
4
Electromagnetic interaction of hadrons

What do we mean when we talk about electromagnetic interactions of
hadrons? The simplest of them is the interaction of hadrons with leptons.
As you know there are particles – leptons – that do not participate in
the strong interaction. They interact electromagnetically, and this inter-
action∗ can be described in the field theoretical (QFT) framework.

We suppose, and this is our main hypothesis, that a charged lepton
interacts with hadrons only via a photon field. The second part of our
hypothesis must contain something about the interaction of a photon
with hadrons. Here we will say, once again within the QFT concept, that
it is still a pointlike interaction (as in the usual QED) which has to be
treated with account of all possible field-theoretical corrections:

q

p + + + . . .
(4.1)

Strong interaction being strong, the photon will always interact with a vir-
tual particle in the intermediate state that depicts the internal structure
of a dressed hadron.

Since QED amplitudes are small, we can restrict ourselves to the one-
photon-exchange picture.

4.1 Electron–proton interaction

Consider the electron–proton scattering amplitude in the first order in
αem. Both particles have spin-1

2 , and from general considerations we can

∗ as well as the weak one, with the advent of the Glashow–Weinberg–Salam theory. (ed.)
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4.1 Electron–proton interaction 93

immediately write

q
k ′

p ′

k

p
= e1e2

[
ū(k′)γμu(k)

] 1
q2

[
Ū(p′)ΓμU(p)

]
. (4.2)

What can we say about the vertex Γμ? It has got to be a vector since the
photon has spin 1. We have at our disposal the proton momenta pμ and
p′μ and the Dirac matrix γμ:

Γμ = a(q2)γμ + b(q2)σμνqν
(
σμν ≡ 1

2 [γμ, γν ]
)
. (4.3)

This is the most general structure that satisfies the on-mass-shell cur-
rent conservation condition qμ · [Ū(p′)ΓμU(p)] = 0 (higher powers of γ-
matrices reduce to (4.3) due to the Dirac equation Ū p̂′ = mŪ , p̂U = mU).

Already at this stage we have obtained a strong prediction that derives
from the fact that the unknown functions a and b in (4.3) do not contain
any s-dependence!

It is worthwhile to remark that in discussing electromagnetic interac-
tions of hadrons we face a situation which is essentially different from
that of the strong interaction. In pure hadron interactions we were basi-
cally dealing with real particles and on-mass-shell amplitudes. Now, by
virtue of the smallness of the lepton–hadron interaction, we were able to
select a single graph whose amplitude depends on the virtual momentum
q2. Formerly, hadron–hadron scattering amplitudes depended seriously
on s and t. Now we have a serious dependence only on t = q2 while the
s-dependence turns out to be trivial as it is exclusively due to free parti-
cles’ spinors.

This observation alone gives rise to the Rosenblutte formula checking
which one directly verifies that e and p indeed interact only via the electro-
magnetic force. (The Rosenblutte formula is also being intensively checked
experimentally in an attempt to find a possible difference between the lep-
tons – an electron e and a muon μ.)

4.1.1 Electric charge

The photon–proton vertex will be determined by the ensemble of all the
diagrams (4.1) which I would have to calculate, given a concrete QFT.
For example, suppose there were only nucleons and pions. Then I would
draw the bare interaction and corrections:

p

π+

+ . . .p
π

n

+
p

n
+ +
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94 Electromagnetic interaction of hadrons

The first thing to do is to calculate the electric charge – the value of the
amplitude at q → 0.

Bare proton. Suppose the proton possessed a bare electric charge,
e0. Then with account of higher-order radiative corrections it would get
modified,

e0 =⇒ e0 Z
−1
1 Z2

√
Z3 ≡ ep,

where Z−1
1 is the vertex correction and the factor Z2 = (

√
Z2)2 comes

from initial and final proton wave functions. After renormalization we
would have the on-mass-shell condition

Γμ(q = 0; p2 = p′2 = m2
p) = ep · γμ; a(0) ≡ 1. (4.4)

The Ward identity taught us that in the theory with a conserved current

Z1 = Z2, =⇒ ep = e0 ·
√

Z3,

that is, charge renormalization is related to the photon only. This is ex-
actly what we call charge conservation. Namely, if we plug in equal bare
electric charges for the proton and the electron, then the renormalized
physical charges will stay equal, irrespective of the nature of the charged
particle and interactions it is subject to.

