𝐴 ⊗ 𝐻𝑞 containing the subalgebras 𝐴 ⊗ 1 and
1 ⊗ 𝐻𝑞 and subject to the commutation relations

(1 ⊗ 𝜕𝑞) (𝑎 ⊗ 1) = 𝑎 ⊗ 𝜕𝑞 + 𝜕𝐴(𝑎) ⊗ 1

for any 𝑎 ∈ 𝐴. Graded modules over 𝐴#𝐻𝑞 are also called p-DG modules over A, the collection of which
will be denoted (𝐴, 𝜕𝐴)-mod.

In analogy with the Hopf algebra 𝐻0, we introduce the indecomposable balanced 𝐻𝑞-complexes

𝑉𝑖 :=

(
−𝑖
k

−𝑖+2
k · · ·

𝑖−2
k

𝑖
k

)
(2.12)

for 𝑖 = 0, . . . , 𝑝 − 1.
As a matter of notation, we will denote the q-grading shifted copy of 𝑉𝑖 by 𝑞𝑎𝑉𝑖 , where the lowest

degree term sits in degree 𝑎 − 𝑖. Furthermore, if M is any p-DG module over A, we will denote by 𝑞𝑎𝑀
the p-DG module whose underlying module is the same as M but grading shifted up by 𝑎 ∈ Z.

The p-DG homotopy category C (𝐴, 𝜕𝐴) can be defined, similarly as for C (𝐴, 𝜕0) before, by taking
the quotient of the abelian category of p-DG modules by the ideal of null-homotopic morphisms, which
consists of homogeneous 𝐴#𝐻𝑞-module maps 𝑓 : (𝑀, 𝜕𝑀 )−→(𝑁, 𝜕𝑁 ) of the form

𝑓 =
𝑝−1∑
𝑖=0

𝜕𝑖
𝑁 ◦ ℎ ◦ 𝜕 𝑝−1−𝑖

𝑀 , (2.13)

where h is an A-linear homomorphism from (𝑀, 𝜕𝑀 ) to (𝑁, 𝜕𝑁 ) of degree 2 − 2𝑝.
A p-DG homomorphism 𝑓 : (𝑀, 𝜕𝑀 )−→(𝑁, 𝜕𝑁 ) is called a quasi-isomorphism if, again, f induces

an isomorphism of slash homology with respect to the p-differentials on M and N. Inverting quasi-
isomorphisms in C (𝐴, 𝜕𝐴) results in the p-DG derived category D(𝐴, 𝜕𝐴).

Equip 𝐴#𝐻𝑞 with the zero p-differential 𝜕0, and 𝜕0 carries an additionalZ-grading that is independent
of the original grading on A and 𝐻𝑞 . A p-complex of graded 𝐴#𝐻𝑞-modules thus has a Z ×Z-grading,
where 𝜕𝑞 has degree (2, 0) and 𝜕0 has degree (0,−1). Consider the functor

T̂ : (𝐴#𝐻𝑞 , 𝜕0)-mod−→(𝐴, 𝜕𝐴)-mod (2.14)

1This degree convention is to match the usual representation theoretical convention. See, for instance, [KQ15].
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defined as follows. To a p-complex M of 𝐴#𝐻𝑞-modules

· · ·
𝜕𝑀 �� 𝑀𝑖+1

𝜕𝑀 �� 𝑀𝑖
𝜕𝑀 �� 𝑀𝑖−1

𝜕𝑀 �� 𝑀𝑖−2
𝜕𝑀 �� · · · ,

where each term 𝑀𝑖 is a graded A-module together with an internal p-differential 𝜕𝑖 , compatible with 𝜕𝐴,
we assign to it the singly graded A-module ⊕𝑖∈Z𝑞−2𝑖 𝑀𝑖 whose new p-DG structure is given by

𝜕𝑇 (𝑚) := 𝜕𝑀 (𝑚) + 𝜕𝑖 (𝑚) ∈ 𝑞−2𝑖+2𝑀𝑖−1 ⊕ 𝑞−2𝑖 𝑀𝑖

if 𝑚 ∈ 𝑞−2𝑖 𝑀𝑖 .

Lemma 2.5. The functor T̂ descends to a triangulated functor on the p-DG homotopy categories:

T : C (𝐴#𝐻𝑞 , 𝜕0)−→C (𝐴, 𝜕𝐴).

Proof. If 𝑄• is a null-homotopic p-complex of 𝐴#𝐻𝑞-modules, then, by Lemma 2.4, there exist an
𝐴#𝐻𝑞-linear 𝜎 : 𝑄•−→𝑄•+1 such that

[𝜕𝑄, 𝜎] = Id𝑄 .

Since h commutes with the 𝐻𝑞-actions, we have

[𝜕𝑄 + 𝜕𝑞 , 𝜎] = Id𝑄 .

It follows that T (𝑄•) is null-homotopic, and the functor T is well defined on the p-homotopy categories.
It is then an easy exercise to verify that T preserves the triangulated structures on both sides. �

2.2. Grothendieck rings

We will be considering the Grothendieck rings of the homotopy categories C (k, 𝜕0) and C (k, 𝜕𝑞).

Lemma 2.6. The Grothendieck rings of the tensor triangulated categories C (k, 𝜕0) and C (k, 𝜕𝑞) are
respectively isomorphic to

𝐾0(C (k, 𝜕0) � Z[𝑎, 𝑎−1]/(1 + 𝑎 + · · · + 𝑎𝑝−1).

𝐾0(C (k, 𝜕𝑞) � Z[𝑞, 𝑞−1]/(1 + 𝑞2 + · · · + 𝑞2(𝑝−1) ).

Proof. See [Kho16, KQ15] for the proof and motivation of introducing these rings, especially the
second one.2 �

We will often abbreviate the Grothendieck rings by

O𝑝 := 𝐾0(C (k, 𝜕0)) � Z[𝑎, 𝑎−1]/(1 + 𝑎 + · · · + 𝑎𝑝−1), (2.15a)

O𝑝 := 𝐾0(C (k, 𝜕𝑞)) � Z[𝑞, 𝑞−1]/(1 + 𝑞2 + · · · + 𝑞2(𝑝−1) ). (2.15b)

Remark 2.7 (Grading shift functors). In what follows, we will freely use the notation 𝑎𝑖 (-) and 𝑞𝑖 (-),
𝑖 ∈ Z, to indicate the grading shift functors on C (k, 𝜕0) and C (k, 𝜕𝑞). The functors then descend to
multiplication by the corresponding monomials in the Grothendieck rings.

2Again, we emphasize that setting 𝜕𝑞 to be of degree two is to respect the usual convention in previous literature on Soergel
bimodules, where polynomial generators are evenly graded. Alternatively, one may adapt the polynomial generators for Soergel
bimodules in this paper to be of degree one, and both Grothendieck rings above are equal to the usual cyclotomic ring at a
primitive pth root of unity.
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In this paper, we will be working with (finite-dimensional) a and q bigraded complexes over k
equipped with commuting differentials 𝜕0 and 𝜕𝑞 . On this category, one may consider the composition
of slash-homology functors, first in the a-direction and then in the q-direction:

𝐻𝑞 ⊗ 𝐻0-mod
H/
• in 𝑎-direction

−−−−−−−−−−−−→ C (𝐻𝑞 , 𝜕0)
H/
• in𝑞-direction

−−−−−−−−−−−−→ C (C (k, 𝜕𝑞), 𝜕0). (2.16)

Here, the last category stands for the homotopy category with object in C (k, 𝜕𝑞). As usual with taking
homology of the usual bicomplexes, these functors do not commute, and their order matters in the
construction.

Corollary 2.8. The categories C (𝐻𝑞 , 𝜕0) and C (C (k, 𝜕𝑞), 𝜕0) have Grothendieck rings isomorphic to

𝐾0(C (𝐻𝑞 , 𝜕0)) � O𝑝 [𝑞, 𝑞−1], 𝐾0(C (C (k, 𝜕𝑞), 𝜕0)) � O𝑝 ⊗Z O𝑝 .

Proof. The bigraded abelian category 𝐻𝑞 ⊗ 𝐻0-mod has its Grothendieck ring isomorphic to
Z[𝑎±1, 𝑞±1]. An object lying in the first slash homology functor has Euler characteristic in the ideal

(1 + 𝑎 + · · · + 𝑎𝑝−1) ⊂ Z[𝑎±1, 𝑞±1] .

Similarly, a module lying inside the kernel of the composition functor has Euler characteristic in the ideal

(1 + 𝑎 + · · · + 𝑎𝑝−1, 1 + 𝑞2 + · · · 𝑞2(𝑝−1) ) ⊂ Z[𝑎±1, 𝑞±1] .

The result follows. �

2.3. p-Hochschild homology and cohomology

Now, we come to the construction of the p-DG simplicial bar complex of Mayer [May42a, May42b]
(see also [KW98]). The usual simplicial bar complex of a unital, associative algebra A is the complex:

· · ·
𝑑𝑛+1
−−−→ 𝐴⊗(𝑛+2) 𝑑𝑛

−→ 𝐴⊗(𝑛+1) 𝑑𝑛−1
−−−→ · · ·

𝑑2
−→ 𝐴⊗3 𝑑1

−→ 𝐴⊗2−→0, (2.17a)

where

𝑑𝑖 (𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑖+1) =
𝑖+1∑
𝑘=0

(−1)𝑖𝑎0 ⊗ · · · 𝑎𝑘−1 ⊗ 𝑎𝑘𝑎𝑘+1 ⊗ 𝑎𝑘+2 ⊗ · · · ⊗ 𝑎𝑖+1. (2.17b)

The bar complex is a free bimodule resolution of A, as the augmented complex

· · ·
𝑑𝑛+1
−−−→ 𝐴⊗(𝑛+2) 𝑑𝑛

−→ 𝐴⊗(𝑛+1) 𝑑𝑛−1
−−−→ · · ·

𝑑2
−→ 𝐴⊗3 𝑑1

−→ 𝐴⊗2−→𝐴−→0, (2.18)

is acyclic. This can be seen by constructing a left A-module map

𝜎 : 𝐴⊗𝑛−→𝐴⊗(𝑛+1) , 𝑥 ↦→ 𝑥 ⊗ 1 (2.19)

as the null-homotopy.
Let A be a k-algebra. In analogy with the usual simplicial bar complex, Mayer introduced on the

usual augmented bar complex (2.17a) the linear map

𝜕𝐻 (𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑖+1) :=
𝑖+1∑
𝑘=0

𝑎0 ⊗ · · · 𝑎𝑘−1 ⊗ 𝑎𝑘𝑎𝑘+1 ⊗ 𝑎𝑘+2 ⊗ · · · ⊗ 𝑎𝑖+1.
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Then it is an easy exercise to show that 𝜕 𝑝 ≡ 0. Furthermore, the null-homotopy map 𝜎 in equation
(2.19) clearly satisfies

𝜕𝐻 𝜎 − 𝜎𝜕𝐻 = Id.

It follows that the augmented p-complex

(p′
• (𝐴), 𝜕𝐻 ) :=

(
· · ·

𝜕𝐻
−−→ 𝐴⊗(𝑛+2) 𝜕𝐻

−→ 𝐴⊗(𝑛+1) 𝜕𝐻
−−→ · · ·

𝜕𝐻
−→ 𝐴⊗3 𝜕𝐻

−→ 𝐴⊗2−→𝐴−→0
)

(2.20)

is acyclic.
Assume next that (𝐴, 𝜕𝐴) is a p-DG algebra. Extend the p-differential on A to any 𝐴⊗(𝑛+1) by the

Leibniz rule so that

𝜕𝐴(𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛) :=
𝑛∑

𝑖=0
𝑎0 ⊗ · · · ⊗ 𝜕𝐴(𝑎𝑖) ⊗ · · · ⊗ 𝑎𝑛.

As the multiplication map 𝑚 : 𝐴 ⊗ −→𝐴 commutes with 𝜕𝐴, it follows that the boundary maps in
(p′

• (𝐴), 𝜕𝑀 ) commute with the internal differentials 𝜕𝐴 on each 𝐴⊗𝑛. We may thus consider the total
complex (p′

• (𝐴), 𝜕𝐻 + 𝜕𝐴). This construction is equivalent to the totalization T (p′
• (𝐴), 𝜕𝐻 ). To make

a distinction, we will denote the total differential on p′
• (𝐴) by 𝜕𝑇 := 𝜕𝐻 + 𝜕𝐴 in order to avoid potential

confusion with the other differentials 𝜕𝐻 and 𝜕𝐴.
There is a natural inclusion map

𝜄𝐴 : 𝐴−→p′
• (𝐴)

of p-DG bimodules over A, whose cokernel is the p-DG bimodule

(p̃•(𝐴), 𝜕𝑇 ) :=
(
· · ·

𝜕𝐻
−−→ 𝐴⊗(𝑛+2) 𝜕𝐻

−→ 𝐴⊗(𝑛+1) 𝜕𝐻
−−→ · · ·

𝜕𝐻
−→ 𝐴⊗3 𝜕𝐻

−→ 𝐴⊗2−→0
)

.

Recall here that each 𝐴⊗𝑛 also carries its internal differential 𝜕𝐴.

Proposition 2.9. The total p-complex (p′
• (𝐴), 𝜕𝑇 ) is acyclic. Furthermore, if Q is any p-DG module

over A, p′
• (𝐴) ⊗𝐴 𝑄 is also acyclic.

Proof. In order to show that p′
• (𝐴) is acyclic, it suffices to check, by Lemma 2.4, that

(𝜕𝐻 + 𝜕𝐴)𝜎 − 𝜎(𝜕𝐻 + 𝜕𝐴) = Idp′ ,

where Idp′ is the identity map of p′
• (𝐴). This is clear since we have the easily verified commutator

relations

[𝜕𝐻 , 𝜎] = Idp′ , [𝜕𝐴, 𝜎] = 0, [𝜕𝐻 , 𝜕𝐴] = 0.

The last statement is similar, as one just needs to replace the last copy of A in 𝐴⊗𝑛 by Q. �

Definition 2.10. Suppose (𝑀, 𝜕𝑀 ) is a left p-DG module over A. Set 𝑀 [−1] to be the tensor product
of M with the (𝑝 − 1)-complex 𝑞𝑝𝑉𝑝−2 (see equation (2.12)). The simplicial bar resolution for M is the
p-DG module

p•(𝑀) := p̃•(𝐴) ⊗𝐴 𝑀 [−1] .

It inherits the p-differential from that of 𝜕𝑇 and 𝜕𝑀 via the Leibniz rule.

Likewise, one defines the simplicial bar resolution for right p-DG modules.
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Proposition 2.11. For any left p-DG module M over A, p•(𝑀) is a cofibrant replacement of M.

Proof. To see the cofibrance of p•(𝑀), first note that

p•(𝑀) =
(
· · · −→𝐴⊗3 ⊗ 𝑀 [−1]−→𝐴⊗2 ⊗ 𝑀 [−1]−→𝐴 ⊗ 𝑀 [−1]−→0

)
,

which carries p-differentials on the arrows and internal differentials within each term. It has a natural
filtration by p-DG submodules, whose subquotients have the form

𝐴⊗𝑛 ⊗ 𝑀 [−1], (𝑛 ≥ 1).

As left p-DG modules over A, such modules are clearly direct sums of free p-DG A-modules. Therefore
p•(𝑀) satisfies the ‘Property P’ criterion of [Qi14, Definition 6.3] and is thus cofibrant.

By construction, there is a short exact sequence of p-DG modules over A

0−→𝑀 [−1]−→p′
• (𝐴) ⊗𝐴 𝑀 [−1]−→p•(𝑀)−→0.

Since p•(𝑀) is projective as a left A-module, the sequence splits when forgetting about p-differentials.
By [Qi14, Lemma 4.3], the short exact sequence above gives rise to a distinguished triangle in the
homotopy category

𝑀 [−1]−→p′
• (𝐴) ⊗𝐴 𝑀 [−1]−→p•(𝑀)

[1]
−→ 𝑀.

Therefore, there is a morphism 𝑓 : p•(𝑀)−→𝑀 representing the [1] map on the last arrow. By
Proposition 2.9, f is a quasi-isomorphism. �

Using the bar resolution, we recall the derived tensor product functor construction in the p-DG setting.

Definition 2.12. Let M be a left p-DG module and N be a right p-DG module over A. The p-DG derived
tensor product of N and M is the object in 𝐻𝑞−mod

𝑁 ⊗L
𝐴 𝑀 := 𝑁 ⊗𝐴 p•(𝑀).

As in [Qi14, Corollary 8.9], the functor is well defined. Furthermore, it is readily seen that it is
independent of cofibrant replacements one chooses for M (or N).

Corollary 2.13. For any p-DG module M over (𝐴, 𝜕𝐴), there is a cofibrant p-DG replacement p•(𝑀) �
𝑀 in D(𝐴).

We define the analogue of Hochschild homology in the p-DG setting. As a shorthand notation, for
an algebra A, we will denote by 𝐴en := 𝐴 ⊗ 𝐴op the enveloping algebra of A. Thus, an (𝐴, 𝐴)-bimodule
is synonymous with a left module over 𝐴en.

Definition 2.14. Let A be a p-DG algebra, and M be a bimodule over A. Then the p-DG Hochschild
(co)homology is the p-complex

𝑝HH•(𝑀) := H/
•(p•(𝐴) ⊗𝐴en 𝑀) (resp. 𝑝HH•(𝑀) := H/

•(HOM𝐴en (p•(𝐴), 𝑀)).

The p-DG Hochschild homology is a functorial ‘categorical trace’ on the category of p-DG bimodules
over a p-DG algebra, similar to the usual Hochschild homology functor. Here, the functoriality means
that, a morphism of p-DG bimodules 𝑓 : 𝑀−→𝑁 over A induces a morphism of p-Hochschild homology
groups, which is defined by

𝑝HH•( 𝑓 ) := H/
•(Idp• (𝐴) ⊗ 𝑓 ) : H/

•(p•(𝐴) ⊗𝐴en 𝑀)−→H/
•(p•(𝐴) ⊗𝐴en 𝑁). (2.21)
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Theorem 2.15. Given two p-DG bimodules M and N over A, there is an isomorphism of p-complexes

𝑝HH•(𝑀 ⊗L
𝐴 𝑁) � 𝑝HH•(𝑁 ⊗L

𝐴 𝑀).

Proof. This is more or less parallel to the classical Hochschild homology case. For this, we notice that
by Definition 2.12,

𝑀 ⊗L
𝐴 𝑁 = 𝑀 ⊗𝐴 p•(𝐴) ⊗𝐴 𝑁.

Then by Definition 2.14, one takes another tensor product over 𝐴en with p•(𝐴) with respect to the left
A-action on M and right A-action on N. This is best visualized as putting everything on a circle:

𝑀

p•(𝐴)

𝑁

p•(𝐴)

.

Here, the connecting lines joining the p-DG modules in the picture stand for the usual tensor product
over A.

Rotating the picture by 180◦, one obtains the p-complex computing the p-Hochschild homology for
the bimodule 𝑁 ⊗L

𝐴 𝑀 . The result follows. �

2.4. Relative homotopy categories

For any ungraded algebra B over k, denote by 𝑑0 the zero ordinary differential and by 𝜕0 the zero
p-differential on B, while letting B sit in homological degree zero. When B is graded, the homological
grading is independent of the internal grading of B.

Suppose (𝐴, 𝜕𝐴) is a p-DG algebra. There is an exact forgetful functor between the usual homotopy
categories of chain complexes of graded 𝐴#𝐻-modules

F𝑑 : C (𝐴#𝐻𝑞 , 𝑑0)−→C (𝐴, 𝑑0).

An object 𝐾• in C (𝐴#𝐻𝑞 , 𝑑0) lies inside the kernel of the functor if and only if, when forgetting the
𝐻𝑞-module structure on each term of 𝐾•, the complex of graded A modules F𝑑 (𝐾•) is null-homotopic.
The null-homotopy map on F𝑑 (𝐾•), though, is not required to intertwine 𝐻𝑞-actions.

Likewise, there is an exact forgetful functor

F𝜕 : C (𝐴#𝐻𝑞 , 𝜕0)−→C (𝐴, 𝜕0).

Similarly, an object 𝐾• in C (𝐴#𝐻𝑞 , 𝜕0) lies inside the kernel of the functor if and only if, when forgetting
the 𝐻𝑞-module structure on each term of 𝐾•, the p-complex of A modules F𝜕 (𝐾•) is null-homotopic.
The null-homotopy map on F𝜕(𝐾•), though, is not required to intertwine 𝐻𝑞-actions.
Definition 2.16. Given a p-DG algebra (𝐴, 𝜕𝐴), the relative homotopy category is the Verdier quotient

C𝜕𝑞 (𝐴, 𝑑0) :=
C (𝐴#𝐻𝑞 , 𝑑0)

Ker(F𝑑)
.
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Likewise, the relative p-homotopy category is the Verdier quotient

C𝜕𝑞 (𝐴, 𝜕0) :=
C (𝐴#𝐻𝑞 , 𝜕0)

Ker(F𝜕)
.

The subscripts in the definitions are to remind the reader of the 𝐻𝑞-module structures on the objects.
The categories C𝜕𝑞 (𝐴, 𝑑0) and C𝜕𝑞 (𝐴, 𝜕0) are triangulated. By construction, there is a factorization

of the forgetful functor

C (𝐴#𝐻𝑞 , 𝑑0)
F𝑑 ��

����
���

���
��

C (𝐴, 𝑑0)

C𝜕𝑞 (𝐴, 𝑑0)

		����������
,

C (𝐴#𝐻𝑞 , 𝜕0)
F𝜕 ��

��		
			

			
		

C (𝐴, 𝜕0)

C𝜕𝑞 (𝐴, 𝜕0)

		����������
.

Let us briefly remark on the triangulated structures of the relative homotopy categories C𝜕𝑞 (𝐴, 𝑑0)
and C𝜕𝑞 (𝐴, 𝜕0). By construction the shift functors [±1] are inherited from those of C (𝐴#𝐻𝑞 , 𝑑0) and
C (𝐴#𝐻𝑞 , 𝜕0). In the first case, the functor [±1]𝑑 just shifts complexes one step to the left or right. In
the second case, the functor [1]𝜕 is given by tensoring with the p-complex 𝑈𝑝−2{𝑝 − 1} and [−1]𝜕 by
tensoring with 𝑈𝑝−2{−1} (see equations (2.3) and (2.4)).

