Eicosapentaenoic acid (EPA) prevents TNF-α-induced NF-αB and ERK 1/2 activation in 3T3-L1 adipocytes

S. Lorente-Cebrián, M. Bustos, A. Marti, J. A. Martínez and M. J. Moreno-Aliaga

1Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, 31008 Pamplona, Spain and 2Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain

High levels of pro-inflammatory cytokine TNF-α in obesity have been associated with the development of insulin resistance. Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid of the omega-3 family found in fish and fish oils. Many studies have reported beneficial effects of this fatty acid on obesity and insulin resistance that might be linked to EPA’s anti-inflammatory properties. Thus, the aim of the present study was to investigate the potential anti-inflammatory mechanisms of EPA in adipocytes. Seven days post-differentiation 3T3-L1 adipocytes were serum-starved overnight and then incubated with the appropriate treatment: EPA (100 and 200 μM) and/or TNF-α (1 ng/ml). NF-αB binding activity was analysed by electrophoretic mobility shift assay (EMSA) in 3T3-L1 adipocytes. Western blot was performed using antibodies for phospho-ERK 1/2 (Thr202/Tyr204) and ERK. Nuclear extracts from TNF-α-treated adipocytes showed a strong increase (P<0.05) in the abundance of NF-αB-DNA complexes as compared to control. EPA (100 and 200 μM) did not have any significant effect on NF-αB binding activity. However, the presence of EPA was able to partially prevent TNF-α-induced NF-αB-DNA binding. On the other hand, TNF-α treatment resulted in a positive activation of ERK 1/2 (Thr202/Tyr204) which was also prevented by EPA-treatment both in 3T3-L1 pre-adipocytes (completely) and adipocytes (partially). These findings suggest that EPA involves anti-inflammatory mechanisms in adipocytes which may contribute to explain the insulin sensitizing properties of this fatty acid.