In fact we have only ‘half a theory’ of this important phenomenon,
since (except for a few attempts) we have no pure theoretical reason for
ascribing to electron and proton equal (and opposite) bare charges. This
is just an experimental fact (and a very solid one in that).

Quarks. What if there is no bare proton at all? We can imagine the proton
to be a bound state of some point-like constituents, quarks for example.
Then we will have to work with photon–quark interaction amplitudes; the
proton charge will be simply given by the sum of quark charges,

ep = (e1 + e2 + e3) + · · · .
So essentially we would have an approach rather similar to the previ-
ous one but at the level of constituents. One way or another, we cannot
move away from the field-theoretical concept of point-like interaction if
we intend to keep things under control.

4.1.2 Magnetic moment

Let us consider a small momentum transfer and keep the first power of q
in the expression for the vertex (4.3):

Γμ � ep(γμ + b(0)σμν qν) . (4.5)

Here we have extracted from the vertex the renormalized charge ep and
set a(0) = 1.
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4.2 Form factors 95

What is the physical meaning of the linear term in (4.3)? The Dirac
vertex γμ contains interaction with the charge as well as with the magnetic
moment. Using the identity

ū(k′)(k + k′)μu(k) = ū(k′)
[
2mγμ + σμνq

ν
]
u(k),

we may rewrite the amplitude of electron scattering, Aμ ū(k′) γμ u(k), as

Aμ (k + k′)μ
2m

· ū(k′)u(k) − Aμ · ū(k′)
σμνq

ν

2m
u(k).

With the electron at rest (k = 0), the first term does not contribute to
scattering in a magnetic field: A0 = 0, A · q = 0(divA(x) = 0). The sec-
ond contribution survives and describes an interaction with the magnetic
moment of a spin-1

2 charge.
The linear term from the proton (4.5) adds up with the Bohr magneton

e/2m, resulting in the magnetic moment of the proton

μp = − ep
2mp

[ 1 − 2mpb(0) ] .

In QED we have seen that the magnetic moment of the electron acquires
an ‘anomalous’ contribution αem/2π (Schwinger, 1962).
This was a consequence of the internal structure of the
electron that became apparent when radiative correc-
tions had been taken into consideration. The magnetic

moment of the proton also changes on account of the interaction, and not
only electromagnetically, but of the strong one in the first place.

While the electromagnetic charge renormalizes in a universal way, in-
dependently of the proton’s nature, the value of its magnetic moment
depends crucially on the concrete properties of the strong interaction.

4.2 Form factors

The physical meaning of the functions a(q2) and b(q2) becomes apparent
from the non-relativistic analogy.

Consider the scattering of a charge off an extended
target, e.g. an atom. In quantum mechanics, the scat-
tering amplitude is given by the Fourier integral of the
Coulomb potential V (r) which, in turn, one obtains by
integrating the charge density ρ(r′) over the volume of
the target:

q

f ∝
∫

d3r V (r) e−iq·r, V (r) =
∫

d3r′
e2

|r − r′|ρ(r
′).
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96 Electromagnetic interaction of hadrons

Combining the two expressions one arrives at

f ∝ e2

|q|2
· F (q2), F (q2) ≡

∫
d3r′ ρ(r′) e−iq·r′

, (4.6)

with F the electric form factor of the target atom. Analogously, our func-
tions a and b are the proton form factors characterizing, correspondingly,
the distribution of the charge and that of the electric current inside the
proton.