For the usual homotopy category C (𝐴, 𝑑0) of an algebra A, standard distinguished triangles arise
from short exact sequences

0−→𝑀•

𝑓
−→ 𝑁•

𝑔
−→ 𝐿•−→0

of complexes of A-modules that are termwise split exact. The class of distinguished triangles in C (𝐴, 𝑑0)
are declared to be those that are isomorphic to standard ones. Similarly, termwise split short exact
sequences of p-complexes of A-modules lead to standard distinguished triangles in C (𝐴, 𝜕0) ([Qi14,
Lemma 4.3]). For distinguished triangles in the relative homotopy categories, we have the following
construction.
Proposition 2.17.
(i) A short exact sequence of chain complexes of 𝐴#𝐻𝑞-modules

0−→𝑀•

𝑓
−→ 𝑁•

𝑔
−→ 𝐿•−→0

that is termwise A-split exact gives rise to a distinguished triangle in C𝜕𝑞 (𝐴, 𝑑0). Conversely, any
distinguished triangle in C𝜕𝑞 (𝐴, 𝑑0) is isomorphic to one that arises in this form.

(ii) A short exact sequence of p-complexes of 𝐴#𝐻𝑞-modules

0−→𝑀•

𝑓
−→ 𝑁•

𝑔
−→ 𝐿•−→0

that is termwise A-split exact gives rise to a distinguished triangle in C𝜕𝑞 (𝐴, 𝜕0). Conversely, any
distinguished triangle in C𝜕𝑞 (𝐴, 𝜕0) is isomorphic to one that arises in this form.

Proof. We will only show the first statement. The proof of the second one is entirely similar.
By construction, distinguished triangles are those in C𝜕𝑞 (𝐴, 𝑑0) that are isomorphic to stan-

dard distinguished triangles arising from short exact sequences of 𝐴#𝐻𝑞-modules that are termwise
𝐴#𝐻𝑞-split exact. Forgetting about the 𝐻𝑞-actions, such sequences are also termwise A-split exact.

Now, let 𝑓 : 𝑀•−→𝑁• be the injection as in the statement. The cone of f in C (𝐴#𝐻𝑞 , 𝑑0) is given by

𝐶•( 𝑓 ) �
(
𝑀• [1]𝑑 ⊕ 𝑁•, 𝑑𝐶 :=

(
𝑑𝑀 [1]𝑑 𝑓

0 𝑑𝑁

))
.
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The cone fits into a short exact sequence of 𝐴#𝐻𝑞-modules that are termwise 𝐴#𝐻𝑞-split:

0−→𝑁•−→𝐶•( 𝑓 )−→𝑀• [1]𝑑−→0.

Associated with this sequence is the (rotated) standard distinguished triangle

𝑁•−→𝐶•( 𝑓 )−→𝑀• [1]𝑑−→𝑁• [1]𝑑

in C (𝐴#𝐻𝑞 , 𝑑0), which descends to a standard distinguished triangle in C𝜕𝑞 (𝐴, 𝑑0).
To prove the statement, it then suffices to show that, in the relative homotopy category, we have an

isomorphism 𝐶•( 𝑓 ) � 𝐿•. Consider the map

𝑔′ : 𝐶•( 𝑓 ) = (𝑀• [1]𝑑 ⊕ 𝑁•, 𝑑𝐶 )−→𝐿•, (𝑚, 𝑛) ↦→ 𝑔(𝑛).

It is easily checked that 𝑔′ is a surjective map of chain complexes, and the kernel is isomorphic to
𝐶•(Id𝑀 ). Thus, we have a short exact sequence of chain complexes of 𝐴#𝐻𝑞-modules

0−→𝐶•(Id𝑀 )−→𝐶•( 𝑓 )
𝑔′

−→ 𝐿•−→0.

Now, under F𝑑 , the sequence termwise splits over A:

F𝑑 (𝐶•( 𝑓 )) �
(
F𝑑 (𝑀• [1]𝑑

Id𝑀
−−−→ 𝑀•) ⊕ F𝑑 (𝐿•)

)
� (F𝑑 (𝐶•(Id𝑀 )) ⊕ F𝑑 (𝐿•)) .

It follows that we have a distinguished triangle in C (𝐴, 𝑑0)

0 � F𝑑 (𝐶•(Id𝑀 ))−→F𝑑 (𝐶•( 𝑓 ))
F𝑑 (𝑔

′)
−−−−−→ F𝑑 (𝐿•)−→F𝑑 (𝐶•(Id𝑀 ) [1]𝑑) � 0,

implying that 𝑔′ is an isomorphism under F𝑑 . The result follows. �

We also record the following useful fact.

Proposition 2.18. The p-extension functor P : C (𝐴#𝐻𝑞 , 𝑑0)−→C (𝐴#𝐻𝑞 , 𝜕0) descends to a functor,
still denoted by P , between the relative homotopy categories:

P : C𝜕𝑞 (𝐴, 𝑑0)−→C𝜕𝑞 (𝐴, 𝜕0).

Proof. It suffices to show that, if 𝐾• ∈ Ker(F𝑑), then P (𝐾•) ∈ Ker(F𝜕). This is clear since, if h
provides a null-homotopy in C (𝐴, 𝑑0) for F𝑑 (𝐾•), then P (ℎ) is the null-homotopy for F𝜕 (P (𝐾•)). �

2.5. Relative p-Hochschild homology

In this paper, instead of the absolute version of p-Hochschild homology, we will need a relative version of
p-Hochshild homology for a p-DG algebra, which we define now. An important reason for introducing
the relative homotopy category is that the relative p-Hochschild homology functor descends to this
category.

Let (𝐴, 𝜕𝐴) be a p-DG algebra. Equip the zero differential 𝑑0 and p-differential 𝜕0 on A, and denote
the resulting trivial (p)-DG algebras by (𝐴0, 𝑑0) and (𝐴0, 𝜕0). Likewise, for a (p-)DG bimodule M
over A, we temporarily denote by 𝑀0 the A-bimodule equipped with zero (p-) differentials.

The usual Hochschild homology of 𝑀0 over (𝐴0, 𝑑0) in this case carries a natural 𝐻𝑞-action since
the 𝐻𝑞-action commutes with all differentials in the simplicial bar complex (2.17) for 𝐴0.
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Definition 2.19. The relative Hochschild homology of a p-DG bimodule (𝑀, 𝜕𝑀 ) over (𝐴, 𝜕𝐴) is the
usual Hochschild homology of 𝑀0 over (𝐴0, 𝑑0) equipped with the induced 𝐻𝑞-action from 𝜕𝑀 and 𝜕𝐴,
and denoted

HH𝜕𝑞
• (𝑀) := HH•(𝐴0, 𝑀0).

Replacing the usual simplicial bar complex by Mayer’s p-simplicial bar complex p•(𝐴0) for (𝐴0, 𝜕0),
we make the following definition.
Definition 2.20. The relative p-Hochschild homology of M is the p-complex of

𝑝HH𝜕𝑞
• (𝑀) := H/

•(𝐴0 ⊗
L
𝐴en

0
𝑀0) = H/

•(p(𝐴0) ⊗𝐴en
0

𝑀0).

Similar to p-Hochschild homology, the relative case is also covariant functor: If 𝑓 : 𝑀−→𝑁 is a
morphism of p-DG bimodules over A, it induces

𝑝HH𝜕𝑞
• ( 𝑓 ) := H/

•(Id𝐴0 ⊗ 𝑓 ) : H/
•(𝐴0 ⊗

L
𝐴en

0
𝑀0)−→H/

•(𝐴0 ⊗
L
𝐴en

0
𝑁0).

Proposition 2.21. The relative p-Hochschild homology descends to a functor defined on the relative
homotopy category C𝜕𝑞 (𝐴, 𝜕0) of p-DG bimodules over A.

Proof. An object that lies in the kernel F for p-DG modules over 𝐴 ⊗ 𝐴op consists of null-homotopic
p-complexes of bimodules over (𝐴0, 𝜕0). Thus, the relative p-Hochschild homology functor annihilates
such objects and descends to the quotient category. �

We also have the trace-like property for relative p-Hochschild homology.
Proposition 2.22. Given two p-DG bimodules M and N over A, there is an isomorphism of p-complexes
of 𝐻𝑞-modules

𝑝HH𝜕𝑞
• (𝑀 ⊗L

𝐴 𝑁) � 𝑝HH𝜕𝑞
• (𝑁 ⊗L

𝐴 𝑀).

Proof. This follows from Theorem 2.15 by replacing (𝐴, 𝜕𝐴) with (𝐴0, 𝜕0). �

Our next goal is to show that we may relax the requirement that we utilize the simplicial bar resolution
when computing the relative Hochschild homology. For the next theorem, we use the fact that in the
simplicial bar complex p•(𝐴0), all the p-complex maps are 𝐻𝑞-equivariant since they are just sums of
multiplications maps of A tensored with identities maps on A.

Theorem 2.23. Let M be a p-DG bimodule over A. Suppose 𝑓 : 𝑄•−→𝑀 is a p-complex resolution of
M over (𝐴0, 𝜕0) which is 𝐻𝑞-equivariant, and each term of 𝑄• is projective as an 𝐴en

0 -module. Then f
induces an isomorphism of 𝐻𝑞-modules

H/
•(𝐴0 ⊗𝐴en

0
𝑄•) � 𝑝HH𝜕𝑞

• (𝑀).

Proof. By definition, there is a short exact sequence over (𝐴0, 𝜕0):

0−→𝑀−→𝐶•( 𝑓 )−→𝑄• [1]−→0.

The cone 𝐶•( 𝑓 ), by construction, is equal to

𝐶•( 𝑓 ) �
𝑄• ⊗ k[𝜕0]/(𝜕

𝑝
0 ) ⊕ 𝑀{

(𝑥 ⊗ 𝜕 𝑝−1
0 , 𝑓 (𝑥)) |𝑥 ∈ 𝑄•

} ,

which is then an acyclic p-complex of bimodules over (𝐴, 𝜕0). Since the 𝐻𝑞-actions on the modules 𝑄•

and M commute with the 𝜕0 action, the above short exact sequence is an exact sequence of 𝐻𝑞-modules.
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Taking the tensor product of p•(𝐴0) with the sequence, we get a short exact sequence since p•(𝐴0)
is projective as a module over 𝐴en

0

0−→p•(𝐴0) ⊗𝐴en
0

𝑀−→p•(𝐴0) ⊗𝐴en
0

𝐶•( 𝑓 )−→p•(𝐴0) ⊗𝐴en
0

𝑄• [1]−→0.

The middle term p•(𝐴0) ⊗𝐴en
0

𝐶•( 𝑓 ) is a p-complex of 𝐴0-bimodules equipped with a filtration, whose
subquotients are isomorophic to grading shifts of 𝐶•( 𝑓 ). Therefore, it is acyclic. It follows that we have
an isomorphism in D((𝐴en

0 #𝐻𝑞 , 𝜕0)

p•(𝐴0) ⊗𝐴en
0

𝑄• � p•(𝐴0) ⊗𝐴en
0

𝑀.

Taking p-Hochschild homology, we obtain an isomorphism of 𝐻𝑞-modules

H/
•(p•(𝐴0) ⊗𝐴en

0
𝑄•) � H/

•(p•(𝐴0) ⊗𝐴en
0

𝑀).

Similarly, since 𝑄• is projective as a bimodule over 𝐴0, tensoring Mayer’s short exact sequence of
bimodules with 𝑄• over 𝐴en

0 remains exact:

0−→𝐴0 ⊗𝐴en
0

𝑄•−→p′
• (𝐴0) ⊗𝐴en

0
𝑄•−→p•(𝐴0) [1] ⊗𝐴en

0
𝑄•−→0.

The middle term is, as above, acyclic since p′
• (𝐴0) is. It follows that

𝐴0 ⊗𝐴en
0

𝑄• � p•(𝐴0) ⊗𝐴en
0

𝑄•

as objects in D(𝐻𝑞 , 𝜕0). Taking slash homology on both sides gives the desired result. �

3. p-DG Soergel bimodules and braid relations

3.1. p-DG bimodules over the polynomial algebra

Let k be a field of characteristic3 𝑝 > 2. The graded polynomial algebra 𝑅𝑛 = k[𝑥1, . . . , 𝑥𝑛] has a
natural module-algebra structure over the graded Hopf algebra 𝐻𝑞 = k[𝜕𝑞]/(𝜕

𝑝
𝑞 ), where 𝜕𝑞 ∈ 𝐻𝑞 acts

on the generators by 𝜕𝑞 (𝑥𝑖) = 𝑥2
𝑖 for 𝑖 = 1, . . . , 𝑛 and is extended to the full algebra by the Leibniz rule

𝜕𝑞 ( 𝑓 𝑔) = 𝑓 𝜕𝑞 (𝑔) + 𝑓 𝜕𝑞 (𝑔) for any 𝑓 , 𝑔 ∈ 𝑅𝑛. In particular 𝜕𝑞 (1) = 0. Here, the degree of each 𝑥𝑖 and
𝜕𝑞 are both two, and will be referred to as the q-degree.

The differential 𝜕𝑞 is invariant under the permutation action of the symmetric group 𝑆𝑛 on the indices
of the variables. Therefore, let the subalgebra of polynomials symmetric in variables 𝑥𝑖 and 𝑥𝑖+1 with
its inherited 𝐻𝑞-module structure be denoted by

𝑅𝑖
𝑛 = k[𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 𝑥𝑖+1, 𝑥𝑖𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑛] .

More generally, given any subgroup 𝐺 ⊂ 𝑆𝑛, the invariant subalgebra 𝑅𝐺
𝑛 inherits an 𝐻𝑞-algebra

structure from 𝑅𝑛 (and is thus a p-DG algebra). In particular, we will also use the 𝐻𝑞-subalgebra
𝑅𝑖,𝑖+1

𝑛 := 𝑅𝑆3
𝑛 , where 𝑆3 is the subgroup generated by permuting the indices i, 𝑖 + 1 and 𝑖 + 2.

When the number of variables n is clear from the context or is irrelevant of the statements, we will
abbreviate 𝑅𝑛 by just R in what follows.

The (𝑅, 𝑅)-bimodule 𝐵𝑖 = 𝑅⊗𝑅𝑖 𝑅 has the structure of an 𝐻𝑞-module (and is thus a p-DG bimodule)
where the differential acts via the Leibniz rule: for any ℎ ⊗ 𝑔 ∈ 𝑅 ⊗𝑅𝑖 𝑅,

𝜕𝑞 (ℎ ⊗ 𝑔) = 𝜕𝑞 (ℎ) ⊗ 𝑔 + ℎ ⊗ 𝜕𝑞 (𝑔).

3This characteristic assumption is standard in the literature on Soergel bimodules. See, for instance [EK10, Section 2] Remark
3.6 also provides an explanation for this assumption.

https://doi.org/10.1017/fmp.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.19


Forum of Mathematics, Pi 19

The tensor category of (𝑅, 𝑅)-bimodules generated by the 𝐵𝑖 , has an 𝐻𝑞-module structure where the
action comes from the comultiplication in 𝐻𝑞 . We denote this category by (𝑅, 𝑅)#𝐻𝑞-mod.

Let 𝑓 =
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ∈ F𝑝 [𝑥1, . . . , 𝑥𝑛] ⊂ 𝑅 be a linear function. We twist the 𝐻𝑞-action on the
bimodule 𝐵𝑖 to obtain a bimodule 𝐵

𝑓
𝑖 defined as follows. As an (𝑅𝑛, 𝑅𝑛)-bimodule, it is the same as

𝐵𝑖 , but the action of 𝐻𝑞 is twisted by defining

𝜕𝑞 (1 ⊗ 1) = (1 ⊗ 1) 𝑓 . (3.1a)

Similarly we define 𝑓 𝐵𝑖 where now

𝜕𝑞 (1 ⊗ 1) = 𝑓 (1 ⊗ 1). (3.1b)

For 𝑅𝑛 as a bimodule over itself, it is clear that 𝑓 𝑅𝑛 � 𝑅
𝑓
𝑛 as p-DG bimodules. It follows that

there are 𝑝𝑛 ways to put an 𝐻𝑞-module structure on a rank-one free module over 𝑅𝑛. Each such 𝐻𝑞-
module is quasi-isomorphic to a finite-dimensional p-complex. Choose numbers 𝑏𝑖 ∈ {1, . . . , 𝑝} such
that 𝑏𝑖 ≡ 𝑎𝑖 (mod 𝑝), 𝑖 = 1, . . . , 𝑛, and define the 𝐻𝑞-ideal of R

𝐼 = (𝑥𝑝+1−𝑏1
1 , · · · , 𝑥𝑝+1−𝑏𝑛

𝑛 ). (3.2)

Then the natural quotient map

𝜋 : 𝑅
𝑓
𝑛 � 𝑅

𝑓
𝑛 /(𝐼 · 𝑅

𝑓
𝑛 ) (3.3)

is readily seen to be a quasi-isomorphism.

Lemma 3.1. For each 𝑓 =
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 , the rank-one p-DG module 𝑅
𝑓
𝑛 has finite-dimensional slash

homology:

H/
•(𝑅

𝑓
𝑛 ) �

𝑛⊗
𝑖=1

𝑉𝑝−𝑏𝑖 {𝑝 − 𝑏𝑖}.

In particular, if any 𝑎𝑖 of 𝑓 =
∑

𝑖 𝑎𝑖𝑥𝑖 is equal to one, then H/
•(𝑅

𝑓
𝑛 ) = 0.

Proof. The first statement follows from the discussion before the lemma. For the second statement, note
that 𝑉𝑝−1 is acyclic, and the tensor product of an acyclic 𝐻𝑞-module with any 𝐻𝑞-module is acyclic. �

Corollary 3.2. Let M be a p-DG module over R which is equipped with a finite filtration, whose
subquotients are isomorphic to 𝑅 𝑓 for various f. Then M has finite-dimensional slash homology.

Proof. Induct on the length of the filtration, and apply the previous lemma. �

By Definition 2.16, a morphism 𝑓 : 𝐴 −→ 𝐵 in the homotopy category C ((𝑅, 𝑅)#𝐻𝑞 , 𝑑0) is
a relative isomorphism if F𝑑 ( 𝑓 ) is an isomorphism in the homotopy category C ((𝑅, 𝑅), 𝑑0). Lo-
calizing C ((𝑅, 𝑅)#𝐻𝑞 , 𝑑0) at all relative isomorphisms produces the relative homotopy category of
(𝑅, 𝑅)-bimodules C𝜕𝑞 (𝑅, 𝑅, 𝑑0). Similarly we have the p-version of the relative homotopy category
C𝜕𝑞 (𝑅, 𝑅, 𝜕0).

3.2. Elementary braiding complexes

Lemma 3.3. There are (𝑅, 𝑅)#𝐻𝑞-module homomorphisms

(i) 𝑟𝑏𝑖 : 𝑅 −→ 𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖 , where 1 ↦→ (𝑥𝑖+1 ⊗ 1 − 1 ⊗ 𝑥𝑖);

(ii) 𝑏𝑟𝑖 : 𝐵𝑖 −→ 𝑅, where 1 ⊗ 1 ↦→ 1.
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Proof. The fact that these maps are (𝑅, 𝑅)-bimodule homomorphisms is well known. See, for instance,
[EK10] for more details.

In order to check that the homomorphism is compatible with the 𝐻𝑞-module structure, we must
check that 𝑟𝑏𝑖 (𝜕𝑞 (1)) = 𝜕𝑞 (𝑟𝑏𝑖 (1)). Clearly, 𝑟𝑏𝑖 (𝜕𝑞 (1)) = 0. On the other hand

𝜕𝑞 (𝑟𝑏𝑖 (1)) = 𝜕𝑞 (𝑥𝑖+1 ⊗ 1 − 1 ⊗ 𝑥𝑖)

= 𝑥2
𝑖+1 ⊗ 1 − 1 ⊗ 𝑥2

𝑖 + (𝑥𝑖+1 ⊗ 1 − 1 ⊗ 𝑥𝑖) (−𝑥𝑖 − 𝑥𝑖+1)

= 0,

where the third term in the second equation above comes from the twist on 𝐵𝑖 .
The second homomorphism clearly respects the 𝐻𝑞-structure since 𝜕𝑞 (1 ⊗ 1) = 0 = 𝜕𝑞 (1). �

We now have complexes of (𝑅, 𝑅)#𝐻𝑞-modules

𝑇𝑖 :=
(
𝑡𝐵𝑖

𝑏𝑟𝑖
−−→ 𝑅

)
, 𝑇 ′

𝑖 :=
(
𝑅

𝑟𝑏𝑖
−−→ 𝑞−2𝑡−1𝐵−(𝑥𝑖+𝑥𝑖+1)

𝑖

)
. (3.4)

In the coming sections we will, for presentation reasons, often omit the various shifts built into the
definitions of 𝑇𝑖 and 𝑇 ′

𝑖 .
We associate respectively to the left and right crossings 𝜎𝑖 and 𝜎′

𝑖 between the ith and (𝑖+1)st strands
in equation (3.5) the chain complexes of (𝑅, 𝑅)#𝐻𝑞-bimodules 𝑇𝑖 and 𝑇 ′

𝑖 :

𝜎𝑖 := · · · · · · 𝜎′
𝑖 := · · · · · · (3.5)

More generally, if 𝛽 ∈ Br𝑛 is a braid group element written as a product 𝜎 𝜖1
𝑖𝑖

· · ·𝜎 𝜖𝑘
𝑖𝑘

in the elementary
generators, where 𝜖𝑖 ∈ {∅, ′}, we assign the chain complex of (𝑅, 𝑅)#𝐻𝑞-bimodules

𝑇𝛽 := 𝑇 𝜖1
𝑖1

⊗𝑅 · · · ⊗𝑅 𝑇 𝜖𝑘
𝑖𝑘

. (3.6)

Theorem 3.4. Given any braid group element 𝛽 ∈ Br𝑛, the chain complex of 𝑇𝛽 associated to it is a
well-defined element of the relative homotopy category C𝜕𝑞 (𝑅, 𝑅, 𝑑0).

The proof of the theorem, which is like the analogous proof in [KR16], will take up the rest of
this section. We will repeatedly apply Proposition 2.17 to simplify complexes in the relative homotopy
category.

3.3. Reidemeister II

The following lemma is crucial to proving the Reidemeister II braid relation and should be compared
with [KR16, Lemma 4.3].

