ON TYPICAL MEANS OF FOURIER SERIES
 OF CONTINUOUS FUNCTIONS

B. KWEE
(Received 21 July 1969, revised 2 December 1969)
Communicated by E. Strzelecki

1. Introduction

Let $f(x)$ be continuous in $(-\pi, \pi)$ and periodic with period 2π and let

$$
\begin{aligned}
& f(x) \sim \frac{a_{0}}{2}+\sum_{v=1}^{\infty}\left(a_{v} \cos v x+b_{v} \sin v x\right)=\sum_{v=0}^{\infty} A_{v}(x) \\
& R_{\lambda}^{\alpha}(x)=\sum_{v \leqq \lambda}\left(1-\frac{v}{\lambda}\right)^{\alpha} A_{v}(x)
\end{aligned}
$$

The aim of this paper is to prove the following theorem.
Theorem. Let $\alpha>0, a>0, \phi_{x}(t)=f(x+t)+f(x-t)-2 f(x)$, and let $\omega_{2}(h)$ be the modulus of smoothness of $f(x)$ so that

$$
\omega_{2}(h)=\sup _{|t| \leqq h}\left\|\phi_{x}(t)\right\|=\sup _{|t| \leqq h} \max _{x}\left|\phi_{x}(t)\right| .
$$

Then

$$
R_{\lambda}^{\alpha}(x)-f(x)=\frac{\alpha}{\pi} \int_{a}^{\infty} \frac{\phi_{x}(t / \lambda)}{t^{2}} d t+O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

uniformly for all values of x.
It was proved in [2] and [3] that this theorem is true when x is a positive integer and any real number greater than 3 .

It follows from this theorem that the Fourier series of the continuous and periodic function $f(x)$ is uniformly summable Riesz of any positive order to $f(x)$.

2. A lemma

For the proof of the above theorem, we require the following lemma.
Lemma. Let $\alpha>0$, and let

$$
h_{\alpha}(z)=\int_{0}^{1}(1-u)^{\alpha-1} e^{i z u} d u
$$

Then for $z=x+i y, x /|z| \geqq c>0$.

$$
\begin{equation*}
h_{\alpha}(z)=\frac{\Gamma(\alpha) e^{i(z-\pi \alpha / 2)}}{z^{\alpha}}+\frac{i}{z}+\frac{\alpha-1}{z^{2}}-\frac{i(\alpha-1)(\alpha-2)}{z^{3}}+O\left(\frac{1}{|z|^{4}}\right) \tag{1}
\end{equation*}
$$

as $|z| \rightarrow \infty$.
Proof. We have

$$
\begin{equation*}
h_{a}(z)=\left(\int_{0}^{i \delta}+\int_{i \delta}^{1+i \delta}+\int_{1+i \delta}^{1}\right)(1-u)^{\alpha-1} e^{i z u} d u=A+B+C, \text { say } \tag{2}
\end{equation*}
$$

Now

$$
\begin{aligned}
A= & i \int_{0}^{\delta}(1-i u)^{\alpha-1} e^{-z u} d u \\
= & i \int_{0}^{\delta} e^{-z u} d u+(\alpha-1) \int_{0}^{\delta} u e^{-z u} d u-\frac{(\alpha-1)(\alpha-2) i}{2!} \int_{0}^{\delta} u^{2} e^{-z u} d u \\
& +O\left(\int_{0}^{\delta} u^{3} e^{-x u} d u\right)
\end{aligned}
$$

(3)

$$
\begin{aligned}
= & i \int_{0}^{\infty} e^{-z u} d u+(\alpha-1) \int_{0}^{\infty} u e^{-z u} d u-\frac{(\alpha-1)(\alpha-2) i}{2!} \int_{0}^{\infty} u^{2} e^{-z u} d u \\
& +O\left(e^{-\delta x / 2}\right)+O\left(\frac{1}{x^{4}}\right) \\
= & \frac{i}{z}+\frac{\alpha-1}{z^{2}}-\frac{(\alpha-1)(\alpha-2) i}{z^{3}}+O\left(\frac{1}{|z|^{4}}\right) .
\end{aligned}
$$