In the case of a spinless object there is no preferred direction, and the
magnetic moment is identically zero. Therefore, if we substitute a π-meson
for a proton we will have only one (electric) form factor. Now the only
vector at our disposal that satisfies the current conservation condition
qμΓμ = 0 (for p2 = p′2 = μ2) is the sum of the pion momenta, (p + p′)μ;
hence, the photon–pion interaction vertex contains a single structure:

Γπ
μ = e · a(q2)(p + p′)μ.

What else can be said about form factor(s)?
Let us look at the analytic properties of a form factor as a function of

momentum transfer q2. It is clear that the form factor is real for q2 < 0
since no real process may occur in the intermediate (t-channel) state. At
the same time, for positive virtuality above the
two-pion threshold, q2 > 4μ2, the form factor
becomes complex-valued due to the γ∗ → π+π−

transition.
p

q

p

The relativistic theory allows us to link the scattering form factor to
a completely different physical phenomenon, namely an annihilation of a
pair of leptons into a pair of hadrons,

e+e− → NN̄ or e+e− → π+π−.

The very same function that describes an internal electromagnetic struc-
ture of a pion in the eπ scattering process in the region q2 < 0, at
q2 > (2μ)2 determines the cross section of e+e− annihilation into two
pions!

4.2.1 Analytic properties of pion form factor

Knowing that the form factor is an analytic function of q2, I can write

a(q2) = 1 +
q2

π

∫ ∞

4μ2

dQ2 Im a(Q2)
Q2(Q2 − q2)

. (4.7)
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4.2 Form factors 97

I chose to write down the dispersion relation with one subtraction in order
to exploit the knowledge of the normalization a(0) = 1 (which only helps
the integral to converge faster).

As we know, the imaginary part is directly related to cross sections of
real processes. The latter are subject to various restrictions which then
must affect the form factor itself. Let us examine how serious these re-
strictions actually are by taking the pion form factor a(q2) as an example:

2 Im Γμ =
∑
n

g *

n
. (4.8)

This equation tells us that the dispersion theory provides us with a sys-
tem of linear equations for ‘form factors’ γ∗ → (n ∗ π), where the rôle of
the kernel is played by the pure strong interaction amplitudes (n ∗ π) →
(m ∗ π).

Consider for simplicity the region 4μ2 < q2 < 16μ2 where the two pion
unitarity relation holds:

2 Im a(q2)(p1 − p2)μ =
qg *

p
1

p′
2

p′
1

=

p

p p
2

.

(4.9)

The kernel is the ππ → ππ scattering amplitude. Moreover, π is spinless
(s = 0), while the total angular momentum of the ππ system, J = � + s,
must be equal the photon spin, J = 1. Hence, only one partial wave � = 1
of the ππ amplitude (P -wave) will contribute here.

Let us sketch how this selection occurs. The r.h.s. of (4.9) contains
integration over the intermediate-state pion momentum:∫

d4p′1
(2π)2

δ+(p′21 −μ2)δ+(p′22 −μ2) (p′1 − p′2)μa(q
2) ·A∗(p′1, p

′
2; p1, p2).

In the ππ centre-of-mass frame it reduces to the angular integral over
the direction of the relative momentum (p′1 − p′2)μ =⇒ 2p′

c which multi-
plies the scattering amplitude A∗(pc,p′

c). Writing down the partial wave
expansion of the latter,

A∗(pc,p′
c) =

∑
�

(2� + 1)f∗
� (q2)P�(cos Θpcp′

c
),

we observe that the only term with � = 1 survives the integration:

(2� + 1)
∫

dΩ′

4π
2p′

c · P�(cos Θpcp′
c
) = 2pcδ�,1.
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98 Electromagnetic interaction of hadrons

This matches the structure of the l.h.s.,

(p1 − p2)μ Im a(q2) =⇒ 2pc Im a(q2),

and the unitarity relation (4.9) takes the form

Im a(q2) = τa(q2)f∗
1 (q2),

with τ the phase space volume (3.7b) of the two-pion state. Substituting
the general solution of the two-particle unitarity condition (3.9)

f� =
1

2iτ

(
e2iδ� − 1

)
,

we have

a(q2) − a∗(q2)
2i

= τ · −1
2iτ

(
e−2iδ1 − 1

)
a(q2) =⇒ a∗

a
= e−2iδ1 . (4.10)

The unitarity condition simply tells us that the phase of the pion form
factor equals that of the ππ scattering amplitude. The origin of the com-
plexity of the form factor lies in re-interaction between pions in the final
state.