Lemma 3.5. There exists an isomorphism of (𝑅, 𝑅)#𝐻𝑞-modules

𝐵𝑖 ⊗𝑅 𝐵𝑖 � 𝐵𝑖 ⊕ 𝑞2𝐵𝑥𝑖+𝑥𝑖+1
𝑖

defined by

𝜙 =

(
𝜙1
𝜙2

)
: 𝐵𝑖 ⊗𝑅 𝐵𝑖 −→ 𝐵𝑖 ⊕ 𝑞2𝐵𝑥𝑖+𝑥𝑖+1

𝑖 , 𝜙1 (1 ⊗ 1 ⊗ 1) =
(
1 ⊗ 1

0

)
, 𝜙2 (1 ⊗ (𝑥𝑖+1 − 𝑥𝑖) ⊗ 1) =

(
0

1 ⊗ 1

)
,

𝜓 = (𝜓1, 𝜓2) : 𝐵𝑖 ⊕ 𝑞2𝐵𝑥𝑖+𝑥𝑖+1
𝑖 −→ 𝐵𝑖 ⊗𝑅 𝐵𝑖 , 𝜓1 (1 ⊗ 1) = 1 ⊗ 1 ⊗ 1, 𝜓2 (1 ⊗ 1) = 1 ⊗ (𝑥𝑖+1 − 𝑥𝑖) ⊗ 1.
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Proof. As an (𝑅, 𝑅)-bimodule, 𝐵𝑖 ⊗𝑅 𝐵𝑖 is generated by 1⊗ 1⊗ 1 and 1⊗ (𝑥𝑖+1 − 𝑥𝑖) ⊗ 1. It is a classical
fact that the maps 𝜙 and 𝜓 provide inverse isomorphisms of bimodules.

It is straightforward to check that 𝜙 and 𝜓 are compatible with the 𝐻𝑞-module structure. Note that
this condition forces the twist 𝑥𝑖 + 𝑥𝑖+1 on the second 𝐵𝑖 term. �

Remark 3.6. This lemma is where the characteristic 𝑝 > 2 assumption is crucially needed. Indeed, in
characteristic 2, the element 1 ⊗ (𝑥𝑖+1 − 𝑥𝑖) ⊗ 1 = 1 ⊗ (𝑥𝑖+1 + 𝑥𝑖) ⊗ 1 = (𝑥𝑖+1 + 𝑥𝑖) ⊗ 1 ⊗ 1 becomes a
redundant element in the standard set of bimodule generators for 𝐵𝑖 ⊗𝑅 𝐵𝑖 .

Proposition 3.7. There are isomorphisms in the homotopy category C ((𝑅, 𝑅)#𝐻𝑞 , 𝑑0)

𝑇𝑖 ⊗𝑅 𝑇 ′
𝑖 � Id � 𝑇 ′

𝑖 ⊗𝑅 𝑇𝑖 .

Proof. In order to prove the isomorphism 𝑇 ′
𝑖 ⊗𝑅 𝑇𝑖 � Id, we tensor the complexes for 𝑇 ′

𝑖 and 𝑇𝑖 to obtain

𝑅 ⊗𝑅 𝑅

𝑟𝑏𝑖⊗Id























𝑅 ⊗𝑅 𝐵𝑖

Id⊗𝑏𝑟𝑖

���������������

−𝑟𝑏𝑖⊗Id ����
���

���
���

� 𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖 ⊗𝑅 𝑅

𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖 ⊗𝑅 𝐵𝑖

Id⊗𝑏𝑟𝑖

����������������

. (3.7)

By Lemma 3.5, the complex (3.7) is isomorphic to

𝑅 ⊗𝑅 𝑅

𝑟𝑏𝑖⊗Id























𝑅 ⊗𝑅 𝐵𝑖

Id⊗𝑏𝑟𝑖

�������������

(
𝛾1
𝛾2

)
����

���
���

���
� 𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)

𝑖 ⊗𝑅 𝑅

𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖 ⊕ 𝐵𝑖

(
𝛿1 𝛿2

)
��

, (3.8)

where

𝛾1 (1 ⊗ 1) =
1
2
(𝑥𝑖 − 𝑥𝑖+1) ⊗ 1, 𝛾2 (1 ⊗ 1) = −

1
2
(1 ⊗ 1), 𝛿1 (1 ⊗ 1) = 1 ⊗ 1, 𝛿2 (1 ⊗ 1) = 1 ⊗ (𝑥𝑖+1 − 𝑥𝑖).

Contracting out the terms 𝐵𝑖 , one gets that equation (3.8) is homotopic to

𝑅

𝑟𝑏𝑖

����
���

���
���

��

𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖

𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)
𝑖

Id

�����������

. (3.9)

https://doi.org/10.1017/fmp.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.19


22 Y. Qi and J. Sussan

Finally, contracting out the terms 𝐵−(𝑥𝑖+𝑥𝑖+1) , one gets 𝑇 ′
𝑖 ⊗𝑅 𝑇𝑖 � 𝑅. Note that each homotopy 𝛾 used

in the contractions has the property 𝜕 (𝛾) = 0. �

3.4. Reidemeister III

Let 𝐵𝑖,𝑖+1,𝑖 = 𝑅 ⊗𝑅𝑖,𝑖+1 𝑅, where

𝑅𝑖,𝑖+1 = k[𝑥1, . . . , 𝑥𝑖−1, 𝑒1(𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2), 𝑒2(𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2), 𝑒3 (𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2), 𝑥𝑖+3, . . . , 𝑥𝑛] .

The following lemma is a rephrasing of [KR16, Lemma 4.7]. We will use the map 𝜙2 from the
statement of Lemma 3.5.

Lemma 3.8. There exists a short exact sequence of (𝑅, 𝑅)#𝐻𝑞-modules which splits upon restricting
to the category of (𝑅, 𝑅)-bimodules

0 �� 𝐵𝑖,𝑖+1,𝑖
𝑓1 �� 𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖

𝑓2 �� 𝐵𝑥𝑖+𝑥𝑖+1
𝑖

�� 0,

where

𝑓1(1 ⊗ 1) = 1 ⊗ 1 ⊗ 1, 𝑓2 = 𝜙2 ◦ (Id ⊗ 𝑏𝑟𝑖+1 ⊗ Id).

Proof. Ignoring the 𝐻𝑞-module structure, this is a classical statement. See, for example, [EK10, Defi-
nition 3.9, Section 4.5].

Clearly, 𝜕𝑞 ( 𝑓1) = 0. Since 𝜕𝑞 (𝜙2) = 0 and 𝜕𝑞 (𝑏𝑟𝑖+1) = 0, it follows that 𝜕𝑞 ( 𝑓2) = 0. �

Proposition 3.9. There exist isomorphisms in the relative homotopy category C𝜕𝑞 (𝑅, 𝑅, 𝑑0)

(i) 𝑇𝑖𝑇𝑖+1𝑇𝑖 � 𝑇𝑖+1𝑇𝑖𝑇𝑖+1,
(ii) 𝑇 ′

𝑖 𝑇 ′
𝑖+1𝑇

′
𝑖 � 𝑇 ′

𝑖+1𝑇
′
𝑖 𝑇 ′

𝑖+1.

Proof. We will prove the first isomorphism. The second follows from the first part and Proposition 3.7.
By definition

𝑇𝑖𝑇𝑖+1𝑇𝑖 �
(

𝐵𝑖
𝑏𝑟𝑖 �� 𝑅

) (
𝐵𝑖+1

𝑏𝑟𝑖+1 �� 𝑅
) (

𝐵𝑖
𝑏𝑟𝑖 �� 𝑅

)
.

We will use the notation 𝑓1 and 𝑓2 defined in Lemma 3.8 and 𝜙1, 𝜙2, 𝜓1, and 𝜓2 defined in Lemma 3.5.
There is a short exact sequence of (𝑅, 𝑅)#𝐻𝑞-modules which splits when forgetting the 𝐻𝑞-actions
involved:

0 −→ 𝐸1 −→ 𝑇𝑖𝑇𝑖+1𝑇𝑖 −→ 𝐸2 −→ 0

which we write vertically in diagram (3.10) below. Most of the maps in the complexes below transform
a 𝐵𝑖 or 𝐵𝑖+1 into an R (via 𝑏𝑟𝑖 or 𝑏𝑟𝑖+1) and act as the identity on the other tensor factors. We use the
following shorthand notation. A ‘+’ indicates that the coefficient of such a map is 1, and a ‘−’ indicates
that the coefficient of such a map is −1. For example, the negative sign below stands for

− := −𝑏𝑟𝑖 ⊗ Id ⊗ Id : 𝐵𝑖 ⊗ 𝑅 ⊗ 𝐵𝑖 −→ 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖 .
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𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
+ ��

−����
���

���
���

� 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖

+

����
���

���
���

𝐸1 :=

��

𝐵𝑖,𝑖+1,𝑖
𝜙1◦+◦ 𝑓1 ��

+◦ 𝑓1
���������������

+◦ 𝑓1

����
���

���
���

��

𝑓1

��

𝐵𝑖

−◦𝜓1

����������������

+◦𝜓1

����
���

���
���

��� 𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝑅
+ �� 𝑅

Id

��

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝑅
− ��

+

��������������

�����
Id

𝜓1
Id

�����
��

𝐵𝑖 ⊗ 𝑅 ⊗ 𝑅

+

�������������

�����
Id

Id
Id

�����
��

𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
+ ��

−

����
���

���
���

� 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖

+

����
���

���
���

𝑇𝑖𝑇𝑖+1𝑇𝑖 =

��

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
+ ��

+

���������������

+

����
���

���
���

��

𝑓2

��

𝐵𝑖 ⊗ 𝑅 ⊗ 𝐵𝑖

−

��������������

+

����
���

���
���

� 𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝑅
+ �� 𝑅

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝑅
− ��
+

��������������

(
0 𝜙2 0

)
��

𝐵𝑖 ⊗ 𝑅 ⊗ 𝑅

+

�������������

𝐸2 := 𝐵𝑥𝑖+𝑥𝑖+1
𝑖

Id �� 𝐵𝑥𝑖+𝑥𝑖+1
𝑖

. (3.10)

All of the chain maps are annihilated by 𝜕𝑞 and clearly 𝐸2 is homotopically equivalent to 0. Thus,
𝑇𝑖𝑇𝑖+1𝑇𝑖 is isomorphic to 𝐸1 in the relative homotopy category.

There is an isomorphism of complexes 𝐸1 � 𝐸3, via a basis change respecting the 𝐻𝑞-structures,
given by the diagram

𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
��

����
���

���
���

� 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖

����
���

���
���

𝐸1 =

��

𝐵𝑖,𝑖+1,𝑖
��

		�����������

��		
			

			
		

Id

��

𝐵𝑖

����������������

����
���

���
���

��� 𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝑅 �� 𝑅

Id

��

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝑅 ��

��������������

�����
Id

Id
Id

�����
��

𝐵𝑖 ⊗ 𝑅 ⊗ 𝑅

�������������

�����
Id Id

Id
Id

�����
��

𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
+ ��

−

����
���

���
���

� 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖

+

����
���

���
���

𝐸3 := 𝐵𝑖,𝑖+1,𝑖
𝜙1◦(1⊗𝑏𝑟 ⊗1)◦ 𝑓1��

(𝑏𝑟 ⊗1⊗1)◦ 𝑓1
		�����������

(1⊗1⊗𝑏𝑟 )◦ 𝑓1

��		
			

			
		

𝐵𝑖

(1⊗𝑏𝑟 )◦𝜓1����
���

���
���

��� 𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝑅
+ �� 𝑅

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝑅 −
��

+
��������������

−

���������������������
𝐵𝑖 ⊗ 𝑅 ⊗ 𝑅

.
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There is a short exact sequence of complexes of (𝑅, 𝑅)-bimodules compatible with the 𝐻𝑞-structure
which splits when forgetting the 𝐻𝑞-structure

𝐸4 :=

��

𝐵𝑖
Id ��

�����
0
Id
0

�����
��

𝐵𝑖

�����
0
0
Id

�����
��

𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝐵𝑖
��

����
���

���
���

� 𝑅 ⊗ 𝑅 ⊗ 𝐵𝑖

����
���

���
���

𝐸3 =

��

𝐵𝑖,𝑖+1,𝑖
��

		�����������

��		
			

			
		

Id

��

𝐵𝑖

����
���

���
���

��� 𝑅 ⊗ 𝐵𝑖+1 ⊗ 𝑅 �� 𝑅

Id

��

𝐵𝑖 ⊗ 𝐵𝑖+1 ⊗ 𝑅 ��

��������������

���������������������

(
Id 0 0
0 0 Id

)
��

𝐵𝑖 ⊗ 𝑅 ⊗ 𝑅

(
Id 0 0
0 Id 0

)
��

𝐵𝑖+1 ⊗ 𝐵𝑖
𝑏𝑟𝑖+1⊗Id ��

−Id⊗𝑏𝑟𝑖

���
��

��
��

��
��

��
��

��
��

𝐵𝑖

𝑏𝑟𝑖

����
��

��
��

��
�

𝐸5 := 𝐵𝑖,𝑖+1,𝑖

(𝑏𝑟𝑖⊗Id⊗Id)◦ 𝑓1

		�����������

(Id⊗Id⊗𝑏𝑟𝑖)◦ 𝑓1

��		
			

			
		

𝑅

𝐵𝑖 ⊗ 𝐵𝑖+1
𝑏𝑟𝑖⊗Id

��
−Id⊗𝑏𝑟𝑖+1

���������������������
𝐵𝑖+1

𝑏𝑟𝑖+1

�������������

.

Since 𝐸4 is contractible, 𝑇𝑖𝑇𝑖+1𝑇𝑖 � 𝐸5. In the same exact way, one deduces that 𝑇𝑖+1𝑇𝑖𝑇𝑖+1 � 𝐸5, which
proves the proposition. �

4. HOMFLYPT homology under a differential

4.1. Triply graded theory

In this section, we categorify the HOMFLYPT polynomial of any link using analogous arguments from
[Cau17], [RW20] and [Rou17] adapted to the p-DG setting.

For the next definition, we will allow complexes of Soergel bimodules to sit in half-integer degrees in
the Hochschild (a) and topological (t) degrees when considering the usual complexes of vector spaces.
We then modify the elementary braiding complexes of equation (3.4) to be

𝑇𝑖 := (𝑎𝑡)−
1
2 𝑞−2

(
𝑡𝐵𝑖

𝑏𝑟𝑖
−−→ 𝑅

)
, 𝑇 ′

𝑖 := (𝑎𝑡)
1
2 𝑞2

(
𝑅

𝑟𝑏𝑖
−−→ 𝑞−2𝑡−1𝐵−(𝑥𝑖+𝑥𝑖+1)

𝑖

)
. (4.1)

Let 𝛽 ∈ Br𝑛 be a braid group element on n strands. By Theorem 3.4, there is a chain complex of
(𝑅𝑛, 𝑅𝑛)#𝐻𝑞-bimodules 𝑇𝛽 , well defined up to homotopy, associated with 𝛽. Then we write

𝑇𝛽 =

(
. . .

𝑑0
−→ 𝑇 𝑖+1

𝛽

𝑑0
−→ 𝑇 𝑖

𝛽

𝑑0
−→ 𝑇 𝑖−1

𝛽

𝑑0
−→ . . .

)
. (4.2)
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Definition 4.1. The untwisted 𝐻𝑞-HOMFLYPT homology of 𝛽 is the object

�HHH
𝜕𝑞
(𝛽) := 𝑎− 𝑛

2 𝑡
𝑛
2 H•

(
. . .−→HH𝜕𝑞

• (𝑇 𝑖+1
𝛽 )

𝑑𝑡
−−→ HH𝜕𝑞

• (𝑇 𝑖
𝛽)

𝑑𝑡
−−→ HH𝜕𝑞

• (𝑇 𝑖−1
𝛽 )−→ . . .

)
in the category of triply graded 𝐻𝑞-modules, where 𝑑𝑡 := HH𝜕𝑞

• (𝑑0) is the induced map of 𝑑0 on
Hochschild homology.

By construction, the space �HHH
𝜕𝑞
(𝛽) is triply graded by the topological (t) degree, the Hochschild

(a) degree as well as the quantum (q) degree. When necessary to emphasize each graded homogeneous
piece of the space, we will write �HHH

𝜕𝑞

𝑖, 𝑗 ,𝑘 (𝛽) to denote the homogeneous component concentrated in
t-degree i, a-degree j and q-degree k.

The following theorem is a particular case of the main result of [KR16], where we have only kept
track of the degree two p-nilpotent differential in finite characteristic p. The detailed verification given
below, however, uses the main ideas of [Rou17] and differs from that of [KR16]. This proof serves as
the model for the other link homology theories in this paper.

Theorem 4.2. The untwisted 𝐻𝑞-HOMFLYPT homology of 𝛽 depends only on the braid closure of 𝛽 as
a framed link in R3.

As a convention for the framing number of braid closure, if a strand for a component of link is
altered as in the left of equation (4.3), then we say that the framing of the component is increased by 1
(with respect to the blackboard framing). If a strand for a component of link is altered as in the right of
equation (4.3), then we say that the framing of the component is decreased by 1.

� � (4.3)

Denote by f𝑖 (𝐿) the framing number of the ith strand of a link L. Then, under the two Reidemeister
moves of equation (4.3), f𝑖 (𝐿) adds or subtracts 1 respectively when changing from the corresponding
left local picture to the right local picture.

Our main goal in this section is to establish this result. Due to Theorem 3.4, the proof reduces to
showing the invariance under the two Markov moves.

4.2. Doubly graded theory

We next seek to define the analogue of �HHH in the category of p-complexes. This construction will
serve as a precursor to the finite-dimensional 𝔰𝔩2-homology theory defined in the next section.

We first would like to define 𝑝𝑇𝛽 to be the p-complex of Soergel bimodules associated with 𝛽 by

𝑝𝑇𝛽 := P (𝑇𝛽). (4.4)

In other words, 𝑝𝑇𝛽 should be a p-complex of the form

𝑝𝑇𝛽 =

(
· · · −→𝑇2𝑘

𝛽

𝑑0
−−→ 𝑇2𝑘−1

𝛽 = · · · = 𝑇2𝑘−1
𝛽

𝑑0
−−→ 𝑇2𝑘−2

𝛽 −→ · · ·

)
,
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where every term in odd topological (the same as homological) degree is repeated 𝑝 − 1 times. We will
denote the boundary maps in the p-extended complex 𝑝𝑇𝛽 by 𝜕0, in contrast to the usual topological
differential 𝑑0.

Remark 4.3 (Half grading shifts for p-complexes). Here, we point out that, unlike in the ordinary
homotopy category of complexes, we do not need to formally introduce half grading shifts in C (k, 𝜕) in
odd prime characteristic. For instance, one may set

𝑎 [ 1
2 ] := 𝑎

𝑝+1
2 [−1]𝑎

𝜕 , 𝑡 [
1
2 ] := 𝑡

𝑝+1
2 [−1]𝑡𝜕. (4.5)

Using [−1]𝑎
𝜕
◦ [−1]𝑎

𝜕
= [−2]𝑎

𝜕
= 𝑎−𝑝 , one sees that, as functors, 𝑎 [ 1

2 ] ◦𝑎 [ 1
2 ] = 𝑎. Likewise, 𝑡 [

1
2 ] ◦𝑡 [

1
2 ] = 𝑡.

The same half grading shift functors can also be interpreted as

𝑎 [ 1
2 ] := 𝑎

1−𝑝
2 [1]𝑎

𝜕 , 𝑡 [
1
2 ] := 𝑡

1−𝑝
2 [1]𝑡𝜕. (4.6)

The two seemingly different definitions actually agree, as both are given by taking tensor product with
the p-complex 𝑈𝑝−2{

𝑝−1
2 } in the a or t direction.

However, the p-extension functor P does not intertwine between the ordinary half graded complexes
and p-complexes, since, if we were to set P (𝑎

1
2 ) = 𝑎 [ 1

2 ] , then we would have

P ([1]𝑎
𝑑 ) = P (𝑎) = P (𝑎

1
2 ◦ 𝑎

1
2 ) = 𝑎 [ 1

2 ] ◦ 𝑎 [ 1
2 ] = 𝑎 ≠ [1]𝑎

𝜕 .

Thus, we do not naively p-extend the braiding complexes (4.1) via P .

We emphasize that the proof of invariance under both Markov II moves of our theory forces us to
collapse the a and t gradings in this construction. The resulting homology theory will be doubly graded.
More specifically, let us first collapse the a and t gradings in HHH into a single grading satisfying
𝑎 = 𝑞2𝑡, then we will categorically specialize 𝑡 = [1]𝑡𝑑 into [1]𝑡

𝜕
by p-extension. We then lose the a-

grading below, which is determined by the t-grading and q-grading. The t-degree remains independent
of the q-degree on Soergel bimodules.

We then define

𝑝𝑇𝑖 := 𝑞−3
(
𝐵𝑖

𝑏𝑟𝑖
−−→ 𝑅[−1]𝑡𝜕

)
, 𝑝𝑇 ′

𝑖 := 𝑞3
(
𝑅[1]𝑡𝜕

𝑟𝑏𝑖
−−→ 𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)

𝑖

)
. (4.7)

Since 𝑝𝑇𝑖 and 𝑝𝑇 ′
𝑖 are, up to t-grading shifts, obtained by applying P to 𝑇𝑖 and 𝑇 ′

𝑖 , it follows that they
satisfy the same braid relations and can be used to define 𝑝𝑇𝛽 similarly as done in Theorem 3.4.

Definition 4.4. Let 𝛽 ∈ Br𝑛 be a braid group element written as a product 𝜎 𝜖1
𝑖𝑖

· · ·𝜎 𝜖𝑘
𝑖𝑘

in the elementary
generators, where 𝜖𝑖 ∈ {∅, ′}. We assign to 𝛽 the p-chain complex of (𝑅𝑛, 𝑅𝑛)#𝐻𝑞-bimodules

𝑝𝑇𝛽 := 𝑝𝑇 𝜖1
𝑖1

⊗𝑅 · · · ⊗𝑅 𝑝𝑇 𝜖𝑘
𝑖𝑘

. (4.8)

The boundary maps in the t-direction will be denoted 𝜕0 for any 𝑝𝑇𝛽 .

Definition 4.5. The untwisted 𝐻𝑞-HOMFLYPT p-homology of 𝛽 is the object

𝑝 �HHH
𝜕𝑞
(𝛽) := 𝑞−𝑛H/

•

(
. . .−→𝑝HH𝜕𝑞

• (𝑝𝑇 𝑖+1
𝛽 )

𝜕𝑡
−→ 𝑝HH𝜕𝑞

• (𝑝𝑇 𝑖
𝛽)

𝜕𝑡
−→ 𝑝HH𝜕𝑞

• (𝑝𝑇 𝑖−1
𝛽 )−→ . . .

)
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in the homotopy category of bigraded 𝐻𝑞-modules. Here, 𝜕𝑡 stands for the induced map of the topological
differentials on p-Hochschild homology groups 𝜕𝑡 := 𝑝HH𝜕𝑞

• (𝜕0).

