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1. Introduction

Let f(x) be continuous in (—n, 7) and periodic with period 2n and let

o -]
f(x) ~ 923 + Y (a,cosvx+b,sinvx) =Y A[x),
v=0

v=1

1) = (1- ) 4.

v
The aim of this paper is to prove the following theorem.

THEOREM. Let o« > 0, a > 0, ¢, (1) = f(x+1)+f(x—1)—2f(x), and let w,(h)
be the modulus of smoothness of f(x) so that

w,(h) = sup |[$,()|| = sup max |$,(1)l.
e <h

R0 = = [P drro (s (1)

Then

t

uniformly for all values of x.

It was proved in [2]and [3] that this theorem is true when x is a positive integer
and any real number greater than 3.

It follows from this theorem that the Fourier series of the continuous and
periodic function f(x) is uniformly summable Riesz of any positive order to f(x).

2. A lemma

For the proof of the above theorem, we require the following lemma.

LeEMMA. Let x > 0, and let
1
hy(z) =f (1—u)y"'e™du.
0
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Then for z = x+iy, x/|z| = ¢ > 0.

) h(z) = [(a)em® el i1 e=2) o(i)

z® z z* z* |z|*

as |z| - oo.

PrOOF. We have
io 1+id 1 .
) h(z) = (J‘ +f +J )(1—u)"1e'“du = A+B+C, say
0 i 1+id
Now
J
A= if (A—iuy e *du
0

s s Yy )i [P
= if e_z"du+(1-—1)f ue” “du-— (a=1)(x—2) 2)lf u’e™ ™ du
0

[} 2! 0

)
+0 (f ude™ du)
0

if e-z“du+(oz—l)f ue_z"du—wf ule™*du
0

0 2! 0

€)

+0(e"%)+0 ( 1)

x4

L oc—21 _ (1—1)(301—2)1 +0 (L“)
z z z 12|

By a change of variable,

1 1
4) B= e_"zj (1—is—u)y '™ du = e—’szf O(e™)du = O(e™*) =0 ( 1 ),
0 0

J2*
and
. 3
C — (_i)aelzf ua—le—zudu
0
= (—i)“ei’f u* e ™™ du+0 (f u“_le_x“du)
0 )
(hi)aeiz * a=1_-—u —ox/2
(%) =21 u e "du+0(e”?)
z* 0
i(z—na/2)
z [z]

(1) follows from (2), (3), (4) and (5).
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3] Typical means of Fourier series

3. Proof of the theorem
Let

=

7.(1) = 17C(2).
Then (see [1] page 568)

3919 = TEH | :}1 06 (L) .

1
f (1—u)"'costudu (x> 0),
0

It follows from the lemma that, for ¢ = a,

cos (f— cx_n)
2 1

1
+ +o(=).
e ()t (t‘*)

71 +a(t) =

Hence

RI®)—1(x) = ”“:” (f :y1+,<r)¢x (5) ar+ f m—gt——j—) o

t
o e

I'(a+1)

(I, +1,+15+1,).

Since 71 4,(r) = 0(1) for 0 < ¢ < a, we have
h=ofenG)) =0 (e ()
A A

5 (H—jvn) 5 (t+?_7g)

I, = i fa+ncos (t— om:)
2T, 2/ L@+2vmy™t (t+2v+1n) !

(t_ M)

w otz COS 2 t42vn t4+2v+1n
A a+t1 ¢x —2¢x

a  (t+2v+1n) i A

+, (t+2;+2n):| dt

Now

v=0
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at+n
AR t 1 1

+f cos (t— —) M (—) [ — ——————:l dt
a 2 ¢ /1 ta+1 2(t+n)a+1
o fatrn

-1y cos (t— O(_TE) 5. (t+2vn) I: 1 - 2
y=1da 2 yl (t+2v—1n)y**'  (t+2vn)**!

1
(t+2v+1n)”
= J1+J2+J3,

say. The expression in the square brackets in J; is equal to

¢y()+¢z(),

+ t+(2v+1)n

where
_t+(2v+ )
-

and z =

Hence it doe not exceed in modulus 2w, (n/1). Whence it follows that

o)
oo () <o )

Next, the expression in the square brackets in J; is O(1/v**?) uniformly in
a <t < a+n Also, uniformlyina £t < a+mn,

(5 =0 (e ()

It is clear that

Hence

Again, uniformly in ¢ = a,

(3) =0 (v ()
o ool o)
Finally (x)—f(x) = F(“+1)13+o( (i))

- _;if "’x_g/i)dtJro(wz (%))
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