Above the four-pion threshold the situations gets more complicated.
Nevertheless, for the sake of simplicity, let us suppose that the relation
(4.10) holds for all q2 values. Then I would be able to calculate the form
factor straight away! To this end consider the function F = ln a(q2) and
write the corresponding dispersion relation,

F (q2) =
1
π

∫
dQ2

Q2 − q2
δ1(Q2) + ‘regular’

with ‘regular’ marking a possible non-singular (analytic) piece. Then,

a(q2) = P (q2) × exp
{

1
π

∫
dQ2

Q2 − q2
δ1(Q2)

}
,

with P a polynomial in q2. The latter can be replaced by a constant if
I suppose a good behaviour at q2 → ∞. Then, making use of a(0) = 1,
I would finally predict the form factor from the knowledge of the ππ
scattering phase:

a(q2) = exp
{
q2

π

∫ ∞

4μ2

dQ2

Q2(Q2 − q2)
δ1(Q2)

}
. (4.11)

Unfortunately, literally this formula is incorrect since we have neglected
many-particle channels which do essentially contribute at large Q2. As a
semi-quantitative estimate, however, (4.11) works reasonably well.
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4.2 Form factors 99

4.2.2 Pion radius and ρ meson

At large negative q2 we expect hadron form factors to be falling fast
since it is a truly point-like charge that can only give a(q2) = O(1) in this
limit. On the other hand, at large positive q2 
 μ2 it has to decrease too.
This time, because a high-virtuality photon can produce many different
multi-particle states, so that the probability of a given exclusive channel,
γ∗ → ππ, must fall. Therefore, a(q2) has to have somewhere a maximum.

How could this be? An analytic function exhibiting a maximum makes
us think of a nearby singularity. We saw that our form factor has the pion
scattering phase as its source (in other words, strong interaction of pions).
Suppose there is a resonance in the strong ππ interaction amplitude at
some q2 = M2. Then this resonance will drive
the behaviour of the form factor. Effectively,
we will be looking for the process of the γ∗ →
ππ transition via a resonance state. pM 2

pg *

Substituting a resonance for Aππ in the unitarity relation (4.9),

q

a rough guess for its contribution to the form factor would be

a(q2) =
p
p

g
∝ 1

M2 − q2
. (4.12a)

Strictly speaking, to build a realistic model I would have to analyze ver-
tices and take into consideration their q2 dependence away from the pole
position. However, it suffices to invoke, once again, the restriction a(0) = 1
in order to reasonably fix the numerator in (4.12a):

a(q2) � M2

M2 − q2
. (4.12b)

At small positive q2, the slope of the q2 dependence will tell me the
characteristic mass the annihilation process goes through,

a(q2) = 1 +
q2

M2
+ · · · . (4.12c)

On the other hand, the same expansion can be carried out in the phys-
ical region of the scattering channel, q2 < 0. Recall the non-relativistic
expression for the charge form factor. Expanding (4.6) in Q2 = −q2 > 0
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100 Electromagnetic interaction of hadrons

we get

a(Q2) =
∫

d3r ρ(r) e−iQ·r � a(0)−
∫

d3r
(Q · r)2

2
ρ(r)

= 1 − Q2

2 · 3
〈
r2

〉
.

(4.13a)

Here we have introduced the average squared radius of the distribution
of the charge inside the pion,〈

r2
〉
≡

∫
d3r ρ(r) · r2, (4.13b)

and used the spherical symmetry:
〈
r2
z

〉
= 1

3

〈
r2

〉
.

Comparing the two expressions,

a(q2) = 1 +
q2

M2
+ · · · ⇐⇒ a(q2) = 1 +

q2
〈
r2

〉
6

+ · · · , (4.14)

we conclude that the charge radius is directly related to the mass of the
resonance in the annihilation channel.