In the definition of the 𝐻𝑞-HOMFLYPT p-homology, we have applied the p-extensions in both
the topological and the Hochschild directions so that they can be collapsed into a single degree. The
reason will become clearer later when categorifying the Jones polynomial at roots of unity. Therefore,
in contrast to �HHH(𝛽), 𝑝 �HHH(𝛽) is only doubly graded, and we will adopt the notation 𝑝 �HHH𝑖, 𝑗 (𝛽)
as above to stand for its homogeneous components in topological degree i and q degree j. Further, the
overall grading shift in the definition will be utilized in the invariance under the Markov II moves below.

Theorem 4.6. The untwisted 𝐻𝑞-HOMFLYPT p-homology of 𝛽 depends only on the braid closure of 𝛽
as a framed link in R3.

The proof of Theorems 4.2 and 4.6 will occupy the next few subsections after we introduce the
𝐻𝑞-equivariant (p-)Koszul resolutions.

4.3. Koszul complexes

We recall here the Koszul resolution 𝐶𝑛 of the polynomial algebra 𝑅𝑛 as well as its adaption in the p-DG
setting. In the one variable case, we have a short exact sequence of k[𝑥]-bimodules:

0−→𝑞2k[𝑥] ⊗ k[𝑥]
𝑥⊗1−1⊗𝑥
−−−−−−−→ k[𝑥] ⊗ k[𝑥]

𝑚
−→ k[𝑥]−→0. (4.9)

In order to make the maps 𝐻𝑞-equivariant, we twist the 𝐻𝑞-action on the leftmost bimodule:

0−→𝑞2k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥
−−−−−−−→ k[𝑥] ⊗ k[𝑥]

𝑚
−→ k[𝑥]−→0. (4.10)

In the usual homotopy category of (k[𝑥], k[𝑥])#𝐻𝑞-modules, we have then an 𝐻𝑞-equivariant relative
replacement of k[𝑥]

0−→𝑞2𝑎k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥
−−−−−−−→ k[𝑥] ⊗ k[𝑥]−→0, (4.11)

where we have inserted a in the leftmost nonzero term to emphasize the homological degree that it sits
in. Denote by (𝐶1, 𝑑) this 𝐻𝑞-equivariant Koszul resolution in the one-variable case.

In the p-homotopy category, a relative replacement is then obtained by applying the p-extension
functor P to 𝐶1:

0−→𝑞2𝑎𝑝−1k[𝑥]𝑥 ⊗ k[𝑥]𝑥 = · · · = 𝑞2𝑎k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥
−−−−−−−→ k[𝑥] ⊗ k[𝑥]−→0. (4.12)

We abbreviate this p-resolution by 𝑝𝐶1.
For the ease of notation, it will be useful to denote both replacements by

0−→𝑞2k[𝑥]𝑥 ⊗ k[𝑥]𝑥 [1]𝑎
∗

𝑥⊗1−1⊗𝑥
−−−−−−−→ k[𝑥] ⊗ k[𝑥]−→0,

where ∗ ∈ {𝑑, 𝜕} will label [1] as either the usual homological or p-homological shift in a-degree.
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For the polynomial ring 𝑅𝑛 = k[𝑥1, . . . , 𝑥𝑛], one takes the n-fold tensor product over k of the
bimodule resolution 𝐶1 of k[𝑥1] to get (𝐶𝑛 = 𝐶⊗𝑛

1 , 𝑑). We also define

(𝑝𝐶𝑛, 𝜕) := 𝑝𝐶1 ⊗k · · · ⊗k 𝑝𝐶1 (4.13)

as the n-fold tensor product of the one-variable resolution. Note that 𝑝𝐶𝑛 is homotopic to, but bigger
than, the p-complex of bimodules P (𝐶𝑛).

Example 4.7. In characteristic 3, the 3-complex 3𝐶2 is the total complex of the cube

k[𝑥, 𝑦]𝑥 ⊗ k[𝑥, 𝑦]𝑥 = �� k[𝑥, 𝑦]𝑥 ⊗ k[𝑥, 𝑦]𝑥 𝑥⊗1−1⊗𝑥 �� k[𝑥, 𝑦] ⊗ k[𝑥, 𝑦]

k[𝑥, 𝑦]𝑥+𝑦 ⊗ k[𝑥, 𝑦]𝑥+𝑦 = ��

𝑦⊗1−1⊗𝑦

��

k[𝑥, 𝑦]𝑥+𝑦 ⊗ k[𝑥, 𝑦]𝑥+𝑦 𝑥⊗1−1⊗𝑥 ��

𝑦⊗1−1⊗𝑦

��

k[𝑥, 𝑦]𝑦 ⊗ k[𝑥, 𝑦]𝑦

𝑦⊗1−1⊗𝑦

��

k[𝑥, 𝑦]𝑥+𝑦 ⊗ k[𝑥, 𝑦]𝑥+𝑦 = ��

=

��

k[𝑥, 𝑦]𝑥+𝑦 ⊗ k[𝑥, 𝑦]𝑥+𝑦 𝑥⊗1−1⊗𝑥 ��

=

��

k[𝑥, 𝑦]𝑦 ⊗ k[𝑥, 𝑦]𝑦

=

��

.

Under the total p-differential, the copy of k[𝑥, 𝑦]𝑥+𝑦⊗k[𝑥, 𝑦]𝑥+𝑦 sitting in the southwest corner generates
an acyclic 3-subcomplex, modulo which one obtains the total 3-complex of P (𝐶2):

k[𝑥, 𝑦]𝑥 ⊗ k[𝑥, 𝑦]𝑥 = �� k[𝑥, 𝑦]𝑥 ⊗ k[𝑥, 𝑦]𝑥

𝑥⊗1−1⊗𝑥



���
����

����
���

k[𝑥, 𝑦]𝑥+𝑦 ⊗ k[𝑥, 𝑦]𝑥+𝑦

−𝑦⊗1+1⊗𝑦
�����������������

𝑥⊗1−1⊗𝑥 

���
����

����
����

k[𝑥, 𝑦] ⊗ k[𝑥, 𝑦]

k[𝑥, 𝑦]𝑦 ⊗ k[𝑥, 𝑦]𝑦 = �� k[𝑥, 𝑦]𝑦 ⊗ k[𝑥, 𝑦]𝑦

𝑦⊗1−1⊗𝑦

��

.

Using this Koszul resolution, one immediately obtains, via the following result, that the relative
p-Hochschild homology is completely determined by the classical relative Hochschild homology. There-
fore, it may appear that one does not gain any more information by introducing 𝑝HHH𝜕

• . However, this
construction is essential for the collapsed homology theory to be defined in the next section.

Proposition 4.8. Let M be an (𝑅𝑛, 𝑅𝑛)#𝐻𝑞-bimodule. Then 𝑝HH𝜕𝑞
• (𝑀) is determined by HH𝜕𝑞

• (𝑀) by

𝑝HH𝜕𝑞

𝑖 (𝑀) =

{
HH𝜕𝑞

2𝑘−1(𝑀) (𝑘 − 1)𝑝 + 1 ≤ 𝑖 ≤ 𝑘 𝑝 − 1
HH𝜕𝑞

2𝑘 (𝑀) 𝑖 = 𝑘 𝑝.
(4.14)

Proof. Using the Koszul resolution, we have4

𝑝HH𝜕
• (𝑀) = H/

•(𝑀 ⊗𝑅en
𝑛
P (𝐶𝑛)) = H/

•(P (𝑀 ⊗𝑅en
𝑛

𝐶𝑛)) = P (H•(𝑀 ⊗𝑅en
𝑛

𝐶𝑛)).

The result follows. �

Remark 4.9. The result is true in more generality. If A is an (ungraded) algebra equipped with the zero
p-differential, then its p-Hochschild homology is entirely determined by its usual Hochschild homology.
This result is essentially due to Spanier [Spa49] but is also proved in more generality by [KW98].

4See the remark below for more explanation of the slash homology computation.
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Indeed, if 𝑃•−→𝐴 is any projective resolution of A over 𝐴⊗ 𝐴op, then P (𝑃•) provides a p-resolution
of A, and

𝑝HH•(𝐴) = H/
•(P (𝑃•) ⊗𝐴⊗𝐴op 𝐴) = H/

•(P (𝑃• ⊗𝐴⊗𝐴op 𝐴)). (4.15)

When computing the last slash homology, one may safely forget about the module structures involved in
P (𝑃• ⊗𝐴⊗𝐴op 𝐴) and think of it as a direct sum, possibly infinite copies, of chain-complexes of the form

0−→k−→0, 0−→k−→k−→0, (4.16)

where the underlined term sits in some homological degree i. Under the p-extension functor, the last
complex extends to a contractible p-complex, while the first complex becomes

0−→k−→0,

if i is even, or the (𝑝 − 1)-dimensional

0−→k = · · · = k−→0

if i is odd. The slash homology computation then follows.

4.4. Markov I

The usual HOMFLYPT homologies of two braid compositions 𝛽1𝛽2 and 𝛽2𝛽1 are isomorphic due to
the trace-like property of the usual Hochschild homology functor. The relative Hochschild homology
also remembers the 𝐻𝑞-action.

Proposition 4.10. Let 𝛽1 and 𝛽2 be two braids on n strands. Then �HHH
𝜕𝑞
(𝛽1𝛽2) � �HHH

𝜕𝑞
(𝛽2𝛽1).

The same property also holds for the HOMFLYPT 𝑝𝐻𝑞-homology groups.

Proposition 4.11. Let 𝛽1 and 𝛽2 be two braids on n strands. Then 𝑝 �HHH
𝜕𝑞
(𝛽1𝛽2) � 𝑝 �HHH

𝜕𝑞
(𝛽2𝛽1).

Proof. This follows from Proposition 2.22, since we have the functorial isomorphism

𝑝HH𝜕𝑞
• (𝑝𝑇 𝑖

𝛽1
⊗𝑅𝑛 𝑝𝑇 𝑖

𝛽2
) � 𝑝HH𝜕𝑞

• (𝑝𝑇 𝑖
𝛽2

⊗𝑅𝑛 𝑝𝑇 𝑖
𝛽1
)

for all 𝑖 ∈ Z. Alternatively, this follows from combining the previous result with Proposition 4.8. �

4.5. Markov II

In order to prove the second Markov move, one needs to show that for a (complex of) Soergel bimodules
M over the polynomial p-DG algebra 𝑅𝑛, that HOMFLYPT (p)𝐻𝑞-homologies of the bimodules (4.17)
are isomorphic (up to shifts and twists).

𝑀

· · ·

· · ·

𝑀

· · ·

· · ·

(4.17)

Let Λ〈𝑥𝑛+1〉 be the exterior algebra in the variable 𝑥𝑛+1. Recall that 𝑅𝑛 = k[𝑥1, . . . , 𝑥𝑛], and let
𝑀 ∈ (𝑅𝑛, 𝑅𝑛)#𝐻𝑞-mod. Set 𝐶 ′

1 = k[𝑥𝑛+1] ⊗ Λ〈𝑥𝑛+1〉 ⊗ k[𝑥𝑛+1] � 𝐶1. Letting 𝐶𝑛 denote the Koszul
resolution of 𝑅𝑛, we have inductively that 𝐶𝑛+1 = 𝐶𝑛 ⊗ 𝐶 ′

1.
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As in the proof of Theorem 2.15, the Hochschild homology of M is depicted by the closure diagram

𝑀

𝐶1 𝐶1

· · ·

· · ·

,

where the single strands connecting the boxes indicate tensor products over the one-variable polynomial
rings labelling those strands.

The proof of second Markov move essentially reduces to a computation of the partial Hochschild
homology with respect to the last variable 𝑥𝑛+1. This operation is diagramatically represented in
equation (4.18).

· · ·

· · ·

� .

· · ·

· · ·

(4.18)

This leads to an analysis of 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛 in Proposition 4.12.

The following technical result will be the heart of establishing the invariance under the Markov II
moves. We start with the usual HOMFLYPT homology case under the Hopf algebra 𝐻𝑞-action.

Proposition 4.12. Let 𝛽 be a braid with n strands which is assigned a usual complex of Soergel
bimodules M. Then there is an 𝐻𝑞-equivariant isomorphism of the HOMFLYPT homology groups

(i) �HHH
𝜕𝑞
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) � �HHH

𝜕𝑞
(𝑀)2𝑥𝑛 ,

(ii) �HHH
𝜕𝑞
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇 ′

𝑛) � �HHH
𝜕𝑞
(𝑀)−2𝑥𝑛 ,

where �HHH
𝜕𝑞
(𝑀)±2𝑥𝑛 denotes a twisting in the 𝐻𝑞-action.

Proof. Both identities are proved in a similar way. For the first statement, we note that by definition

HH𝜕𝑞
• ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) = H𝑣

• (𝐶𝑛+1 ⊗𝑅en
𝑛+1

((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛)),

where the (vertical) homology H𝑣
• above is taken with respect to the differential coming from the Koszul

complex 𝐶𝑛+1.
Note that

𝐶𝑛+1 ⊗𝑅en
𝑛+1

((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) = (𝐶𝑛 ⊗ 𝐶 ′
1) ⊗𝑅en

𝑛+1
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛)

� 𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 (𝐶 ′

1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛)). (4.19)
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These isomorphisms, in terms of diagrammatics, can be interpreted as taking closures of the following
diagrammatic equalities:

𝑀

𝐶𝑛+1

· · ·

· · ·

=
𝑀

𝐶𝑛 𝐶 ′
1

· · ·

· · ·

= 𝑀

𝐶𝑛

𝐶 ′
1

· · ·

· · ·

.

Observe that 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛 is a bicomplex of (𝑅𝑛+1, 𝑅𝑛+1)-bimodules

𝑎
1
2 𝑡

1
2
(
𝑥𝑛+1 𝐵𝑥𝑛+1

𝑛

) 𝑏𝑟 ��

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1
��

𝑎
1
2 𝑡−

1
2 𝑅2𝑥𝑛+1

𝑛+1

0
��

𝑎− 1
2 𝑡

1
2 𝑞−2𝐵𝑛

𝑏𝑟 �� 𝑎− 1
2 𝑡−

1
2 𝑞−2𝑅𝑛+1.

Here, the grading shift conventions follow from equation (3.4). For ease of notation, we will mostly
ignore them within this proof below.

It follows that there is a short exact sequence of bicomplexes of (𝑅𝑛+1, 𝑅𝑛+1)-bimodules

0 −→ 𝑌1 −→ 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛 −→ 𝑌2 −→ 0,

where the terms of the sequence are defined by

0

��

𝑅𝑥𝑛+3𝑥𝑛+1
𝑛+1

(𝑥𝑛+1−𝑥𝑛) ⊗1+1⊗(𝑥𝑛+1−𝑥𝑛)

��

2(𝑥𝑛+1−𝑥𝑛) ��

��

𝑅2𝑥𝑛+1
𝑛+1

��
Id

��

:= 𝑌1

��

0 �� 0

𝑥𝑛+1 𝐵𝑥𝑛+1
𝑛

𝑏𝑟 ��

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��
𝑏𝑟

��

𝑅2𝑥𝑛+1
𝑛+1

0

��

= 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛.

��

𝐵𝑛
𝑏𝑟 ��

2Id

��

𝑅𝑛+1

2Id

��

𝑅𝑥𝑛+𝑥𝑛+1
𝑛+1

��

(𝑥𝑛+1−𝑥𝑛) ⊗1−1⊗(𝑥𝑛+1−𝑥𝑛)

��

0

��

:= 𝑌2

��

𝐵𝑛
𝑏𝑟 �� 𝑅𝑛+1

0

(4.20)

https://doi.org/10.1017/fmp.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.19


32 Y. Qi and J. Sussan

Here, 𝑅𝑛+1 is equal to 𝑅𝑛+1 as a left 𝑅𝑛+1-module, but the right action of 𝑅𝑛+1 is twisted by the
permutation 𝜎𝑛 ∈ 𝑆𝑛+1 and 𝑏𝑟 (𝑎 ⊗ 𝑏) = 𝑏𝑟 (𝑎𝜎𝑛 (𝑏)). It is a straightforward exercise to check that all
maps above are equivariant with respect to the 𝐻𝑞-action. We show it for the map

𝜙 := (𝑥𝑛+1 − 𝑥𝑛) ⊗ 1 + 1 ⊗ (𝑥𝑛+1 − 𝑥𝑛) : 𝑅𝑥𝑛+3𝑥𝑛+1
𝑛+1 −→ 𝑥𝑛+1 𝐵𝑥𝑛+1

𝑛 .

One calculates

𝜙(𝜕𝑞 (1)) = 𝜙(𝑥𝑛 + 𝑥𝑛+1 + 2𝑥𝑛+1)

= (𝑥2
𝑛+1 − 𝑥2

𝑛) ⊗ 1 + 1 ⊗ (𝑥2
𝑛+1 − 𝑥2

𝑛) + 2𝑥𝑛+1 (𝑥𝑛+1 − 𝑥𝑛) ⊗ 1 + 2𝑥𝑛+1 ⊗ (𝑥𝑛+1 − 𝑥𝑛),

and

𝜕𝑞 (𝜙(1)) = 𝜕 ((𝑥𝑛+1 − 𝑥𝑛) ⊗ 1 + 1 ⊗ (𝑥𝑛+1 − 𝑥𝑛))

= (𝑥2
𝑛+1 − 𝑥2

𝑛) ⊗ 1 + 1 ⊗ (𝑥2
𝑛+1 − 𝑥2

𝑛) + 𝑥𝑛+1 (𝑥𝑛+1 − 𝑥𝑛) ⊗ 1+

(𝑥𝑛+1 − 𝑥𝑛) ⊗ 𝑥𝑛+1 + 𝑥𝑛+1 ⊗ (𝑥𝑛+1 − 𝑥𝑛) + 1 ⊗ (𝑥𝑛+1 − 𝑥𝑛)𝑥𝑛+1.

Comparing the terms of 𝜙(𝜕𝑞 (1)) and 𝜕𝑞 (𝜙(1)) it suffices to check the identity inside the bimodule 𝐵𝑛

𝑥2
𝑛+1 ⊗ 1 − 𝑥𝑛+1 ⊗ 𝑥𝑛 = 1 ⊗ 𝑥2

𝑛+1 − 𝑥𝑛 ⊗ 𝑥𝑛+1.

Rearranging the terms of the above equation, we must show

𝑥2
𝑛+1 ⊗ 1 + 𝑥𝑛 ⊗ 𝑥𝑛+1 = 1 ⊗ 𝑥2

𝑛+1 + 𝑥𝑛+1 ⊗ 𝑥𝑛. (4.21)

Adding 𝑥𝑛𝑥𝑛+1 ⊗ 1 to both sides of equation (4.21) and using the fact that symmetric functions in 𝑥𝑛

and 𝑥𝑛+1 may be brought through a tensor product finishes the proof that 𝜙(𝜕𝑞 (1)) = 𝜕𝑞 (𝜙(1)).
There is a splitting of the short exact sequence (4.20) regarded as a short exact sequence of (𝑅𝑛, 𝑅𝑛)-

bimodules, given by

𝑥𝑛+1 𝐵𝑥𝑛+1
𝑛

��

��

𝑅2𝑥𝑛+1
𝑛+1

��
𝐵𝑛

�� 𝑅𝑛+1

�̃�𝑥𝑛+𝑥𝑛+1
𝑛+1

��

��

𝜃

��

0

��
𝐵𝑛

��

1
2 Id

��

𝑅𝑛+1

1
2 Id

��

, (4.22)

where

𝜃 ( 𝑓 (𝑥1, . . . , 𝑥𝑛−1)𝑥
𝑖
𝑛𝑥

𝑗
𝑛+1) = 𝑓 (𝑥1, . . . , 𝑥𝑛−1)𝑥

𝑖
𝑛 ⊗ 𝑥

𝑗
𝑛.
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We briefly explain why 𝜃 is a well-defined bimodule homomorphism. By definition 𝜃 (𝑥𝑖
𝑛𝑥

𝑗
𝑛+1) =

𝑥𝑖
𝑛 ⊗ 𝑥

𝑗
𝑛. Note that 𝜃 (𝑥𝑖

𝑛𝑥
𝑗
𝑛+1) = 𝜃 (𝑥𝑖

𝑛 · 𝑥
𝑗
𝑛+1) = 𝑥𝑖

𝑛𝜃 (𝑥
𝑗
𝑛+1) = 𝑥𝑖

𝑛 ⊗ 𝑥
𝑗
𝑛, where we viewed 𝑥𝑖

𝑛 as acting on
the left of 𝑥

𝑗
𝑛+1. Similarly, 𝜃 (𝑥𝑖

𝑛𝑥
𝑗
𝑛+1) = 𝜃 (𝑥𝑖

𝑛 · 𝑥
𝑗
𝑛) = 𝜃 (𝑥𝑖

𝑛)𝑥
𝑗
𝑛 = 𝑥𝑖

𝑛 ⊗ 𝑥
𝑗
𝑛, where we viewed 𝑥

𝑗
𝑛 as acting

on the right of 𝑥𝑖
𝑛.

The short exact sequence (4.20) plugged back into equation (4.19) gives us a short exact sequence

0 → 𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1) → 𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛 → 𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2) → 0, (4.23)

which is split as a sequence of (𝑅𝑛, 𝑅𝑛)-bimodules. Taking homology with respect to the vertical
differentials gives rise to a long exact sequence

· · · �� H𝑣
𝑖+1(𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) ����

���	
�� H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) �� HH𝜕𝑞

𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) ����
���	

�� H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) �� · · ·

(4.24)

· · · → H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) → HH𝜕𝑞

𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) → H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) → · · · .

Due to the splitting exactness of equation (4.23), the long exact sequence breaks up into short exact
sequences of the form

0 → H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) → HH𝜕𝑞

𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) → H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) → 0,

(4.25)

one for each 𝑖 ∈ Z.
So far we have ignored the topological (horizontal) differential in diagram (4.20). Each term in the

short exact sequence (4.25) carries the topological differential 𝑑𝑡 . Taking homology with respect to 𝑑𝑡

gives us another long exact sequence

· · · �� Hℎ
𝑗 H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) �� �HHH

𝜕𝑞

𝑗 ,𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) ����
���	

�� Hℎ
𝑗 H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) �� Hℎ

𝑗−1H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) �� · · ·

. (4.26)

We claim that Hℎ
𝑗 (H

𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2))) = 0 for all j, (which we will show shortly), which

implies that

Hℎ
𝑗 H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) � �HHH

𝜕𝑞

𝑗 ,𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛).
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The definition (4.20) of 𝑌1 shows that Hℎ
𝑗 H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) is the homology of the two-term

complex

0 �� H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
𝑀 ⊗𝑅𝑛 𝑅𝑥𝑛+3𝑥𝑛+1

𝑛+1 )
2(𝑥𝑛+1−𝑥𝑛) �� H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛

𝑀 ⊗𝑅𝑛 𝑅2𝑥𝑛+1
𝑛+1 ) �� 0 .