By a change of variable,
(4) $B=e^{-\delta z} \int_{0}^{1}(1-i \delta-u)^{x-1} e^{i z u} d u=e^{-\delta z} \int_{0}^{1} O\left(e^{-y u}\right) d u=O\left(e^{-\delta x}\right)=O\left(\frac{1}{|z|^{4}}\right)$, and

$$
\begin{align*}
C & =(-i)^{x} e^{i z} \int_{0}^{\delta} u^{\alpha-1} e^{-z u} d u \\
& =(-i)^{\alpha} e^{i z} \int_{0}^{\infty} u^{\alpha-1} e^{-z u} d u+O\left(\int_{\delta}^{\infty} u^{\alpha-1} e^{-x u} d u\right) \\
& =\frac{(-i)^{\alpha} e^{i z}}{z^{x}} \int_{0}^{\infty} u^{\alpha-1} e^{-u} d u+O\left(e^{-\delta x / 2}\right) \tag{5}\\
& =\frac{\Gamma(\alpha) e^{l(z-\pi \alpha / 2)}}{z^{\alpha}}+O\left(\frac{1}{|z|^{4}}\right) .
\end{align*}
$$

(1) follows from (2), (3), (4) and (5).

3. Proof of the theorem

Let

$$
\begin{aligned}
C_{\alpha}(t) & =\frac{t^{\alpha}}{\Gamma(\alpha)} \int_{0}^{1}(1-u)^{\alpha-1} \cos t u d u \quad(\alpha>0) \\
\gamma_{\alpha}(t) & =t^{-\alpha} C_{\alpha}(t)
\end{aligned}
$$

Then (see [1] page 568)

$$
R_{\lambda}^{\alpha}(x)-f(x)=\frac{\Gamma(\alpha+1)}{\pi} \int_{0}^{\infty} \gamma_{1+\alpha}(t) \phi_{x}\left(\frac{t}{\lambda}\right) d t
$$

It follows from the lemma that, for $t \geqq a$,

$$
\gamma_{1+\alpha}(t)=\frac{\cos \left(t-\frac{\alpha \pi}{2}\right)}{t^{1+\alpha}}+\frac{1}{\Gamma(\alpha) t^{2}}+O\left(\frac{1}{t^{4}}\right)
$$

Hence

$$
\begin{aligned}
R_{\lambda}^{\alpha}(x)-f(x)= & \frac{\Gamma(\alpha+1)}{\pi}\left(\int_{0}^{a} \gamma_{1+\alpha}(t) \phi_{x}\left(\frac{t}{\lambda}\right) d t+\int_{a}^{\infty} \frac{\cos \left(t-\frac{\alpha \pi}{2}\right)}{t^{1+\alpha}} \phi_{x}\left(\frac{t}{\lambda}\right) d t\right. \\
& \left.+\frac{1}{\Gamma(\alpha)} \int_{a}^{\infty} \frac{\phi_{x}\left(\frac{t}{\lambda}\right)}{t^{2}} d t+\int_{a}^{\infty} O\left(\frac{1}{t^{4}}\right) \phi_{x}\left(\frac{t}{\lambda}\right) d t\right) \\
= & \frac{\Gamma(\alpha+1)}{\pi}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)
\end{aligned}
$$

Since $\gamma_{1+x}(t)=0(1)$ for $0<t \leqq a$, we have

$$
I_{1}=O\left(\omega_{2}\left(\frac{a}{\lambda}\right)\right)=O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right) .
$$