In reality the P -wave pion–pion scattering is indeed dominated by the
resonance – a vector meson ρ with a mass mρ � 750 MeV. Firstly, this tells
us that the annihilation process e+e− → π+π− should show a prominent
peak at q2 � m2

ρ (and it does) and, secondly, that the position of this peak
determines the electromagnetic radius of the pion:

p
r

e e

p
In the case of nucleons the situation is somewhat more complicated.

First of all, the mass of the NN̄ state (q2 ∼ 4 GeV2) is very large com-
pared to the position of the ππ threshold (q2 ∼ 0.1 GeV2). This pushes
the physical region of the e+e− → NN̄ process far away from the scat-
tering channel and from the first singularity. Besides, unlike pions which
‘resonated’ in only one meson ρ, a nucleon is also linked to another vec-
tor meson ω (with isospin 0). In reality the nucleon form factor behaves
rather like [M2/(M2 − q2)]2, which may result from some destructive in-
terference between various meson exchanges.

4.3 Isotopic structure of electromagnetic interaction

It is obvious that the electromagnetic interaction does not respect isotopic
invariance:
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4.3 Isotopic structure of electromagnetic interaction 101

q

pp

ap(0) = 1

n                    n

q
an(0) = 0.

Let us generalize the Dirac spinor U describing the proton wave function
in (4.2), to represent the isotopic doublet of nucleons,

U =
(

p
n

)
. (4.15)

Then, with the help of Pauli matrices τi (i = 1, 2, 3) and of the unit matrix
in the 2 × 2 isotopic space, we can represent the electromagnetic vertex
simultaneously for the proton and the neutron as

Γμ = Ū
(
Γ(0)
μ · I + Γ(1)

μ · τ 3

)
U. (4.16)

(We could not use τ 1 and τ 2 here since they would transfer a proton into
a neutron, p + γ → n, which we rather would not do.) Projecting onto the
proton and neutron states, we get

Γ(0)
μ + Γ(1)

μ = |p〉Γμ〈p| , Γ(0)
μ − Γ(1)

μ = |n〉Γμ〈n| .

In particular, at q2 = 0 this will give us

Γ(0)
μ (0) − Γ(1)

μ (0) = 0 .

This isotopic beautification does not seem to bring us much profit. Still,
from the point of view of the crossing channel, Γ(0) and Γ(1) may happen to
acquire more fundamental meaning than the proton and neutron vertices
themselves.

Look at the case of pions. Since pion πα is a triplet
in the T space (α, β = 1, 2, 3), we have now three
independent diagonal matrices that can be used to
construct the ππγ interaction vertex:

q

pa pb

⎛
⎝ π+

π0

π−

⎞
⎠† [

Γ(0)
μ · I + Γ(1)

μ · T3 + Γ(2)
μ · T2

3

]⎛
⎝ π+

π0

π−

⎞
⎠ . (4.17)

The term proportional to Γ(k)
μ corresponds to isospin T = k. For a ππ

system the possibilities are: a scalar (T = 0), a vector (T = 1) and a
tensor (T = 2) in the isotopic space.

It becomes clear that electromagnetic form factors of a particle be-
longing to some huge isotopic multiplet could belong to high-rank tensor
structures in the T space. In reality, however, photons seem to couple
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102 Electromagnetic interaction of hadrons

only with the T = 0 and T = 1 channels (though the accuracy of this
experimental finding is presently not very high). In particular, in (4.17)
for pions Γ(2)

μ � 0.
How might one understand this phenomenon? Suppose that all hadrons

were built of isotopic doublets, T = 1
2 , like quarks. Then it is quarks which

participate in the electromagnetic interaction,

u

p − p − u
_

_
d

d

and we have only an iso-scalar and an iso-vector in the photon channel:

Γem ∼ I + τ 3. (4.18)

It is important to bear in mind that, since strong interactions respect the
isospin symmetry, whichever diagrams I include to account for interactions
between quarks, coupling of the photon to π-meson will retain the scalar +
vector isotopic structure of (4.18) (in the first order in αem).