Taking grading shifts back into account, this complex has homology concentrated in the second nonzero
term, which is isomorphic to

Hℎ
𝑗 H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛

𝑀 ⊗𝑅𝑛 𝑅2𝑥𝑛
𝑛 ) � �HHH

𝜕𝑞

𝑗 ,𝑖 (𝑀)2𝑥𝑛 ,

where the latter space is twisted as an 𝐻𝑞-module by 2𝑥𝑛. This is part (𝑖) of the proposition.
We now prove the claim that Hℎ

𝑗 H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) = 0. Note that 𝑌2 fits into a short exact

sequence of (𝑅𝑛+1, 𝑅𝑛+1)-bimodules

0−→𝑌 ′′
2 −→𝑌2

𝜓
−→ 𝑌 ′

2−→0,

where the surjective map 𝜓 is given by

𝑅𝑥𝑛+𝑥𝑛+1
𝑛+1

��

��

0

��

0 ��

��

0

��

𝜓 : 𝑌2 = := 𝑌 ′
2

𝐵𝑛
��

𝑏𝑟

		𝑅𝑛+1

Id

��𝑅𝑛+1
Id �� 𝑅𝑛+1

. (4.27)

Since the kernel of the multiplication map 𝑏𝑟 : 𝐵𝑛 → 𝑅𝑛+1 is generated as an (𝑅𝑛+1, 𝑅𝑛+1)-bimodule
by 𝑣 = 𝑥𝑛+1 ⊗ 1 − 1 ⊗ 𝑥𝑛+1, it is easy to check that 𝑥𝑛𝑣 = 𝑣𝑥𝑛+1 and v generates a copy of bimodule
isomorphic to 𝑅𝑥𝑛+𝑥𝑛+1

𝑛+1 . Thus, the kernel of 𝜓 is given by

𝑅𝑥𝑛+𝑥𝑛+1
𝑛+1

Id

��

𝑌 ′′
2 :=

𝑅𝑥𝑛+𝑥𝑛+1
𝑛+1

. (4.28)

Clearly, H𝑣
• (𝑌

′′
2 ) = 0, and it follows that H𝑣

• (𝑌2) � H𝑣
• (𝑌

′
2). Taking homology with respect to the

topological (horizontal) differential 𝑑𝑡 then yields Hℎ
𝑗 H𝑣

𝑖 (𝑌
′
2) = 0 and Hℎ

𝑗 H𝑣
𝑖 (𝑌2) = 0.

The computation of HH𝜕𝑞
• ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇 ′

𝑛) is very similar. We only outline the necessary
changes. Again, first note that 𝐶 ′

1 ⊗k[𝑥𝑛+1 ]en 𝑇 ′
𝑛 is a bicomplex of (𝑅𝑛+1, 𝑅𝑛+1)-bimodules

𝑎
3
2 𝑡

1
2 𝑞2𝑅2𝑥𝑛+1

𝑛+1
𝑟𝑏 ��

0
��

𝑎
3
2 𝑡−

1
2 𝑥𝑛+1 𝐵−𝑥𝑛

𝑛

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1
��

𝑎
1
2 𝑡

1
2 𝑞2𝑅𝑛+1

𝑟𝑏 �� 𝑎
1
2 𝑡−

1
2 𝐵−(𝑥𝑛+𝑥𝑛+1)

𝑛 .

(4.29)
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Ignore the grading shifts for now for ease of notation. There is a short exact sequence of bicomplexes
of (𝑅𝑛+1, 𝑅𝑛+1)-bimodules

0−→𝑍1−→𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇 ′

𝑛−→𝑍2−→0,

whose terms are defined by

0

��

𝑅2𝑥𝑛+1
𝑛+1

Id

��

Id ��

��

𝑅2𝑥𝑛+1
𝑛+1

��
𝑟𝑏

��

:= 𝑍1

��

0 �� 0

𝑅2𝑥𝑛+1
𝑛+1

𝑟𝑏 ��

0

��

𝑥𝑛+1 𝐵−𝑥𝑛
𝑛

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��
𝑏𝑟

��

= 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇 ′

𝑛

��

𝑅𝑛+1
𝑟𝑏 ��

Id

��

𝐵−(𝑥𝑛+𝑥𝑛+1)
𝑛

Id

��

0 ��

��

�̃�𝑛+1

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��
:= 𝑍2

��

𝑅𝑛+1
𝑟𝑏 �� 𝐵−(𝑥𝑛+𝑥𝑛+1)

𝑛

0

. (4.30)

As in the previous part, there is a splitting of bicomplexes of (𝑅𝑛, 𝑅𝑛)-bimodules given by

𝑅2𝑥𝑛+1
𝑛+1

𝑟𝑏 ��

0
��

𝑥𝑛+1 𝐵−𝑥𝑛
𝑛

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1
��

𝑅𝑛+1
𝑟𝑏 �� 𝐵−(𝑥𝑛+𝑥𝑛+1)

𝑛

0 ��

��

�̃�𝑛+1

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1
��

𝜙

��

𝑅𝑛+1
𝑟𝑏 ��

Id

��

𝐵−(𝑥𝑛+𝑥𝑛+1)
𝑛 ,

Id

��

, (4.31)
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where 𝜙 was defined earlier. Thus, we get short exact sequences of the form

0 → H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑍1)) → HH𝜕𝑞

𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇 ′
𝑛) → H𝑣

𝑖 (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑍2)) → 0

(4.32)

for each 𝑖 ∈ Z. Taking horizontal homology for this short exact sequence gives us a long exact sequence.
However, since the homology of Hℎ

𝑗 H𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑍1)) is clearly always zero, we get that

�HHH 𝑗 ,𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇 ′
𝑛) � Hℎ

𝑗 (H
𝑣
𝑖 (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑍2)))

for all 𝑗 ∈ Z. We need to analyze the latter homology space.
There is a morphism of bicomplexes

0 ��

��

�̃�𝑛+1

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��

0 ��

��

0

��

𝑍2 := := 𝑍 ′
2

𝑅𝑛+1
𝑟𝑏 ��

Id

𝐵−(𝑥𝑛+𝑥𝑛+1)
𝑛

𝑏𝑟

��
𝑅𝑛+1

𝑥𝑛+1−𝑥𝑛 �� 𝑅−(𝑥𝑛+𝑥𝑛+1)
𝑛+1

(4.33)

whose kernel is a vertical complex connected by the identity map. Thus,

�HHH 𝑗 ,𝑖 ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇 ′
𝑛) � Hℎ

𝑗 H𝑣
𝑖 ((𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑍 ′

2))) � �HHH 𝑗 ,𝑖 (𝑀)−2𝑥𝑛 .

The result follows. �

The above proof serves as a model for the Markov II invariance of 𝑝 �HHH. We only present the
necessary changes.

Corollary 4.13. Let 𝛽 be a braid and M be the associated p-chain complex of Soergel bimodules. Then
there are isomorphisms of chain complexes of relative 𝑝𝐻𝑞-Hochschild homology groups:

(i) 𝑝 �HHH
𝜕𝑞
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑝𝑇𝑛) � 𝑝 �HHH

𝜕𝑞
(𝑀)2𝑥𝑛 ,

(ii) 𝑝 �HHH
𝜕𝑞
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑝𝑇 ′

𝑛) � 𝑝 �HHH
𝜕𝑞
(𝑀)−2𝑥𝑛 .

Proof. To begin with, one replaces the Koszul complex 𝐶𝑛 utilized in the proof of Proposition 4.12
with the p-extended Koszul complex 𝑝𝐶𝑛. Also, one needs to replace the vertical homology taken there
by vertical slash homology (see Remark 4.12).

For part (𝑖), one adapts equation (4.19) into5

5The monoidality of 𝑝𝐶𝑛 is more convenient here than the homotopy-equivalent P (𝐶𝑛) .
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𝑝𝐶𝑛+1 ⊗𝑅en
𝑛+1

((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑝𝑇𝑛) = (𝑝𝐶𝑛 ⊗ 𝑝𝐶 ′
1) ⊗𝑅en

𝑛+1
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑝𝑇𝑛)

� 𝑝𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 (𝑝𝐶 ′

1 ⊗k[𝑥𝑛+1 ]en 𝑝𝑇𝑛)), (4.34)

where 𝑝𝐶 ′
1 � 𝑝𝐶1 is the p-extended complex of bimodules

0−→𝑞2k[𝑥𝑛+1]
𝑥𝑛+1 ⊗ k[𝑥𝑛+1]

𝑥𝑛+1 [1]𝑡𝜕
𝑥𝑛+1⊗1−1⊗𝑥𝑛+1
−−−−−−−−−−−−→ k[𝑥𝑛+1] ⊗ k[𝑥𝑛+1]−→0. (4.35)

Then, diagram (4.20) becomes the following p-extended version in the Hochschild direction:

0

��

𝑞3𝑅𝑥𝑛+3𝑥𝑛+1
𝑛+1 [1]𝑡

𝜕

𝜙

��

2(𝑥𝑛+1−𝑥𝑛) ��

��

𝑞𝑅2𝑥𝑛+1
𝑛+1

��
Id

��

:= 𝑝𝑌1

��

0 �� 0

𝑞(𝑥𝑛+1 𝐵𝑥𝑛+1
𝑛 ) [1]𝑡

𝜕

𝑏𝑟 ��

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��
𝑏𝑟

��

𝑞𝑅2𝑥𝑛+1
𝑛+1

0

��

= 𝑝𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑝𝑇𝑛

��

𝑞−3𝐵𝑛
𝑏𝑟 ��

2Id

��

𝑞−3𝑅𝑛+1 [−1]𝑡
𝜕

2Id

��

𝑞 �̃�𝑥𝑛+𝑥𝑛+1
𝑛+1 [1]𝑡

𝜕
��

(𝑥𝑛+1−𝑥𝑛) ⊗1−1⊗(𝑥𝑛+1−𝑥𝑛)

��

0

��

:= 𝑝𝑌2

��

𝑞−3𝐵𝑛
𝑏𝑟 �� 𝑞−3𝑅𝑛+1 [−1]𝑡

𝜕

0

. (4.36)

Here, 𝜙 is the map that sends 1 to (𝑥𝑛+1 − 𝑥𝑛) ⊗ 1 + 1 ⊗ (𝑥𝑛+1 − 𝑥𝑛)

Now, as in the previous proof, one needs to show that 𝑝𝐶𝑛 ⊗𝑅en
𝑛

(𝑀 ⊗𝑅𝑛 𝑝𝑌2) does not
contribute to 𝑝 �HHH

𝜕𝑞 . This is easier since now 𝑝𝑌2 is an acyclic p-complex. Furthermore,
𝑝𝑌1 is quasi-isomorphic to the p-complex 𝑞𝑅2𝑥𝑛

𝑛 sitting in t-degree zero. Hence, we obtain the
isomorphism

𝑝 �HHH
𝜕𝑞
((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑝𝑇𝑛) � 𝑞−𝑛H/

•(𝑝𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑅2𝑥𝑛

𝑛 )) � 𝑝 �HHH
𝜕𝑞
(𝑀)2𝑥𝑛 .

For the second isomorphism, again there is a short exact sequence of bicomplexes of (𝑅𝑛+1, 𝑅𝑛+1)-
bimodules
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0

��

𝑞7𝑅2𝑥𝑛+1
𝑛+1 [2]𝑡

𝜕

Id

��

Id ��

��

𝑞7𝑅2𝑥𝑛+1
𝑛+1 [1]𝑡

𝜕

��
𝑟𝑏

��

:= 𝑝𝑍1

��

0 �� 0

𝑞7𝑅2𝑥𝑛+1
𝑛+1 [2]𝑡

𝜕

𝑟𝑏 ��

0

��

𝑞5 (𝑥𝑛+1 𝐵−𝑥𝑛
𝑛 ) [1]𝑡

𝜕

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��
𝑏𝑟

��

= 𝑝𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑝𝑇 ′

𝑛

��

𝑞3𝑅𝑛+1 [1]𝑡𝜕
𝑟𝑏 ��

Id

��

𝑞𝐵−(𝑥𝑛+𝑥𝑛+1)
𝑛

Id

��

0 ��

��

𝑞5 �̃�𝑛+1 [1]𝑡𝜕

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��

:= 𝑝𝑍2

��

𝑞3𝑅𝑛+1 [1]𝑡𝜕
𝑟𝑏 �� 𝑞𝐵−(𝑥𝑛+𝑥𝑛+1)

𝑛

0

. (4.37)

Getting rid of contractible summands, we see that 𝑝𝑍2 is homotopy equivalent to

𝑞3𝑅𝑛+1 [1]𝑡𝜕
𝑥𝑛+1−𝑥𝑛
−−−−−−→ 𝑞𝑅−(𝑥𝑛+𝑥𝑛+1)

𝑛+1 , (4.38)

which is, in turn, quasi-isomorphic to 𝑞𝑅−2𝑥𝑛
𝑛 . The result follows after accounting for the shift built into

𝑝 �HHH
𝜕𝑞 . �

Remark 4.14. A closer examination of the proof of Corollary 4.13 shows the necessity of collapsing
t and a gradings for the construction of 𝑝 �HHH

𝜕𝑞 . Indeed, a comparison between equations (4.20) and
(4.36), (4.30) and (4.37) shows that, if there were an a and t bigrading as for �HHH, then the grading
shifts arising from the positive and negative Markov II moves would not match. This is caused by the
fact that the homological shift [1]𝑡

𝜕
and grading shift t functors are different when 𝑝 > 2, and thus

(𝑡 [
1
2 ] )◦2 = 𝑡 ≠ [1]𝑡𝜕.

Consequently, there does not seem to exist an overall compensation factor such as 𝑎− 𝑛
2 𝑡

𝑛
2 in Definition 4.1

that would make a triply graded 𝑝 �HHH invariant under both Markov II moves.

Theorem 4.15. Let 𝛽1 and 𝛽2 be two braids whose closures represent the same link L of r components up
to framing. Suppose the framing numbers of the closures 𝛽1 of 𝛽1 and 𝛽2 of 𝛽2 differ by f𝑖 (𝛽1)−f𝑖 (𝛽2) =
𝑎𝑖 , 𝑖 = 1, . . . , 𝑟 . Then

�HHH
𝜕𝑞
(𝛽1) � �HHH

𝜕𝑞
(𝛽2)

2
∑𝑟

𝑖=1 𝑎𝑖 𝑥𝑖
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and

𝑝 �HHH
𝜕𝑞
(𝛽1) � 𝑝 �HHH

𝜕𝑞
(𝛽2)

2
∑𝑟

𝑖=1 𝑎𝑖 𝑥𝑖 ,

where the generator of the polynomial action for the ith component is denoted 𝑥𝑖 and �HHH
𝜕
(𝛽2)

2𝑥𝑖

means we twist the 𝐻𝑞-module structure on the ith component by 2𝑥𝑖 .
Proof. The topological invariance follows from the proof of the braid relations in Section 3 and the
proof of the Markov moves. �

4.6. Unlinks and twistings

In this section, we compute HHH𝜕𝑞 and 𝑝HHH𝜕𝑞 for the identity element of the braid group Br𝑛 and
define an unframed link invariant in R3.

For the unknot, recall from the previous section the Koszul resolution 𝐶1 of k[𝑥], as a bimodule, is
given by

𝑞2𝑎k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥 �� k [𝑥] ⊗ k [𝑥] .

Tensoring this complex with k[𝑥] as a bimodule yields

𝑞2𝑎k[𝑥]2𝑥 0 �� k[𝑥] .

Thus, the homology of the unknot (up to shift) is identified with the bigraded 𝐻𝑞-module

k[𝑥] ⊕ 𝑞2𝑎k[𝑥]2𝑥 .

More generally, via the Koszul complex 𝐶𝑛 = 𝐶⊗𝑛
1 , we have that the homology of the n-component

unlink 𝐿0 is equal to

�HHH
𝜕𝑞
(𝐿0) � 𝑎− 𝑛

2 𝑡
𝑛
2 HH•(𝑅𝑛) � 𝑎− 𝑛

2 𝑡
𝑛
2

𝑛⊗
𝑖=1

(
k[𝑥𝑖] ⊕ 𝑞2𝑎k[𝑥𝑖]

2𝑥𝑖
)

. (4.39)

Alternatively, up to the grading shift 𝑎− 𝑛
2 𝑡

𝑛
2 , we may identify �HHH

𝜕𝑞
(𝐿0) with the exterior algebra over

𝑅𝑛 generated by the differential forms 𝑑𝑥𝑖 of bidegree 𝑎𝑞2, 𝑖 = 1, . . . , 𝑛, subject to the condition that
each 𝑑𝑥𝑖 accounts for a twisting of 𝐻𝑞-module structure by 2𝑥𝑖 .

It follows that, as for the ordinary HOMFLYPT homology, given a framed link L of n components
arising as a braid closure 𝛽, its untwisted HOMFLYPT 𝐻𝑞-homology �HHH

𝜕𝑞
(𝛽) is a module over

�HHH
𝜕𝑞

0,0,•(𝐿0) � 𝑅𝑛,

and thus one may consider a twisting6 of the 𝐻𝑞-module structure on �HHH
𝜕𝑞
(𝛽) via the functor

𝑅
𝑓
𝑛 ⊗𝑅𝑛 (-), where f is a linear polynomial in 𝑥1, . . . , 𝑥𝑛, (see Section 3.1).

Definition 4.16. Let L be an n-strand framed link arising from the closure of a braid 𝛽. Label the
components of L by 1 through k, and set the (linear) framing factor of 𝛽 to be the linear polynomial

f𝛽 = −

𝑘∑
𝑖=1

2f𝑖𝑥𝑖 .

6The independence of choices as to where to introduce the twist on 𝛽 can be proven as in the usual triply graded homology
case. See, for instance, [KR16, Theorem 1.3].
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(1) The 𝐻𝑞-HOMFLYPT homology of 𝛽 is the triply graded 𝐻𝑞-module

HHH𝜕𝑞 (𝛽) := �HHH
𝜕𝑞
(𝛽)f𝛽 � 𝑅

f𝛽
𝑘 ⊗𝑅𝑘

�HHH
𝜕𝑞
(𝛽).

(2) Likewise, the 𝐻𝑞-HOMFLYPT p-homology is the doubly graded 𝐻𝑞-module

𝑝HHH𝜕𝑞 (𝛽) := 𝑝 �HHH
𝜕𝑞
(𝛽)f𝛽 � 𝑅

f𝛽
𝑘 ⊗𝑅𝑘 𝑝 �HHH

𝜕𝑞
(𝛽).

Corollary 4.17. Given a braid 𝛽, both HHH𝜕𝑞 (𝛽) and 𝑝HHH𝜕𝑞 (𝛽) are link invariants that only depend
on the closure of 𝛽 as a link in R3.

(i) The slash homologies of HHH𝜕𝑞 (𝛽) and 𝑝HHH𝜕𝑞 (𝛽) are finite dimensional.
(ii) The Euler characteristic of HHH𝜕𝑞 (𝛽) is equal to the HOMFLYPT polynomial of 𝛽 in the formal

variables q and a, while the Euler characteristic of 𝑝HHH𝜕𝑞 (𝛽) is equal to the Jones polynomial
of 𝛽 in a formal q-variable.

(iii) The Euler characteristic of the slash homology of HHH𝜕𝑞 (𝛽) is equal to the specialization of
the HOMFLYPT polynomial of 𝛽 at a root of unity q, while the Euler characteristic of the slash
homology of 𝑝HHH𝜕𝑞 (𝛽) is equal to the specialization of the Jones polynomial of 𝛽 at a root of
unity q.

Proof. For the first statement, just notice that the twisting of the p-DG structure by the framing factor
takes care of the Markov II move.

Next, the finite dimensionality of the homology theories follows, by construction, from the fact that
𝑓𝑖1 𝐵

𝑔𝑖1
𝑖1

⊗𝑅 · · · ⊗𝑅
𝑓𝑖𝑘 𝐵

𝑔𝑖𝑘

𝑖𝑘
is an 𝐻𝑞-module with 2𝑘 -step filtration whose subquotients are isomorphic to

𝑅 𝑓 as left 𝑅#𝐻𝑞-modules, and thus Corollary 3.2 applies.
The Poincaré polynomial of HHH𝜕𝑞 (𝛽), which is independent of the 𝐻𝑞-module structure on

HHH𝜕𝑞 (𝛽), is well known to be a Laurent polynomial in a and t (i.e., in Z[𝑎±, 𝑡±]), and Laurent
series in q (i.e., in Z[𝑞−1, 𝑞]]). Specializing 𝑡 = −1 recovers the HOMFLYPT polynomial (see, e.g.,
[KR08b, KR16]). On the other hand, in the construction of 𝑝HHH𝜕𝑞 (𝛽), we have categorically special-
ized the a and t grading shifts according to the relation 𝑎 = 𝑞2𝑡, and then transformed t into [1]𝑡

𝜕
. The

Grothendieck ring of t and q bigraded p-complexes up to homotopy is equal to O𝑝 ⊗Z Z[𝑞, 𝑞−1] (c.f.
Corollary 2.8). In this ring, [1]𝑡

𝜕
descends to −1 ∈ O𝑝 . In turn, the a variable is then evaluated at −𝑞2.

Hence, the Poincare polynomial of 𝑝HHH𝜕𝑞 (𝛽), taking value in

Z[𝑞−1, 𝑞]] � Z ⊗Z Z[𝑞−1, 𝑞]] ⊂ O𝑝 ⊗Z Z[𝑞−1, 𝑞]],

is equal to the HOMFLYPT polynomial with 𝑎 = −𝑞2. This is just the Jones polynomial in a formal
variable q, and the second part follows.

Finally, taking slash homology of the homology theories has the effect, on the level of Grothendieck
groups, of passing from Z[𝑞−1, 𝑞] onto O𝑝 (here we need part (i) showing that both HHH𝜕𝑞 (𝛽) and
𝑝HHH𝜕𝑞 (𝛽) are quasi-isomorphic to finite-dimensional 𝐻𝑞-modules). Therefore, taking slash homology
of HHH𝜕𝑞 (𝛽) and 𝑝HHH𝜕𝑞 (𝛽) is equivalent to categorically specializing q at a primitive pth root of
unity. This finishes the proof of the corollary. �

Remark 4.18. One of the open problems in the triply graded Khovanov–Rozansky theory is whether
the theory is (projectively) functorial with respect to link cobordisms. A fundamental obstruction lies
in the fact that the conditions of the (projective) TQFT would require one to assign, to the unknot, a
Frobenius algebra that is finite dimensional (or rather, a compact Frobenius algebra object in a triangu-
lated category). Therefore, the slash homology of HHH𝜕𝑞 (𝛽) and 𝑝HHH𝜕𝑞 (𝛽) serve as candidates of
potentially functorial link homology theories.
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5. A finite-dimensional 𝖘𝖑2-homology theory

From Corollary 4.17, one sees that the slash homology of 𝑝HHH𝜕𝑞 (𝛽) categorifies the Jones polynomial
at a root of unity q. However, the specialized Jones polynomial, as an element of O𝑝 , sits inside the
ambient ring

O𝑝 ⊗Z O𝑝 ⊃ Z ⊗Z O𝑝 � O𝑝 .