Now

$$
\begin{aligned}
I_{2}= & \sum_{v=0}^{\infty} \int_{a}^{a+\pi} \cos \left(t-\frac{\alpha \pi}{2}\right)\left[\frac{\phi_{x}\left(\frac{t+2 v \pi}{\lambda}\right)}{(t+2 v \pi)^{\alpha+1}}-\frac{\phi_{x}\left(\frac{t+\overline{2 v+1} \pi}{\lambda}\right)}{(t+\overline{2 v+1} \pi)^{\alpha+1}}\right] d t \\
= & \frac{1}{2} \sum_{v=0}^{\infty} \int_{a}^{a+\pi} \frac{\cos \left(t-\frac{\alpha \pi}{2}\right)}{(t+\overline{2 v+1} \pi)^{\alpha+1}}\left[\phi_{x}\left(\frac{t+2 v \pi}{\lambda}\right)-2 \phi_{x}\left(\frac{t+\overline{2 v+1} \pi}{\lambda}\right)\right. \\
& \left.+\phi_{x}\left(\frac{t+\overline{2 v+2 \pi}}{\lambda}\right)\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{a}^{a+\pi} \cos \left(t-\frac{\alpha \pi}{2}\right) \phi_{x}\left(\frac{t}{\lambda}\right)\left[\frac{1}{t^{\alpha+1}}-\frac{1}{2(t+\pi)^{\alpha+1}}\right] d t \\
& \quad-\frac{1}{2} \sum_{v=1}^{\infty} \int_{a}^{\grave{a}+\pi} \cos \left(t-\frac{\alpha \pi}{2}\right) \phi_{x}\left(\frac{t+2 v \pi}{\lambda}\right)\left[\frac{1}{(t+\overline{2 v-1} \pi)^{\alpha+1}}-\frac{2}{(t+2 v \pi)^{\alpha+1}}\right. \\
& \left.+\frac{1}{(t+\overline{2 v+1} \pi)^{\alpha+1}}\right] d t \\
& = \\
& J_{1}+J_{2}+J_{3}
\end{aligned}
$$

say. The expression in the square brackets in J_{1} is equal to

$$
\phi_{y}\left(\frac{\pi}{\lambda}\right)+\phi_{z}\left(\frac{\pi}{\lambda}\right)
$$

where

$$
y=x+\frac{t+(2 v+1) \pi}{\lambda} \text { and } z=x-\frac{t+(2 v+1) \pi}{\lambda}
$$

Hence it doe not exceed in modulus $2 \omega_{2}(\pi / \lambda)$. Whence it follows that

$$
J_{1}=O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

It is clear that

$$
J_{2}=O\left(\omega_{2}\left(\frac{a+\pi}{\lambda}\right)\right)=O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

Next, the expression in the square brackets in J_{3} is $0\left(1 / v^{x+3}\right)$ uniformly in $a \leqq t \leqq a+\pi$. Also, uniformly in $a \leqq t \leqq a+\pi$,

$$
\phi_{x}\left(\frac{t+2 v \pi}{\lambda}\right)=O\left(v^{2} \omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

Hence

$$
J_{3}=O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

Again, uniformly in $t \geqq a$,

$$
\phi_{x}\left(\frac{t}{\lambda}\right)=O\left(t^{2} \omega\left(\frac{1}{\lambda}\right)\right)
$$

so that

$$
I_{4}=O\left(\omega_{2}\left(\frac{1}{\lambda}\right) \int_{a}^{\infty} \frac{d t}{t^{2}}\right)=O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right)
$$

Finally

$$
\begin{aligned}
R_{\lambda}^{a}(x)-f(x) & =\frac{\Gamma(\alpha+1)}{\pi} I_{3}+O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right) \\
& =\frac{\alpha}{\pi} \int_{a}^{\infty} \frac{\phi_{x}(t / \lambda)}{t^{2}} d t+O\left(\omega_{2}\left(\frac{1}{\lambda}\right)\right) .
\end{aligned}
$$

References

[1] E. W. Hobson, Functions of a real variable, Vol. II (Cambridge, 1926).
[2] B. Kwee, 'The approximation of continuous functions by Riesz typical means of their Fourier series', Jour. Australian Math. Soc. 7 (1967), 539-544.
[3] B. Kwee, "A note in the approximation of continuous functions by Riesz typical means of their Fourier series', Jour. Australian Math. Soc. 9 (1969), 180-181.

Department of Mathematics
University of Malaya
Kuala Lumpur
Malaysia