This is an example of how studying electromagnetic interactions may
produce highly non-trivial hints about the nature of hadrons.

4.4 Deep inelastic scattering

At large virtual-photon momentum transfer, −q2 
 1 GeV2, electromag-
netic proton form factors decrease fast, as a large inverse power of q2.

This may look surprising at the first sight. Indeed, from the point of
view of the dispersion relation,

F (q2) =
1
π

∫
dQ2 ImF (Q2)

Q2 − q2
,

in order to ensure a fast falloff of F at large negative q2, the imaginary
part must oscillate, and in a very specific way.

4.4.1 Parton concept

Let us look at the problem from a classical perspective instead. It is easy
to make F (q2) fast falling if we take the charge density ρ(r) in the NQM
formula (4.6) to be a smooth non-singular function.
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4.4 Deep inelastic scattering 103

There exists another way to explain the smallness
of elastic scattering. Imagine the proton consisting
of some number of weakly bound point-like charges.

Then, physically, the scattering of an electron off
such a composite object will always be inelastic:
the photon will interact with one of the charges
and kick it out, ‘destroying’ the target proton.
This picture is similar to what happens to an
atom: when an electron is kicked off from a core

shell, leaving a vacancy, the excited atom ‘decays’ by emitting photons,
Auger electrons, . . .

The elastic proton scattering will only be possible in the configurations
when all the quarks happen to be very close to
each other, at small distances (Δr)2 ∼ 1/

∣∣q2
∣∣ � 〈

r2
〉
.

In this picture, the elastic channel suppression is due
to the smallness of the probability of such small-
distance configurations (equivalent to weak binding).

How to determine which answer is closer to reality? Since the q2 be-
haviour of the elastic form factor does not help to discriminate the two
pictures, let us look at more complex – and more interesting – inelastic
processes. In the first picture the total inelastic cross section will be as
small as the elastic one, since in the scenario of a smooth charge density
ρ, a small-wavelength photon would simply find no-one to interact with,
elastically or otherwise. In the second scenario, an inelastic cross section
is not small at all. On the contrary, it is determined by the probability
for the photon to interact with one of the internal point-like constituents
of the proton.

4.4.2 DIS cross section

We will study the process called deep inelastic lepton–proton scattering
(DIS); the word ‘deep’ stresses the fact that the a highly virtual photon
with Q2 = −q2 


〈
r2

〉−1 penetrates deep into the proton’s interior.
In non-relativistic quantum mechanics, electron scattering off an atom

having N electrons is given by the transition matrix element

ρ0,n
k,k′ ∝

∫
d3r eiq·r

∫ ∏
d3ri ψ∗

n(ri)
N∑
k=1

e2

|r − rk|
ψ0(ri)

∼ e2

q2

∫ ∏
d3ri ψ∗

n(ri)
N∑
k=1

eiq·rkψ0(ri).
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104 Electromagnetic interaction of hadrons

Here k and k′ are the initial and final electron momenta, and ψ0 and ψn

mark the wave functions of the initial ground state and of the excited
final state of the atom, respectively.

We are interested in the cross section summed over all possible final
states of the excited atom, n ≤ n0. If n0 is large, the product of the final-
state wave functions that enters the expression for the cross section can
be simplified using the (almost) completeness relation:

n0∑
n=0

∣∣ψn(r′)
〉
〈ψn(r)| �

∞∑
n=0

∣∣ψn(r′)
〉
〈ψn(r)| = δ(r − r′). (4.19)

The cross section then reduces to

dσ

dq2
∼ e4

q4

∫ ∏
d3ri ψ∗

0(ri)
N∑

j,k=1

eiq·(rj−rk)ψ0(ri). (4.20)