Following [Cau17] (see also [RW20] and [QRS18]), we define a p-differential on 𝑝HH𝜕
• (𝛽) of a braid

𝛽 as a categorically specialized homology theory of links. The slash homology of this theory bypasses
the ambient ring construction and directly constructs a singly graded finite-dimensional homology
theory whose Euler characteristic lives in O𝑝 .

5.1. A singly graded homology

Consider the 𝐻𝑞-Koszul complex in one variable:

𝐶1 : 0−→𝑎𝑞2k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑑𝐶
−→ k[𝑥] ⊗ k[𝑥]−→0, (5.1)

where 𝑑𝐶 is the map 𝑑𝐶 ( 𝑓 ) = (𝑥2 ⊗ 1 + 1 ⊗ 𝑥2) 𝑓 . We regard the differential on the arrow as an
endomorphism of the Koszul complex, of bidegree (−1, 2).

Lemma 5.1. The commutator of the endomorphisms 𝑑𝐶 and 𝜕𝑞 ∈ 𝐻𝑞 is null-homotopic on the Koszul
complex 𝐶1.

Proof. The commutator map 𝜙 := [𝑑𝐶 , 𝜕𝑞] is given by

0 �� k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥 ��

𝜙

��

k[𝑥] ⊗ k[𝑥] �� 0

0 �� k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥 �� k[𝑥] ⊗ k[𝑥] �� 0,

where 𝜙 sends the bimodule generator 1 ⊗ 1 ∈ k[𝑥]𝑥 ⊗ k[𝑥]𝑥 to

𝜙(1 ⊗ 1) = 𝑑𝐶 (𝜕𝑞 (1 ⊗ 1)) − 𝜕𝑞𝑑𝐶 (1 ⊗ 1) = 𝑑𝐶 (𝑥 ⊗ 1 + 1 ⊗ 𝑥) − 𝜕𝑞 (𝑥
2 ⊗ 1 + 1 ⊗ 𝑥2)

= (𝑥 ⊗ 1 + 1 ⊗ 𝑥) (𝑥2 ⊗ 1 + 1 ⊗ 𝑥2) − 2(𝑥3 ⊗ 1 + 1 ⊗ 𝑥3)

= (𝑥 ⊗ 1 + 1 ⊗ 𝑥) (𝑥2 ⊗ 1 + 1 ⊗ 𝑥2) − 2(𝑥 ⊗ 1 + 1 ⊗ 𝑥) (𝑥2 ⊗ 1 − 𝑥 ⊗ 𝑥 + 1 ⊗ 𝑥2)

= (𝑥 ⊗ 1 + 1 ⊗ 𝑥) (−𝑥2 ⊗ 1 + 2𝑥 ⊗ 𝑥 − 1 ⊗ 𝑥2)

= −(𝑥 ⊗ 1 + 1 ⊗ 𝑥) (𝑥 ⊗ 1 − 1 ⊗ 𝑥)2.

We may thus choose a null-homotopy to be

0 �� k[𝑥]𝑥 ⊗ k[𝑥]𝑥

ℎ

������
����

����
����

𝑥⊗1−1⊗𝑥 ��

𝜙

��

k[𝑥] ⊗ k[𝑥] �� 0

0 �� k[𝑥]𝑥 ⊗ k[𝑥]𝑥 𝑥⊗1−1⊗𝑥 �� k[𝑥] ⊗ k[𝑥] �� 0,

where h is given by multiplication by the element 1 ⊗ 𝑥2 − 𝑥2 ⊗ 1 and acts on the rest of the complex by
zero. The result follows. �
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The Koszul complex 𝐶𝑛 inherits the endomorphism 𝑑𝐶 by forming the n-fold tensor product from the
one-variable case. It follows, that for a given p-DG bimodule M over 𝑅𝑛, there is an induced differential,
still denoted 𝑑𝐶 , given via the identification

HH𝜕𝑞
• (𝑀) � H•(𝑀 ⊗𝑅en

𝑛
𝐶𝑛), (5.2)

where the induced differential acts on the right-hand side by Id𝑀 ⊗ 𝑑𝐶 . By construction, 𝑑𝐶 has
Hochschild degree −1 and q-degree 2.

Lemma 2.4 immediately implies the following.

Corollary 5.2. The induced differential 𝑑𝐶 on HH𝜕𝑞
• (𝑀) commutes with the 𝐻𝑞-action.

Remark 5.3. The differential, first observed by Cautis [Cau17], has the following more algebro-
geometric meaning. Identifying HH1(𝑅𝑛) as vector fields on Spec(𝑅𝑛) = A𝑛, HH1(𝑅𝑛) acts as differen-
tial operators on HH•(𝑀) for any 𝑅𝑛-bimodule M, regarded as a coherent sheaf on A𝑛 ×A𝑛 � 𝑇∗(A𝑛).
Under this identification, 𝑑𝐶 is given by, up to scaling by a nonzero number, contraction with the vector
field

𝜁𝐶 :=
𝑛∑

𝑖=1
𝑥2

𝑖

𝜕

𝜕𝑥𝑖
.

On the other hand, this is also the vector field that defines the p-DG structure on 𝑅𝑛 by derivation.
Therefore, via the Gerstenhaber module structure on HH•(𝑀), the two actions naturally commute with
each other on HH•(𝑀).

In a more general context, Hochschild homology is a Gerstenhaber module over Hochschild coho-
mology viewed as a Gerstenhaber algebra. We may view 𝑑𝐶 and 𝜕𝑞 as the same element 𝜁 in Hochschild
cohomology, but the element 𝑑𝐶 acts on homology via cap product 𝜁 ∩ • and the element 𝜕𝑞 acts via a
Lie algebra action L𝜁 (•). The compatibility of these actions is given by the equation

𝜁 ∩ L𝜁 (𝑥) = [𝜁, 𝜁] ∩ 𝑥 + L𝜁 (𝜁 ∩ 𝑥).

Since [𝜁, 𝜁] = 0, these actions commute.

Now, we are ready to introduce a collapsed p-homology theory of a braid closure. Let 𝛽 ∈ Br𝑛 be an
n-stranded braid. We have associated to 𝛽 a usual chain complex of 𝐻𝑞-equivariant Soergel bimodules
𝑇𝛽 as in equation (4.2), of which we take 𝑝HH𝜕𝑞

• for each term:

...
...

...

. . .
𝜕𝑡 �� 𝑝HH𝜕𝑞

𝑖 (𝑝𝑇 𝑘+1
𝛽 )

𝜕𝐶

��

𝜕𝑡 �� 𝑝HH𝜕𝑞

𝑖 (𝑝𝑇 𝑘
𝛽 )

𝜕𝐶

��

𝜕𝑡 �� 𝑝HH𝜕𝑞

𝑖 (𝑝𝑇 𝑘−1
𝛽 )

𝜕𝐶

��

𝜕𝑡 �� . . .

. . .
𝜕𝑡 �� 𝑝HH𝜕𝑞

𝑖+1(𝑝𝑇 𝑘+1
𝛽 )

𝜕𝑡 ��

𝜕𝐶

��

𝑝HH𝜕𝑞

𝑖+1(𝑝𝑇 𝑘
𝛽 )

𝜕𝐶

��

𝜕𝑡 �� 𝑝HH𝜕𝑞

𝑖+1(𝑝𝑇 𝑘−1
𝛽 )

𝜕𝐶

��

𝜕𝑡 �� . . .

...

𝜕𝐶

��

...

𝜕𝐶

��

...

𝜕𝐶

��

(5.3)

Here, 𝜕𝐶 is a p-differential arising from 𝑑𝐶 as follows. By Proposition 4.8, the p-Hochschild homology
groups in a column above are identified with the terms in
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· · · �� HH𝜕𝑞

2𝑖+1(𝑝𝑇 𝑘
𝛽 ) · · · HH𝜕𝑞

2𝑖+1(𝑝𝑇 𝑘
𝛽 )

𝑑𝐶 �� HH𝜕𝑞

2𝑖 (𝑝𝑇 𝑘
𝛽 ) ����

�� 𝑑𝐶�	
�� HH𝜕𝑞

2𝑖−1(𝑝𝑇 𝑘
𝛽 ) · · · HH𝜕𝑞

2𝑖−1(𝑝𝑇 𝑘
𝛽 )

𝑑𝐶 �� · · ·

, (5.4)

where each term in odd Hochschild degree is repeated 𝑝 − 1 times. Here, the horizontal differential is
the p-Hochschild induced map of the topological differential, which we have denoted by 𝜕𝑡 to indicate
its origin. On the arrows connecting even and odd Hochschild degree terms, we put the map 𝑑𝐶 while
keeping the repeated terms connected by identity maps. This defines a p-complex structure, denoted
𝜕𝐶 , in each column in diagram (5.3). The p-differential 𝜕𝐶 commutes with the 𝐻𝑞-action on each term
by Corollary 5.2. It follows that, applying the totalization construction T of Lemma 2.5, we obtain
a bigraded p-bicomplex of 𝐻𝑞-modules, with a horizontal (topological) p-differential 𝜕𝑡 , a vertical
p-differential 𝜕𝐶 and internal p-differential 𝜕𝑞 . Denote the total p-differential 𝜕𝑇 := 𝜕𝑡 + 𝜕𝐶 + 𝜕𝑞 , which
collapses the double grading into a single q-grading.

Definition 5.4. Let 𝛽 be an n stranded braid. The untwisted 𝔰𝔩2 p-homology of 𝛽 is the slash homology
group

𝑝Ĥ(𝛽) := 𝑞−𝑛H/
•(𝑝HH𝜕𝑞

• (𝑝𝑇𝛽), 𝜕𝑇 ),

viewed as an object in C (k, 𝜕𝑞).

The homology group 𝑝Ĥ(𝛽) is only singly graded as an object in C (k, 𝜕𝑞). By construction, 𝑝Ĥ(𝛽)

is the slash homology with respect to the 𝜕𝑇 action on ⊕𝑖, 𝑗 𝑝HH𝜕𝑞

𝑖 (𝑝𝑇
𝑗
𝛽 ) (see diagram (5.4)). The latter

space is doubly graded by the topological degree and q-degree with values in Z × Z (the Hochschild a
degree is already forced to be collapsed with the q degree to make the Cautis differential 𝜕𝐶 homoge-
neous). However, as in the proof of Corollary 4.13, the Markov II invariance for the homology theory
requires one to collapse the t-grading onto the a-grading, thus also onto the q-grading. We will use
𝑝Ĥ𝑖 (𝛽) to stand for the homogeneous subspace sitting in some q-degree i.

Let us also emphasize an important point about the vertical grading collapsing as the following
remark.

Remark 5.5. A special remark is needed here about the grading specialization. In order to p-extend the
Koszul complex (5.1) into a p-Koszul complex with 𝜕𝐶 of degree two, we are forced to make the functor
specialization from [1]𝑎

𝑑 = 𝑎 into 𝑞2 [1]𝑞
𝜕

so that the p-extended complex looks like

𝑝𝐶1 : 0−→𝑞4k[𝑥]𝑥 ⊗ k[𝑥]𝑥 [1]𝑞
𝜕

𝑑𝐶
−→ k[𝑥] ⊗ k[𝑥]−→0. (5.5)

Forming iterated tensor products of 𝑝𝐶1 determines the correct vertical q-degree shifts in each column
of diagram (5.3) of the p-Hochschild homology groups.

Notice that, on the level of Grothendieck groups, this has the effect of specializing the formal variable
a into −𝑞2.

When [1]𝑡
𝜕
= [1]𝑞

𝜕
and 𝑎 = 𝑞2 [1]𝑞

𝜕
, the grading shifts in equation (4.7) translate into

𝑝𝑇𝑖 := 𝑞−3
(
𝐵𝑖

𝑏𝑟𝑖
−−→ 𝑅[−1]𝑞

𝜕

)
, 𝑝𝑇 ′

𝑖 := 𝑞3
(
𝑅[1]𝑞

𝜕

𝑟𝑏𝑖
−−→ 𝑞−2𝐵−(𝑥𝑖+𝑥𝑖+1)

𝑖

)
. (5.6)

This also explains the necessity of p-extension in the collapsed t and a direction in 𝑝HHH in the previous
section: The homological shift in that direction needs to be p-extended to agree with the homological
shift in the q-direction.
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Furthermore, the bigrading in diagram (5.3) is now interpreted as a single grading, with both 𝜕𝐶 and
𝜕𝑡 raising q-degree by two.

This approach to a categorification of the Jones polynomial, at generic values of q, was first developed
by Cautis [Cau17]. We follow the exposition of Robert and Wagner from [RW20] and the closely related
approach of Queffelec, Rose and Sartori [QRS18].

5.2. Framed topological invariance

In this subsection, we establish the topological invariance of the untwisted homology theory.

Theorem 5.6. The homology 𝑝Ĥ(𝛽) is a finite-dimensional framed link invariant depending only on
the braid closure of 𝛽.

Proof. The proof of the theorem will mostly be parallel to that of Proposition 4.12 and Corollary 4.13.
It amounts to showing that taking slash homology of 𝑝HH𝜕

• (𝛽) with respect to 𝜕𝑇 satisfies the Markov
II move.

We start by discussing the normal 𝐻𝑞-equivariant Hochschild homology version. Let L be a link
in R3 obtained as a braid closure 𝛽, where 𝛽 ∈ Br𝑛 is an n-stranded braid. Recall that the homology
groups HH𝜕

• (𝐿) are defined by tensoring a complex of Soergel bimodules M determined by 𝛽 with the
Koszul complex 𝐶𝑛 and computing its termwise vertical (Hochschild) homology. The differential 𝑑𝐶 is
defined on the Koszul complex 𝐶𝑛. To emphasize its dependence on n, we will write 𝑑𝐶 on 𝐶𝑛 as 𝑑𝑛 in
this proof and likewise write 𝜕𝑛 for the p-extended differential on 𝑝𝐶𝑛.

Since

𝐶𝑛+1 = 𝐶𝑛 ⊗ 𝐶 ′
1 = 𝐶𝑛 ⊗ k[𝑥𝑛+1] ⊗ Λ〈𝑑𝑥𝑛+1〉 ⊗ k[𝑥𝑛+1],

the vertical differential may be inductively defined as

𝑑𝑛+1 = 𝑑𝑛 ⊗ Id + Id ⊗ 𝑑 ′
1. (5.7)

Here, we have set 𝐶 ′
1 = k[𝑥𝑛+1] ⊗ Λ〈𝑑𝑥𝑛+1〉 ⊗ k[𝑥𝑛+1] equipped with part of the Cautis differential

𝑑 ′
1 := 𝑥2

𝑛+1 ⊗ 𝜄 𝜕
𝜕𝑥𝑛+1

⊗ 1 + 1 ⊗ 𝜄 𝜕
𝜕𝑥𝑛+1

⊗ 𝑥2
𝑛+1.

The notation 𝜄 denotes the contraction of 𝑑𝑥𝑛+1 with 𝜕
𝜕𝑥𝑛+1

.
From the proof of Proposition 4.12 (see equation (4.23)), we have a vector space decomposition

HH𝜕𝑞
• ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) � H𝑣

• (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) ⊕ H𝑣

• (𝐶𝑛 ⊗𝑅en
𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)).

Here, 𝑌1 and 𝑌2 are the terms of 𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑇𝑛 (see equation (4.20) for the definition). We claim that,

instead of a direct sum decomposition, we obtain a filtration of HH𝜕𝑞
• ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) as a

module over k[𝑑𝐶 ]/(𝑑
2
𝐶 ):

0 → H𝑣
• (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌2)) → HH𝜕𝑞

• ((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛) → H𝑣
• (𝐶𝑛 ⊗𝑅en

𝑛
(𝑀 ⊗𝑅𝑛 𝑌1)) → 0.

(5.8)

Indeed, since 𝑑𝐶 acts on the 𝑌1 and 𝑌2 tensor factors via 𝑑 ′
1, it suffices to check that 𝑑 ′

1 preserves
the submodule arising from 𝑌2 and presents the part arising from 𝑌1 as a quotient. To do this, we
reexamine the sequence (4.20) under vertical (Hochschild) homology. The part 𝑌2, under vertical
homotopy equivalence, contributes to the horizontal (topological) complex (see equation (4.27))

𝑌 ′
2 :=

(
𝑅𝑛+1 [1]𝑡𝑑

𝑑𝑡=Id
−−−−→ 𝑅𝑛+1

)
(5.9a)
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sitting entirely in Hochschild degree 0. Likewise, the part 𝑌1 contributes to the horizontal

𝑌 ′
1 :=

(
𝑅𝑥𝑛+3𝑥𝑛+1

𝑛+1 [1]𝑡𝑑 [1]
𝑎
𝑑

𝑑𝑡=2(𝑥𝑛+1−𝑥𝑛)
−−−−−−−−−−−−→ 𝑅2𝑥𝑛+1

𝑛+1 [1]𝑎
𝑑

)
(5.9b)

sitting entirely in Hochschild degree 1. Since 𝑑 ′
1 decreases Hochschild degree by one, 𝑌 ′

1 must be
preserved under 𝑑 ′

1, acting upon it trivially, and 𝑌 ′
2 is equipped with the (zero) quotient action by 𝑑 ′

1.
Similar behavior happens under p-extension and degree collapsing with respect to the 𝜕𝐶 action

(c.f. the proof and notation of Corollary 4.13). Write 𝜕 ′
1 as the p-extended differential of 𝑑 ′

1. Consider
the degree collapsed diagram obtained from tensoring equation (5.6) with equation (5.5) while taking
vertical slash homology:

𝑞(𝑥𝑛+1 𝐵𝑥𝑛+1
𝑛 ) [1]𝑞

𝜕

𝑏𝑟 ��

𝑥𝑛+1⊗1−1⊗𝑥𝑛+1

��

𝑞𝑅2𝑥𝑛+1
𝑛+1

0

��

= 𝑝𝐶 ′
1 ⊗k[𝑥𝑛+1 ]en 𝑝𝑇𝑛

𝑞−3𝐵𝑛
𝑏𝑟 �� 𝑞−3𝑅𝑛+1 [−1]𝑞

𝜕

. (5.10)

After taking (vertical) p-Hochschild homology, the part of the term 𝑝𝑌2 that is not killed arises from

𝑝𝑌 ′
2 := 𝑞−3

(
𝑅𝑛+1

Id
−→ 𝑅𝑛+1 [−1]𝑞

𝜕

)
(5.11a)

sitting entirely horizontally inside the lower horizontal arrow of equation (5.10). On the other hand, the
part 𝑝𝑌1 contributes to the horizontal

𝑝𝑌 ′
1 := 𝑞3𝑅𝑥𝑛+3𝑥𝑛+1

𝑛+1 [1]𝑞
𝜕

2(𝑥𝑛+1−𝑥𝑛)
−−−−−−−−−→ 𝑞𝑅2𝑥𝑛+1

𝑛+1 (5.11b)

sitting in the top horizontal line of the square (5.10). Since 𝜕 ′
1 acts vertically down, upon taking the slash

homology with respect to 𝜕𝑇 , it now follows that the term arising from 𝑝𝑌 ′
2, on which 𝜕𝑇 acts just via

𝜕𝑡 + 𝜕𝑞 , contributes nothing to the total slash homology, as this term is the cone of the identity map in
the homotopy category of p-complexes.

Now, translating the exact sequence (5.8) as in the final step in the proof of Corollary 4.13, we obtain
that

H/
•(𝑝HH•((𝑀 ⊗ k[𝑥𝑛+1]) ⊗𝑅𝑛+1 𝑇𝑛), 𝜕𝑇 ) � H/

•(𝑝HH•(𝑀 ⊗𝑅𝑛 𝑝𝑌 ′
1), 𝜕𝑇 ) � 𝑞H/

•(𝑝HH•(𝑀), 𝜕𝑇 )
2𝑥𝑛 .

The q factor is cancelled out in the overall shift of 𝑝Ĥ. This finishes the first part of Markov II move.
The other case of the Markov II move is entirely similar, which we leave the reader as an exercise.
Finally, the finite dimensionality of 𝑝Ĥ(𝛽) follows from Corollary 3.2. The theorem follows. �

Remark 5.7. Note that there are more general super differentials 𝑑𝑁 considered in [Cau17, RW20,
QRS18] which gives rise to an 𝔰𝔩𝑁 link homology for general N when the quantum parameter q is
assumed to be generic. It is not clear how to recover general 𝔰𝔩𝑁 link homologies when q is a root of
unity because 𝑑𝑁 and 𝜕𝑞 only commute for 𝑁 = 2.

5.3. Categorical Jones number

For the unknot, the p-Hochschild homology of k[𝑥] (see Section 4.6) but now with the Cautis differential
included, is given by

𝑞2(3−𝑝)k[𝑥]2𝑥 · · · 𝑞2k[𝑥]2𝑥 𝑥2
�� k[𝑥] (5.12)
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whose slash homology is equal to k[𝑥]/(𝑥2) equipped with the trivial p-differential. Likewise, using the
p-extended Koszul complex 𝑝𝐶𝑘 one obtains, for the k-component unlink 𝐿0, that

𝑝Ĥ(𝐿0) =
𝑘⊗

𝑖=1

k[𝑥𝑖]

(𝑥2
𝑖 )

, (5.13)

with the zero p-differential. Let us call this p-DG algebra 𝐴𝑘 .
However, to correct the twisting factor as we have done for �HHH and 𝑝 �HHH in Section 4.6, it is a

bit more subtle. As the following example would show.

Example 5.8. Consider the two rank-one p-DG modules over k[𝑥], where 𝜕 (𝑥) = 𝑥2, k[𝑥] and k[𝑥]𝑥 .
It is clear that twisting the second module by k[𝑥]−𝑥 results in an isomorphism

k[𝑥] � k[𝑥]𝑥 ⊗k[𝑥 ] k[𝑥]
−𝑥 .

However, this can not be done after taking slash homology of k[𝑥] and k[𝑥]𝑥 , as the first module is
quasi-isomorphic to the ground field, while the second module is acyclic.

We therefore need to introduce a p-differential twisting to correct the framing factor occurring in
Theorem 5.6 slightly differently from what we have done in Definition 4.16. For a braid 𝛽 ∈ Br𝑛 whose
closure is a k-stranded framed link. Choose7 for each framed component of 𝛽 in 𝛽 a single strand in 𝛽
that lies in that component after closure, say, the 𝑖𝑟 th strand is chosen for the rth component. Then define
the polynomial ring k[𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ] as a subring of k[𝑥1, . . . , 𝑥𝑛] generated by the chosen variables. Set

k[𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ]
f𝛽 := k[𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ] · 1𝛽 , 𝜕 (1𝛽) := −

𝑘∑
𝑟=1

2f𝑟𝑥𝑖𝑟 1𝛽 . (5.14)

Then we make the twisting of 𝐻𝑞-modules on the 𝑝HH•-level, termwise on 𝑝HH•(𝑝𝑇 𝑖
𝛽):

𝑝HHf𝛽• (𝑝𝑇𝛽) := 𝑝HH•(𝑝𝑇𝛽) ⊗k[𝑥𝑖1 ,...,𝑥𝑖𝑘 ]
k[𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ]

f𝛽 . (5.15)

Definition 5.9. Given 𝛽 ∈ Br𝑛 whose closure is a k stranded framed link, the 𝔰𝔩2 𝑝-homology is the
object

𝑝H(𝛽) := H/
•(𝑝HHf𝛽• (𝑝𝑇𝛽), 𝜕𝑇 )

in the homotopy category C (k, 𝜕𝑞).

The internal 𝐻𝑞-structure shifts do not interfere with the proof of Theorem 5.6, and they correct the
overall twisting of 𝐻𝑞-modules arising from Markov II moves in the theorem. It follows that we obtain
the first part of the following.

Theorem 5.10. The 𝔰𝔩2 𝑝-homology 𝑝H(𝛽) is a singly graded, finite-dimensional link invariant de-
pending only on the braid closure of 𝛽 as a link in R3. Furthermore, its graded Euler characteristic

𝜒(𝑝H(𝐿)) :=
∑

𝑖

𝑞𝑖dimk (𝑝H𝑖 (𝐿))

is equal to the Jones polynomial at a 2𝑝th root of unity.

Proof. As in the proof of Corollary 4.17, the twisting compensates for the linear factors appearing in
Markov II moves, thus establishing the topological invariance of 𝑝H(𝛽).

7Again, the independence of choices can be proven as in the usual triply graded homology case. See, for instance, [KR16,
Theorem 1.3].
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For the last statement, we will use the fact that the Euler characteristic does not change before or
after taking slash homology. This is because, as with the usual chain complexes, taking slash homology
only gets rid of acyclic summands whose Euler characteristics are zero.

Let us revisit diagram (5.4). Before collapsing the t-grading onto q, the diagram arises by p-extending
the same Hochschild homology group diagram of 𝑇𝛽 in the t-direction. Let 𝑃𝛽 (𝑣, 𝑡) be the Poincaré
polynomial of Cautis’s bigraded diagram for now, where v, t are treated as formal variables coming
from q and t grading shifts. As shown by Cautis [Cau17], 𝑃𝛽 (𝑣,−1) is the Jones polynomial of the link
𝛽 in the variable v.

The p-extension in the topological direction is equivalent to categorically specializing [1]𝑡𝑑 to [1]𝑞
𝜕

.
It has the effect, on the Euler characteristic level, of specializing 𝑡 = −1. Thus, we obtain that the Euler
characteristic of 𝑝H(𝛽) is equal to 𝑃𝛽 (𝑣 = 𝑞, 𝑡 = −1). This the Jones polynomial evaluated at a 2𝑝th
root of unity q. The result follows. �

6. Examples

In this section, we compute the various homologies constructed earlier for (2, 𝑛) torus links. Note that
there are no framing factors to incorporate in this family of examples.

6.1. HOMFLYPT homology

We follow the exposition in [KR16] to compute variations of the HOMFLYPT homology of (2, 𝑛) torus
links while making the necessary p-DG modifications.

We begin by reviewing the homology of unlinks. Recall the Koszul resolutions 𝐶1 and 𝑝𝐶1 of k[𝑥]
as bimodules are written uniformly as

𝑞2k[𝑥]𝑥 ⊗ k[𝑥]𝑥 [1]𝑎
∗

�� k [𝑥] ⊗ k [𝑥] ,

where ∗ ∈ {𝑑, 𝜕}. Tensoring this complex with k[𝑥] as a bimodule yields

𝑞2k[𝑥]2𝑥 [1]𝑎
∗

0 �� k[𝑥] .

Thus, the homology of the unknot (up to shift) is given by:

k[𝑥] ⊕ 𝑞2k[𝑥]2𝑥 [1]𝑎
∗ .

By the monoidal structure, the homology of the n-component unlink 𝐿0 is

HHH𝜕𝑞 (𝐿0) � (𝑎−1𝑡)
𝑛
2

𝑛⊗
𝑖=1

(
k[𝑥𝑖] ⊕ 𝑞2𝑎k[𝑥𝑖]

2𝑥𝑖
)

, (6.1a)

𝑝HHH𝜕𝑞 (𝐿0) �
𝑛⊗

𝑖=1
𝑞−1

(
k[𝑥𝑖] ⊕ 𝑞4 [1]𝑡𝜕k[𝑥𝑖]

2𝑥𝑖
)

. (6.1b)

Here, in the second equation (6.1b), the shift 𝑞4 [1]𝑡𝑑 arises from specializing the grading shift functor
𝑎 = [1]𝑎

𝑑 in equation (6.1a) to 𝑞2 [1]𝑡
𝜕
. The slash homology of equation (6.1b) is(

𝑞−1k ⊕ 𝑞𝑝+1𝑉𝑞
𝑝−2 [1]

𝑡
𝜕

) ⊗𝑛
,

and hence its Euler characteristic is (𝑞 + 𝑞−1)𝑛.
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Throughout the remainder of this subsection, let 𝑅 = k[𝑥1, 𝑥2], 𝐵 = 𝐵1, and 𝑇 = 𝑇1. We begin with
the computation of the two component unlink since it will play a role in the homology of the (2, 𝑛) torus
link 𝑇2,𝑛.

By tensoring the Koszul resolution of k[𝑥] by itself we obtain a resolution of k[𝑥1, 𝑥2] as bimodules
homotopic to

𝑞4𝑅𝑥1+𝑥2 ⊗ 𝑅𝑥1+𝑥2 [2]𝑎
∗

(
𝑥2⊗1−1⊗𝑥2
−𝑥1⊗1+1⊗𝑥1

)
�� ���

𝑞2𝑅𝑥1 ⊗ 𝑅𝑥1

⊕

𝑞2𝑅𝑥2 ⊗ 𝑅𝑥2

���[1]𝑎
∗

( 𝑥1⊗1−1⊗𝑥1 , 𝑥2⊗1−1⊗𝑥2 ) �� 𝑅 ⊗ 𝑅 .

(6.2)

Tensoring this complex with R as a bimodule yields

𝑞4𝑅2(𝑥1+𝑥2) [2]𝑎
∗

0 �� (𝑞2𝑅2𝑥1 ⊕ 𝑞2𝑅2𝑥2) [1]𝑎
∗

0 �� 𝑅.

Thus, the homology of the two component unlink (up to shift) is given by the relative Hochschild
homology (assuming ∗ = 𝑑):

HH𝜕𝑞

𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑅 if 𝑖 = 0
𝑞2𝑅2𝑥1 ⊕ 𝑞2𝑅2𝑥2 if 𝑖 = 1
𝑞4𝑅2(𝑥1+𝑥2) if 𝑖 = 2
0 otherwise.

(6.3)

We write the relative Hochschild homology uniformly for ∗ ∈ {𝑑, 𝜕} as

𝑅 ⊕ 𝑞2 (𝑅2𝑥1 ⊕ 𝑅2𝑥2) [1]𝑎
∗ ⊕ 𝑞4𝑅2(𝑥1+𝑥2) [2]𝑎

∗ .

Now, we return to the computation of the HOMFLYPT homology of the (2, 𝑛) torus link. The
complex (6.2) is isomorphic by a change of basis in the middle term in the complex by the matrix(

−1 0
−1 1

)
,

to

𝑞4𝑅𝑥1+𝑥2 ⊗ 𝑅𝑥1+𝑥2 [2]𝑎
∗

�� (𝑞2𝑅 ⊗ 𝑅 ⊕ 𝑞2𝑅 ⊗ 𝑅) [1]𝑎
∗

�� 𝑅 ⊗ 𝑅 , (6.4)

where now the 𝐻𝑞-structure in the middle term is twisted by the matrix(
𝑥1 ⊗ 1 + 1 ⊗ 𝑥1 0

𝑥1 ⊗ 1 + 1 ⊗ 𝑥1 − 𝑥2 ⊗ 1 − 1 ⊗ 𝑥2 𝑥2 ⊗ 1 + 1 ⊗ 𝑥2

)
. (6.5)

Now, we determine the relative Hochschild homology of the bimodule B. Tensoring equation (6.4)
on the left as a bimodule with B yields

𝑞4 (𝑥1+𝑥2 𝐵𝑥1+𝑥2) [2]𝑎
∗

𝛼 �� (𝑞2𝐵 ⊕ 𝑞2𝐵) [1]𝑎
∗

𝛽 �� 𝐵 , (6.6)

where the middle term has an 𝐻𝑞-structure twisted by equation (6.5) and 𝛼 and 𝛽 are given by

𝛼 =

(
−𝑥2 ⊗ 1 + 1 ⊗ 𝑥2

0

)
𝛽 =

(
0 𝑥2 ⊗ 1 − 1 ⊗ 𝑥2

)
.
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The kernel of 𝛼 is generated as a left R-module by

Γ =
1
2
(𝑥2 ⊗ 1 + 1 ⊗ 𝑥2 − 𝑥1 ⊗ 1 − 1 ⊗ 𝑥1).

It is easy to verify that 𝜕𝑞 (Γ) = (𝑥1 +𝑥2)Γ so that, after accounting for the extra twist, ker 𝛼 � 𝑅3(𝑥1+𝑥2) .
Note that in cok𝛼, we have 𝑥2 ⊗ 1 = 1 ⊗ 𝑥2 and 𝑥1 ⊗ 1 = 1 ⊗ 𝑥1, so cok𝛼 is generated as an R-module
by 1 ⊗ 1 and thus cok𝛼 � 𝑅. Similarly, ker 𝛽 � cok𝛽 � 𝑅.

These observations combined with the 𝐻𝑞-structure given in equation (6.6) yield the following result
for the relative Hochschild homology of B:

HH𝜕𝑞

𝑖 (𝐵) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅 if 𝑖 = 0

𝑞2𝑅 ⊕ 𝑞4𝑅 twisted by

(
2𝑥1 0
−2 𝑥1 + 3𝑥2

)
if 𝑖 = 1

𝑞6𝑅3(𝑥1+𝑥2) if 𝑖 = 2
0 otherwise.

(6.7)

Lemma 6.1. The braiding complex 𝑇 ⊗𝑛 simplifies in the following ways.

(i) In C𝜕𝑞 (𝑅, 𝑅, 𝑑0), one has 𝑇 ⊗𝑛 � (𝑎𝑡𝑞4)−
𝑛
2(

𝑞2(𝑛−1) 𝐵 (𝑛−1)𝑒1 [𝑛]𝑡𝑑
𝑝𝑛 �� 𝑞2(𝑛−2) 𝐵 (𝑛−2)𝑒1 [𝑛 − 1]𝑡𝑑

𝑝𝑛−1 �� · · ·
𝑝3 �� 𝑞2𝐵𝑒1 [2]𝑡𝑑

𝑝2 �� 𝐵 [1]𝑡𝑑
𝑏𝑟 �� 𝑅

)
.

(ii) In C𝜕𝑞 (𝑅, 𝑅, 𝜕0), one has 𝑇 ⊗𝑛 � (𝑞−3 [−1]𝑡
𝜕
)𝑛(

𝑞2(𝑛−1) 𝐵 (𝑛−1)𝑒1 [𝑛]𝑡
𝜕

𝑝𝑛 �� 𝑞2(𝑛−2) 𝐵 (𝑛−2)𝑒1 [𝑛 − 1]𝑡
𝜕

𝑝𝑛−1 �� · · ·
𝑝3 �� 𝑞2𝐵𝑒1 [2]𝑡

𝜕

𝑝2 �� 𝐵 [1]𝑡
𝜕

𝑏𝑟 �� 𝑅
)
,

where

𝑝2𝑖 = 1 ⊗ (𝑥2 − 𝑥1) − (𝑥2 − 𝑥1) ⊗ 1 𝑝2𝑖+1 = 1 ⊗ (𝑥2 − 𝑥1) + (𝑥2 − 𝑥1) ⊗ 1.

Proof. This is proved by induction on n. One uses homotopy equivalences

𝑞2𝑖𝐵𝑖𝑒1 ⊗ 𝑇 � 𝑞2(𝑖+1)𝐵 (𝑖+1)𝑒1

and then determining the images of the maps 𝑏𝑟 , 𝑝2𝑖 and 𝑝2𝑖+1 under these equivalences. �

Proposition 6.2. The 𝐻𝑞-HOMFLYPT homology of a (2, 𝑛) torus link, as an 𝐻𝑞-module depends on
the parity of n.

(i) If n is odd:

(𝑎𝑡𝑞4)−
𝑛
2 𝑎−1𝑡

( (
𝑞2 [1]𝑎

𝑑k[𝑥]
2𝑥 ⊕ 𝑞4 [2]𝑎

𝑑k[𝑥]
4𝑥

) ⊕
⊕

𝑖∈{2,4,...,𝑛−1}

(
𝑞2(𝑖−1)k[𝑥]2(𝑖−1)𝑥 ⊕ [1]𝑎

𝑑
���

𝑞2𝑖k[𝑥]
⊕

𝑞2𝑖+2k[𝑥]

��� ⊕ 𝑞2𝑖+4 [2]𝑎
𝑑k[𝑥]

2(𝑖+1)𝑥
)
[𝑖]𝑡𝑑

)

with the 𝐻𝑞-structure on the middle object ���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� given by
(
2𝑖𝑥 0
−2 (2𝑖 + 2)𝑥

)
.
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(ii) If n is even:

(𝑎𝑡𝑞4)−
𝑛
2 𝑎−1𝑡

( (
𝑞2 [1]𝑎

𝑑k[𝑥]
2𝑥 ⊕ 𝑞4 [2]𝑎

𝑑k[𝑥]
4𝑥

) ⊕
⊕

𝑖∈{2,4,...,𝑛−2}

(
𝑞2(𝑖−1)k[𝑥]2(𝑖−1)𝑥 ⊕ [1]𝑎

𝑑
���

𝑞2𝑖k[𝑥]
⊕

𝑞2𝑖+2k[𝑥]

��� ⊕ 𝑞2𝑖+4 [2]𝑎
𝑑k[𝑥]

2(𝑖+1)𝑥
)
[𝑖]𝑡𝑑

⊕
(
𝑞2(𝑛−1)k[𝑥1, 𝑥2]

(𝑛−1) (𝑥1+𝑥2) ⊕ [1]𝑎
𝑑
���

𝑞2𝑛k[𝑥1, 𝑥2]
⊕

𝑞2𝑛+2k[𝑥1, 𝑥2]

��� ⊕ 𝑞2𝑛+4 [2]𝑎
𝑑k[𝑥1, 𝑥2]

(𝑛+2) (𝑥1+𝑥2)
)
[𝑛]𝑡𝑑

)

with the 𝐻𝑞-structure on the middle object ���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� given by
(
2𝑖𝑥 0
−2 (2𝑖 + 2)𝑥

)
and the 𝐻𝑞 structure

on the middle object ���
𝑞2𝑛k[𝑥1, 𝑥2]

⊕

𝑞2𝑛+2k[𝑥1, 𝑥2]

��� given by
(
(𝑛 + 1)𝑥1 + (𝑛 − 1)𝑥2 0

−2 𝑛(𝑥1 + 𝑥2) + 2𝑥2

)
.

Proof. We sketch some of the details. It is clear that HH𝜕𝑞
• (𝑝2𝑖) = 0 and HH𝜕𝑞

• (𝑝2𝑖+1) = 2(𝑥2 − 𝑥1).
Then taking the Hochschild homology of the complex in Lemma 6.1 breaks up into a sum of pieces of
the form

HH𝜕𝑞
• (𝑞2𝐵)

HH𝜕𝑞
• (𝑏𝑟 ) �� HH𝜕𝑞

• (𝑅), HH𝜕𝑞
• (𝑞4𝑖𝐵2𝑖 (𝑥1+𝑥2) )

2(𝑥2−𝑥1) �� HH𝜕𝑞
• (𝑞2(2𝑖−1)𝐵 (2𝑖−1) (𝑥1+𝑥2) )

and (if n is even) the leftmost piece is

HH𝜕𝑞
• (𝑞2(𝑛−1)𝐵 (𝑛−1) (𝑥1+𝑥2) ).

The result follows using the Hochschild homologies of R calculated in equation (6.3) and of B
calculated in equation (6.7). Recall that HH𝜕𝑞

• (𝐵) is generated by elements of the form cok𝛽,cok𝛼, ker 𝛽
and ker 𝛼.

The morphism HH𝜕𝑞
• (𝑏𝑟) maps cok𝛽 and cok𝛼 isomorphically onto their images. On the other hand,

under HH𝜕𝑞
• (𝑏𝑟), the image of ker 𝛽 and ker 𝛼 identify the variables 𝑥1 and 𝑥2 in HH𝜕𝑞

• (𝑅). We call this
identified variable x.

The map

HH𝜕𝑞
• (𝑝2𝑖+1) : HH𝜕𝑞

• (𝑞4𝑖𝐵2𝑖 (𝑥1+𝑥2) )
2(𝑥2−𝑥1) �� HH𝜕𝑞

• (𝑞2(2𝑖−1)𝐵 (2𝑖−1) (𝑥1+𝑥2) )

has no kernel and the image also identifies 𝑥1 and 𝑥2 as a common variable x. �

Similarly, one has the following analagous p-version of the previous result.

Proposition 6.3. The bigraded 𝐻𝑞-HOMFLYPT p-homology of a (2, 𝑛) torus knot, as an 𝐻𝑞-module
depends on the parity of n.
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(i) If n is odd it is:

𝑞−3𝑛−2 [−𝑛]𝑡𝜕

(
𝑞4 [1]𝑡𝜕k[𝑥]

2𝑥 ⊕ 𝑞8 [2]𝑡𝜕k[𝑥]
4𝑥

) ⊕
⊕

𝑖∈{2,4,...,𝑛−1}
𝑞−3𝑛−2 ���𝑞2(𝑖−1)k[𝑥]2(𝑖−1)𝑥 ⊕ 𝑞2 [1]𝑡𝜕

���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� ⊕ 𝑞2𝑖+8 [2]𝑡𝜕k[𝑥]
2(𝑖+1)𝑥��� [𝑖 − 𝑛]𝑡𝜕

with the 𝐻𝑞-structure on the middle object ���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� given by
(
2𝑖𝑥 0
−2 (2𝑖 + 2)𝑥

)
.

(ii) If n is even it is:

𝑞−3𝑛−2 [−𝑛]𝑡𝜕

(
𝑞4 [1]𝑡𝜕k[𝑥]

2𝑥 ⊕ 𝑞8 [2]𝑡𝜕k[𝑥]
4𝑥

) ⊕
⊕

𝑖∈{2,4,...,𝑛−2}
𝑞−3𝑛−2 ���𝑞2(𝑖−1)k[𝑥]2(𝑖−1)𝑥 ⊕ 𝑞2 [1]𝑡𝜕

���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� ⊕ 𝑞2𝑖+8 [2]𝑡𝜕k[𝑥]
2(𝑖+1)𝑥��� [𝑖 − 𝑛]𝑡𝜕

⊕
𝑞−3𝑛−2 ���𝑞2(𝑛−1)k[𝑥1, 𝑥2]

(𝑛−1) (𝑥1+𝑥2) ⊕ 𝑞2 [1]𝑡𝜕
���

𝑞2𝑛k[𝑥1, 𝑥2]
⊕

𝑞2𝑛+2k[𝑥1, 𝑥2]

��� ⊕ 𝑞2𝑛+8 [2]𝑡𝜕k[𝑥1, 𝑥2]
(𝑛+2) (𝑥1+𝑥2)���

with the 𝐻𝑞-structure on the middle object ���
𝑞2𝑖k[𝑥]

⊕

𝑞2𝑖+2k[𝑥]

��� given by
(
2𝑖𝑥 0
−2 (2𝑖 + 2)𝑥

)
and the 𝐻𝑞 structure

on the middle object ���
𝑞2𝑛k[𝑥1, 𝑥2]

⊕

𝑞2𝑛+2k[𝑥1, 𝑥2]

��� given by
(
(𝑛 + 1)𝑥1 + (𝑛 − 1)𝑥2 0

−2 𝑛(𝑥1 + 𝑥2) + 2𝑥2

)
.

Corollary 6.4. In the stable category of 𝐻𝑞-modules, the slash homology of the 𝐻𝑞-HOMFLYPT
p-homology of a (2, 𝑛) torus link depends on the parity of n.
(i) If n is odd it is:

𝑞−3𝑛−2 [−𝑛]𝑡𝜕

(
𝑞𝑝+2𝑉𝑞

𝑝−2 [1]
𝑡
𝜕 ⊕ 𝑞𝑝+4𝑉𝑞

𝑝−4 [2]
𝑡
𝜕

) ⊕
⊕

𝑖∈{2,4,...,𝑛−1}
𝑞−3𝑛−2 ����𝑞𝑝𝑉𝑞

𝑝−2(𝑖−1) ⊕
����

𝑞𝑝+2𝑉𝑞
𝑝−2𝑖

⊕

𝑞𝑝+2𝑉𝑞
𝑝−2𝑖−2

���� [1]𝑡𝜕 ⊕ 𝑞𝑝+6𝑉𝑞
𝑝−2(𝑖+1) [2]

𝑡
𝜕

���� [𝑖 − 𝑛]𝑡𝜕.