When the photon wavelength is much smaller that the typical distance
between the atomic electrons, q2 
 〈r2

jk〉−1, the interference terms with
j �= k in (4.20) become negligible. We are left with the sum of N diagonal
contributions:

dσ

dq2
∼ e4

q4

N∑
k=1

ψ∗
0(ri)ψ0(ri) =

e4

q4
×N,

where we have used the normalization condition for the ground state
wave function. Thus, the total inelastic eA cross section reduces to the
sum of independent interactions of quasi-free individual electrons under
two conditions, namely:

(1) the ‘resolution’ of the photon should be large enough to separate
individual electrons inside the target atom, q2 
 R−2;

(2) the energy transferred to the atom should be sufficient to have
a large enough number of excited states in order to employ the
completeness relation (4.19).

Let us turn now to the relativistic theory and learn to write the corre-
sponding cross section. The squared matrix element for the ep scattering
process with the production of n particles is shown in Fig. 4.1. To obtain
the cross section, we have to square the virtual photon–proton interaction
amplitude Aμ bearing the photon index μ and convolute it with the cor-
responding electron scattering tensor Tμν

e . We also write down the phase
space volume for n + 1 particles (the scattered electron k′ and n pro-
duced final state hadrons with momenta {pi}), and include the square of

https://doi.org/10.1017/9781009290227.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.005


4.4 Deep inelastic scattering 105
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k ′       
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Fig. 4.1 Discontinuity of the forward photon–proton scattering amplitude.

the photon propagator, (1/q2)2, and the flux factor Jep � 4(pk):

dσ =
e2

Jep

∫
d4k′

(2π)3
δ+(k′2−m2

e)
∑
n

n∏
i=1

[∫
d4pi
(2π)3

δ+(p2
i −m2

i )
]

Tμν
e

1
q4

Aμ(p, q, {pi})A∗
ν(p, q, {pi}) (2π)4δ

(
p + k − k′ −

n∑
i=1

pi

)
.

(4.21)

If we average over initial electron polarizations, the electron tensor Tμν
e

is given by the expression

Tμν
e = Tr

[
(k̂ + me)

2
· γμ(k̂′ + me)γν

]
= 2(kμk′ν + k′μkν) + gμνq2. (4.22)

First comes an observation similar to the one we made when discussing the
Chew–Low method (see (2.69)): we may replace the sum over produced
hadrons by the imaginary part of the amplitude of the forward scattering:

∑
n pn

p1

= 2 Im
qq

p              p
≡ e2Wμν(pq, q2). (4.23)

The only peculiarity of this ‘optical theorem’ is that here one of the col-
liding objects is a virtual photon, so that the tensor Wμν (bearing, once
again, vector photon indices) depends on two variables rather than on the
energy of the collision only, W = W (pq, q2). Due to conservation of the
electromagnetic current, this tensor must be orthogonal to qμ (and qν)
and can be therefore represented as follows:

1
2π

Wμν =
(
−gμν +

qμqν
q2

)
W1 +

1
M2

(
pμ − pq

q2
qμ

)(
pν −

pq

q2
qν

)
W2,

(4.24)

with W1, W2 known as the structure functions. (If the spin vector s of the
initial particle is fixed, in Wμν (as well as in Tμν

e ) there appears an addi-
tional structure proportional to the anti-symmetric tensor iεμναβq

αsβ.)
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106 Electromagnetic interaction of hadrons

The differential cross section takes the form

dσ =
α2

4π
1
q4

Tμν
e Wμν

d3k′

(pk)E′ . (4.25)

Let us calculate the product of the tensors. The electron one, Tμν
e , also

respects the current conservation; as becomes obvious from its expression
equivalent to (4.22):

Tμν
e = (k + k′)μ(k + k′)ν − qμqν + gμνq2; (k + k′) · q = k2 − k′2 = 0.

Therefore, we can drop the terms proportional to qμ and/or qν from the
hadron tensor when calculating the convolution:

(4.24) =⇒ −gμνW1 +
pμpν
M2

W2.