(ii) If n is even it is:

𝑞−3𝑛−2 [−𝑛]𝑡𝜕

(
𝑞𝑝+2𝑉𝑞

𝑝−2 [1]
𝑡
𝜕 ⊕ 𝑞𝑝+4𝑉𝑞

𝑝−4 [2]
𝑡
𝜕

) ⊕
⊕

𝑖∈{2,4,...,𝑛−2}
𝑞−3𝑛−2 ����𝑞𝑝𝑉𝑞

𝑝−2(𝑖−1) ⊕
����

𝑞𝑝+2𝑉𝑞
𝑝−2𝑖

⊕

𝑞𝑝+2𝑉𝑞
𝑝−2𝑖−2

���� [1]𝑡𝜕 ⊕ 𝑞𝑝+6𝑉𝑞
𝑝−2𝑖−2 [2]

𝑡
𝜕

���� [𝑖 − 𝑛]𝑡𝜕

⊕
𝑞−3𝑛−2

��������

𝑞2𝑝𝑉𝑞
𝑝−(𝑛−1) ⊗ 𝑉𝑞

𝑝−(𝑛−1)
⊕(

𝑞2𝑝+2𝑉𝑞
𝑝−𝑛−1 ⊗ 𝑉𝑞

𝑝−𝑛+1 ⊕ 𝑞2𝑝+2𝑉𝑞
𝑝−𝑛 ⊗ 𝑉𝑞

𝑝−𝑛−2

)
[1]𝑡

𝜕

⊕

𝑞2𝑝+4𝑉𝑞
𝑝−(𝑛+2) ⊗ 𝑉𝑞

𝑝−𝑛−2 [2]
𝑡
𝜕

���������
.
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6.2. Example of the Jones invariant when q is generic

We will compute the Jones homology of a (2, 𝑛) torus link when the quantum parameter q is generic,
so we assume 𝜕𝑞 = 0. We denote this homology by H•,•(𝑇2,𝑛). As mentioned earlier, this more
classical homology was constructed from various perspectives in [Cau17], [QRS18] and [RW20], and
its formulation is built into Definition 5.4. Setting 𝜕𝑞 = 0 and not p-extending in the a or t directions
allows for a doubly graded theory rather than the singly graded theory of Section 5. We thus use the
grading shift conventions of Section 4.1.

Recall the Koszul resolution of R in equation (6.2). Then HH•(𝑅) with the induced Cautis differential
𝑑𝐶 is given by

𝑅

𝑞4𝑅

𝑥2
1

  ��������
𝑞4𝑅

𝑥2
2

!!��������

𝑞8𝑅

−𝑥2
2

���������� 𝑥2
1

����������

(6.8)

and HH•(𝐵) with 𝑑𝐶 is given by

𝑅

𝑞4𝑅

𝑥2
1+𝑥2

2

  ��������
𝑞6𝑅

𝑥2
2 (𝑥2−𝑥1)

!!��������

𝑞10𝑅

𝑥2
2 (𝑥1−𝑥2)

!!�������� 𝑥2
1+𝑥2

2

  ��������

. (6.9)

When n is even, the leftmost term in 𝑇 ⊗𝑛 maps by zero into the rest of the complex, so we need
to understand the homology of HH•(𝐵) by itself in this case. All of the maps in equation (6.9) are
injective so homology is concentrated in R. Thus, we need to find a basis of 𝑅/(𝑥2

1 + 𝑥2
2, 𝑥2

2 (𝑥2 − 𝑥1)).
In the quotient, note that 𝑥3

1 = 𝑥2
1𝑥1 = −𝑥1𝑥2

2 = −𝑥3
2. Since 𝑥3

2 = 𝑥1𝑥2
2, we get 𝑥4

2 = 𝑥1𝑥3
2 = −𝑥4

1. But also
𝑥4

2 = 𝑥2
2𝑥2

2 = 𝑥4
1. Thus, 𝑥4

1 = 𝑥4
2 = 0. Thus, the homology is spanned by

{1, 𝑥1, 𝑥2, 𝑥2
1, 𝑥1𝑥2, 𝑥2

1𝑥2}.

In the rest of the complex for 𝑇 ⊗𝑛, there are two types of maps we need to analyze. First, we study
HH•(𝑏𝑟) : HH•(𝐵) → HH•(𝑅).

𝑅
1↦→1

"" 𝑅

𝑞4𝑅

𝑥2
1+𝑥2

2

  ��������
𝑞6𝑅

𝑥2
2 (𝑥2−𝑥1)

!!��������

(
1 0
1 𝑥2 − 𝑥1

)
##
𝑞4𝑅

𝑥2
1

  ��������
𝑞4𝑅

𝑥2
2

!!��������

𝑞10𝑅

𝑥2
2 (𝑥1−𝑥2)

!!��������

𝑥2
1+𝑥2

2

  ��������
1↦→(𝑥2−𝑥1) $$ 𝑞8𝑅

−𝑥2
2

���������� 𝑥2
1

����������

. (6.10)

While it is not very difficult to compute the total homology of this bicomplex, we use a fact from the
proof of [RW20, Theorem 6.2]. According to this trick, we may calculate homology with respect to 𝑑𝐶
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first and then with respect to the topological differential 𝑑𝑡 . Thus, the homology of the bicomplex with
respect to the total differential is spanned by {𝑡𝑥2

1, 𝑡𝑥2
1𝑥2}.

Next, we analyze HH•(𝑝2𝑖+1) : HH•(𝑞
4𝑖𝐵) −→ HH•(𝑞

4𝑖−2𝐵).

𝑞4𝑖𝑅

2(𝑥2−𝑥1)
"" 𝑞4𝑖−2𝑅

𝑞4𝑖+4𝑅

𝑥2
1+𝑥2

2

%%���������
𝑞4𝑖+6𝑅

𝑥2
2 (𝑥2−𝑥1)

&&���������
( 2(𝑥2−𝑥1) 0

0 2(𝑥2−𝑥1)

)
''
𝑞4𝑖+2𝑅

𝑥2
1+𝑥2

2

%%         
𝑞4𝑖+4𝑅

𝑥2
2 (𝑥2−𝑥1)

&&!!!!!!!!!

𝑞4𝑖+10𝑅

𝑥2
2 (𝑥1−𝑥2)

&&���������

𝑥2
1+𝑥2

2

%%���������
2(𝑥2−𝑥1) $$ 𝑞4𝑖+8𝑅

𝑥2
2 (𝑥1−𝑥2)

&&!!!!!!!!! 𝑥2
1+𝑥2

2

%%         

. (6.11)

Again using the proof of [RW20, Theorem 6.2], we compute the homology with respect to 𝑑𝐶 and then
with respect to 𝑑𝑡 to obtain the total homology of this bicomplex is spanned by

{𝑞4𝑖𝑡2𝑖+1𝑥2
1, 𝑞4𝑖𝑡2𝑖+1𝑥2

1𝑥2, 𝑞4𝑖−2𝑡2𝑖1, 𝑞4𝑖−2𝑡2𝑖𝑥1}.

We now assemble all of this information together to get the homology of the (2, 𝑛) torus link. Recall
that the complex used for 𝑇 ⊗𝑛 comes with a shift of (𝑎𝑡)

−𝑛
2 𝑞−2𝑛 and the Hochschild homology functor

comes with a shift of 𝑎−1𝑡. Thus, there is an overall shift of 𝑎
−𝑛−2

2 𝑡
−𝑛+2

2 𝑞−2𝑛. Specializing 𝑎 = 𝑞2𝑡 yields
an overall shift of 𝑞−3𝑛−2𝑡−𝑛. Thus, we get the following homology in terms of Poincaré series.

• If n is odd, then the bigraded Poincaré series of H•,•(𝑇2,𝑛) is equal to

𝑞−3𝑛−2𝑡−𝑛 ·
(
(1 + 𝑞2)𝑞4𝑡 (1 + 𝑞4𝑡2 + 𝑞8𝑡4 + · · · + 𝑞2𝑛−2𝑡𝑛−1) + (1 + 𝑞2)𝑞2𝑡2 (1 + 𝑞4𝑡2 + 𝑞8𝑡4 + · · · + 𝑞2𝑛−6𝑡𝑛−3)

)
.

• If n is even, then the bigraded Poincaré series of H•,•(𝑇2,𝑛) is equal to

𝑞−3𝑛−2𝑡−𝑛·
(
(1 + 𝑞2)𝑞4𝑡 (1 + 𝑞4𝑡2 + · · · + 𝑞2𝑛−4𝑡𝑛−2) + (1 + 𝑞2)𝑞2𝑡2(1 + 𝑞4𝑡2 + · · · + 𝑞2𝑛−8𝑡𝑛−4)

+ 𝑡𝑛𝑞2𝑛−2 (1 + 2𝑞2 + 2𝑞4 + 𝑞6)
)
.

Remark 6.5. This was also computed (for 𝑛 = 2, 3) in [QRS18] and [RW20]. It is interesting to note
that this is different from the Khovanov homology of the Hopf link and trefoil.

6.3. Example of the Jones invariant when 𝒒-prime root of unity

To compute the p-DG Jones invariant, we will utilize the following auxiliary tool.

Proposition 6.6. Let

𝑀• =

(
· · ·

𝜕𝑡
−→ 𝑀𝑖+1

𝜕𝑡
−→ 𝑀𝑖

𝜕𝑡
−→ 𝑀𝑖−1

𝜕𝑡
−→ · · ·

)
be a contractible p-complex of 𝐻𝑞 = k[𝜕𝑞]/(𝜕

𝑝
𝑞 )-modules. Then the totalized complex (T (𝑀•),

𝜕𝑇 = 𝜕𝑡 + 𝜕𝑞) is acyclic.
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Proof. Since 𝑀• is contractible, there is an 𝐻𝑞-linear map 𝜎 : 𝑀•−→𝑀•+1 such that [𝜎, 𝜕𝑡 ] = Id𝑀 by
Lemma 2.4. Thus, we have

[𝜎, 𝜕𝑇 ] = [𝜎, 𝜕𝑡 + 𝜕𝑞] = [𝜎, 𝜕𝑡 ] + [𝜎, 𝜕𝑞] = Id𝑀 .

The result follows again from Lemma 2.4. �

We will be applying Proposition 6.6 in the following situation. Suppose 𝑁• is a p-complex of 𝐻𝑞-
modules whose boundary maps preserve the 𝐻𝑞-module structure. Further, let 𝑀• be a sub p-complex
that is closed under the 𝐻𝑞-action, and there is a map 𝜎 on 𝑀• as in Proposition 6.6 that preserves the
𝐻𝑞-module structure. Then, when totalizing the p-complexes, we have T (𝑀•) ⊂ T (𝑁•) and the natural
projection map

T (𝑁•)−→T (𝑁•)/T (𝑀•)

is a quasi-isomorphism. Similarly, if 𝑀• is instead a quotient complex of 𝑁• that satisfies the condition
of Proposition 6.6, and 𝐾• is the kernel of the natural projection map

0−→𝐾•−→𝑁•−→𝑀•−→0,

then the inclusion map of totalized complexes T (𝐾•)−→T (𝑁•) is a quasi-isomorphism.
We modify the the calculation of the homology in the previous section of the (2, 𝑛) torus link to

account for the differential 𝜕𝑞 . Recall that in this singly graded theory that 𝑎 = 𝑡𝑞2 and 𝑡 = [1]𝑞
𝜕

.
Consequently, [1]𝑎

𝜕
= 𝑞2 [1]𝑡

𝜕
= 𝑞2 [1]𝑞

𝜕
.

First, we study 𝑝HH•(𝑏𝑟) : 𝑝HH•(𝐵) [1]𝑞𝜕 −→ 𝑝HH•(𝑅),

𝑅 [1]𝑞
𝜕

1↦→1
"" 𝑅

𝑞4𝑅 [1]𝑞
𝜕
[1]𝑞

𝜕

𝑥2
1+𝑥

2
2

������������
𝑞6𝑅 [1]𝑞

𝜕
[1]𝑞

𝜕

𝑥2
2 (𝑥2−𝑥1 )

((������������

(
1 0
1 𝑥2 − 𝑥1

)
""
𝑞4𝑅2𝑥1 [1]𝑞

𝜕

𝑥2
1

		""""""""""""
𝑞4𝑅2𝑥2 [1]𝑞

𝜕

𝑥2
2

))############

𝑞10𝑅3𝑒1 [1]𝑞
𝜕
[2]𝑞

𝜕

𝑥2
2 (𝑥1−𝑥2 )

((�����������

𝑥2
1+𝑥

2
2

�����������
1↦→(𝑥2−𝑥1 ) �� 𝑞8𝑅2𝑒1 [2]𝑞

𝜕

−𝑥2
2

))$$$$$$$$$$ 𝑥2
1

		����������

,

(6.12)

where the object 𝑞4𝑅[1]𝑞
𝜕
[1]𝑞

𝜕
⊕ 𝑞6𝑅[1]𝑞

𝜕
[1]𝑞

𝜕
in the left square is twisted by the matrix(

2𝑥1 0
2 𝑥1 + 3𝑥2

)
. (6.13)

Filtering the total complex (6.12) and applying Proposition 6.6, we obtain that the total p-complex is
quasi-isomorphic to

k〈1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥2
1, 𝑥2

1𝑥2〉[1]𝑞𝜕
1 �� k〈1, 𝑥1, 𝑥2, 𝑥1𝑥2〉 . (6.14)

Let us illustrate how this is obtained. For instance, the p-complex

𝑞8𝑅2𝑒1 [2]𝑞
𝜕

𝜙=(−𝑥2
2 ,𝑥2

1 )
−−−−−−−−−→ Im(𝜙) ⊂

(
𝑞4𝑅2𝑥1 [1]𝑞

𝜕
⊕ 𝑞4𝑅2𝑥2 [1]𝑞

𝜕

)
is a quotient of the total p-complex of the rightmost square. The map 𝜙 is an 𝐻𝑞-intertwining
isomorphism onto its image because of the 𝐻𝑞-module twists imposed on the modules. Note that this
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p-complex (ignoring q-grading shifts)

𝑅2𝑒1
𝜙=(−𝑥2

2 ,𝑥2
1 )

−−−−−−−−−→
�

Im(𝜙) = Im(𝜙) = · · · = Im(𝜙),

where Im(𝜙) is repeated 𝑝 − 1 times, is a contractible p-complex of 𝐻𝑞-modules. Proposition 6.6 then
applies to this quotient complex and shows that it contributes nothing to the total slash homology.

The p-complex in equation (6.14), in turn, is quasi-isomorphic to

k〈𝑥2
1, 𝑥2

1𝑥2〉[1]𝑞𝜕 .

This is quasi-isomorphic to 𝑞5𝑉1 [1]𝑞𝜕 .
Once again when n is even, the leftmost term in 𝑇 ⊗𝑛 maps by zero into the rest of the complex, so

we have to understand the total homology of 𝑝HH•(𝑞
2(𝑛−1)𝐵 (𝑛−1)𝑒1 [𝑛]𝑞

𝜕
). Filtering

𝑞2(𝑛−1)𝑅 (𝑛−1)𝑒1 [𝑛]𝑞
𝜕

𝑞2(𝑛+1)𝑅 (𝑛−1)𝑒1 [𝑛 + 1]𝑞
𝜕

𝑥2
1+𝑥2

2
**���������������

𝑞2(𝑛+2)𝑅 (𝑛−1)𝑒1 [𝑛 + 1]𝑞
𝜕

𝑥2
2 (𝑥2−𝑥1)

++���������������

𝑞2(𝑛+4)𝑅 (𝑛+2)𝑒1 [𝑛 + 2]𝑞
𝜕

𝑥2
2 (𝑥1−𝑥2)

++��������������� 𝑥2
1+𝑥2

2

**���������������

, (6.15)

where the middle terms 𝑞2(𝑛+1)𝑅 (𝑛−1)𝑒1 [𝑛]𝑞
𝜕
[1]𝑞

𝜕
⊕ 𝑞2(𝑛+2)𝑅 (𝑛−1)𝑒1 [𝑛]𝑞

𝜕
[1]𝑞

𝜕
are further twisted by the

matrix (6.13), yields that equation (6.15) is quasi-isomorphic to

𝑞2(𝑛−1)k〈1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥2
1, 𝑥2

1𝑥2〉[𝑛]
𝑞
𝜕

with a differential inherited from the polynomial algebra and twisted by (𝑛 − 1)𝑒1. Explicitly, the
differential acts on the basis by

1
𝑛−1

����
��
��
��
�

𝑛−1

��%
%%

%%
%%

%%
%

𝑥1

𝑛
��

𝑛−1

����
���

���
���

���
�� 𝑥2

𝑛−1

��
−𝑛
,,���

���
���

���
���

��

𝑥2
1

2𝑛

--&
&&

&&
&&

& 𝑥1𝑥2

𝑥2
1𝑥2

. (6.16)

This is isomorphic to the direct sum of p-complexes

1

𝑛−1

��

𝑥1 − 𝑥2

2𝑛
��

𝑥1 + 𝑥2

2(𝑛−1)

��

⊕
𝑥2

1

2𝑛

��
𝑥1𝑥2 𝑥2

1𝑥2

.
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Thus, the total homology of 𝑝HH•(𝑞
2(𝑛−1)𝐵 (𝑛−1)𝑒1 [𝑛]𝑞

𝜕
) is isomorphic to the following p-complex

dependent of the characteristic of the ground field

𝑌𝑛
2

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞2𝑛𝑉2 [𝑛]

𝑞
𝜕
⊕ 𝑞2𝑛+2𝑉2 [𝑛]

𝑞
𝜕

if 𝑝 � 𝑛 − 1, 𝑛

𝑞2(𝑛−1) (𝑉0 ⊕ 𝑞2𝑉0 ⊕ 𝑞4𝑉0) [𝑛]
𝑞
𝜕
⊕ 𝑞2𝑛+2𝑉2 [𝑛]

𝑞
𝜕

if 𝑝 | 𝑛 − 1, 𝑝 � 𝑛

𝑞2𝑛𝑉2 [𝑛]
𝑞
𝜕
⊕ 𝑞2𝑛 (𝑉0 ⊕ 𝑞2𝑉0 ⊕ 𝑞4𝑉0) [𝑛]

𝑞
𝜕

if 𝑝 � 𝑛 − 1, 𝑝 | 𝑛

. (6.17)

Finally, we analyze 𝑝HH•(𝑝2𝑖+1) : 𝑝HH•(𝑞
4𝑖𝐵2𝑖𝑒1 [2𝑖 + 1]𝑞

𝜕
)−→HH•(𝑞

4𝑖−2𝐵 (2𝑖−1)𝑒1 [2𝑖]𝑞
𝜕
), where

𝑝HH•(𝑞
4𝑖𝐵2𝑖𝑒1 [2𝑖 + 1]𝑞

𝜕
) =

𝑞4𝑖𝑅2𝑖𝑒1 [2𝑖 + 1]𝑞
𝜕

𝑞4𝑖+4𝑅[2𝑖 + 2]𝑞
𝜕

𝑥2
1+𝑥2

2
��������������

𝑞4𝑖+6𝑅[2𝑖 + 2]𝑞
𝜕

𝑥2
2 (𝑥2−𝑥1)

..������������

𝑞4𝑖+10𝑅 (2𝑖+3)𝑒1 [2𝑖 + 3]𝑞
𝜕

𝑥2
2 (𝑥1−𝑥2)

..������������ 𝑥2
1+𝑥2

2

��������������

, (6.18)

and

𝑝HH•(𝑞
4𝑖−2𝐵 (2𝑖−1)𝑒1 [2𝑖]𝑞

𝜕
) =

𝑞4𝑖−2𝑅 (2𝑖−1)𝑒1 [2𝑖]𝑞
𝜕

𝑞4𝑖+2𝑅 [2𝑖 + 1]𝑞
𝜕

𝑥2
1+𝑥2

2
���������������

𝑞4𝑖+4𝑅 [2𝑖 + 1]𝑞
𝜕

𝑥2
2 (𝑥2−𝑥1)

..�������������

𝑞4𝑖+8𝑅 (2𝑖+2)𝑒1 [2𝑖 + 2]𝑞
𝜕

𝑥2
2 (𝑥2−𝑥1)

..������������� 𝑥2
1+𝑥2

2

���������������

],

(6.19)

where the differentials for both objects in the middle horizontal rows of equations(6.18) and (6.19)
are twisted by equation (6.13) and 𝑝HH•(𝑝2𝑖+1) = 2(𝑥2 − 𝑥1) (diagonal multiplication by 2(𝑥2 − 𝑥1)).
Filtering this total complex yields the total complex

𝑞4𝑖k〈1, 𝑥1, 𝑥2, 𝑥2
1, 𝑥1𝑥2, 𝑥2

1𝑥2〉[2𝑖 + 1]𝑞
𝜕

2(𝑥2−𝑥1) �� 𝑞4𝑖−2k〈1, 𝑥1, 𝑥2, 𝑥2
1, 𝑥1𝑥2, 𝑥2

1𝑥2〉[2𝑖]𝑞
𝜕

. (6.20)

This is quasi-isomorphic to

𝑞4𝑖k〈𝑥2
1, 𝑥2

1𝑥2〉[2𝑖 + 1]𝑞
𝜕

⊕
𝑞4𝑖−2k〈1, 𝑥1〉[2𝑖]𝑞

𝜕
, (6.21)

where the differential on the basis elements is given by

𝑥2
1

4𝑖+2

��

1

4𝑖−2

��

⊕
𝑥2

1𝑥2 𝑥1

.
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Thus, the total homology is isomorphic to the p-complex

𝑋𝑖 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞4𝑖+5𝑉1 [2𝑖 + 1]𝑞

𝜕
⊕ 𝑞4𝑖−1𝑉1 [2𝑖]𝑞

𝜕
if 𝑝 � 2𝑖 + 1, 2𝑖 − 1

𝑞4𝑖+4(𝑉0 ⊕ 𝑞2𝑉0) [2𝑖 + 1]𝑞
𝜕
⊕ 𝑞4𝑖−1𝑉1 [2𝑖]𝑞

𝜕
if 𝑝 | 2𝑖 + 1, 𝑝 � 2𝑖 − 1

𝑞4𝑖+5𝑉1 [2𝑖 + 1]𝑞
𝜕
⊕ 𝑞4𝑖−2(𝑉0 ⊕ 𝑞2𝑉0) [2𝑖]𝑞

𝜕
if 𝑝 � 2𝑖 + 1, 𝑝 | 2𝑖 − 1

. (6.22)

All of these computations together with an overall shift of 𝑞−3𝑛−2 [−𝑛]𝑞
𝜕

yields the slash homology
of the (2, 𝑛) torus link.

𝑝H(𝑇2,𝑛) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞−3𝑛−2 [−𝑛]𝑞

𝜕

(
𝑞5𝑉1 [1]𝑞𝜕 ⊕

⊕ 𝑛−1
2

𝑖=1 𝑋𝑖

)
if 2 � 𝑛

𝑞−3𝑛−2 [−𝑛]𝑞
𝜕

(
𝑞5𝑉1 [1]𝑞𝜕 ⊕

⊕ 𝑛−2
2

𝑖=1 𝑋𝑖 ⊕ 𝑌𝑛
2

)
if 2 | 𝑛

, (6.23)

where 𝑋𝑖 is the p-complex in equation (6.22) and 𝑌𝑛
2

is the p-complex in equation (6.17). It is interesting
to note that the homology depends upon the prime p.
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