The convolution yields

1
2π

Tμν
e Wμν = −4

[
(kk′) + q2

]
W1 +

[
4(pk)(pk′)

M2
+ q2

]
W2. (4.26a)

Using q2 = (k′ − k)2 = 2m2
e − 2(kk′),

1
2π

Tμν
e Wμν � 4(kk′)W1 + 2

[
2(pk)(pk′)

M2
− (kk′)

]
W2, (4.26b)

where we have dropped the electron mass me as negligibly small.
In the laboratory system where the target proton is at rest, p = (M,0),

we introduce the electron scattering angle Θ and approximate (kk′) �
EE′(1 − cos Θ) in (4.26b) to get

1
2π

Tμν
e Wμν � 4EE′

[
2W1 · sin2 Θ

2
+ W2 · cos2

Θ
2

]
. (4.27)

Substituting (4.27) into (4.25), the cross section becomes

dσ

d cos Θ dE′ =
4πα2E′2

q4M

[
W2 · cos2

Θ
2

+ 2W1 · sin2 Θ
2

]
. (4.28)

By measuring the scattered electron momentum, one extracts the depen-
dence of the structure functions W1,2(pq, q2) by measuring the direction of
the scattered electron momentum and the energy ν = E − E′ transferred
to the hadron system:

(pq) = Mν, q2 � −2EE′(1 − cos Θ).

Let us make a comparison with the elastic proton scattering. Apart from
the form factor in the photon–proton vertex,

Γμ ∼ ep γμ · Γel(q2),
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the calculation of the hadron tensor becomes identical to the lepton one:

W el
μν

2π
=

[
2(pμp′ν + p′μpν) + gμνq

2
]
Γ2

el(q
2) · δ(2pq + q2)

=
[
(p + p′)μ(p + p′)ν − qμqν + gμνq

2
]
Γ2

el(q
2) δ

(
2pq + q2

)
.

(4.29)

The final hadron state consists now of the recoiling proton only, and the
delta-function puts it on the mass shell: p′2 −M2 = (p + q)2 −M2 = 0.
It is easy to extract the functions Wi corresponding to elastic scattering.
Observing that

q = p′ − p =⇒ pμ − pq

q2
qμ = 1

2(p + p′)μ;

by comparing (4.29) with the general decomposition (4.24) we derive

W el
2 = 4M2 Γ2

el · δ
(
2pq + q2

)
, W el

1 = − q2

4M2
W el

2 . (4.30)

Rewriting the phase space element in (4.28) terms of invariants,

E′2

M
· d cos Θ dE′ =

E′2

M
· dq2

2EE′ dq0 =
pk′

pk
· dq2d(2pq)

4M2
,

the differential cross section takes the form

dσ

dq2 d(2pq)
=

4πα2

q4
· pk

′

pk
·
[

W2

4M2
cos2

Θ
2

+
W1

2M2
sin2 Θ

2

]
. (4.31)

When the energy of the incident electron is large, the scattering angle
becomes very small, Θ2 �

∣∣q2
∣∣M2/(pk)2 ∝ |t|/s2 → 1; in this limit

dσel

dq2
� 4πα2

q4

W el
2

4M2
d(2pq) =

4πα2

q4
· Γ2

el(q
2). (4.32)

Thus, W el
2 is nothing but the square of the elastic proton form factor.

An inelasticity of the interaction in a general case can be characterized
by a dimensionless variable ω which measures the invariant mass of the
final hadron system in units of the momentum transfer

∣∣q2
∣∣:

W 2 = (p + q2) −M2 = −q2(ω − 1) , ω ≡ 2(pq)
−q2

≥ 1 .

In the elastic process, the invariant photon–proton energy is determined
by the on-mass-shell condition (p + q)2 = 2pq + q2 + M2 = M2 corre-
sponding exactly to ω = 1. If we take ω not too close to unity, ω = O(1),
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108 Electromagnetic interaction of hadrons

and keep it fixed while increasing
∣∣q2

∣∣, the lepton–hadron interaction in
this kinematics is called deep inelastic scattering (DIS). The inelasticity
W 2 of such a process is proportional to the squared transferred momen-
tum q2 (the latter characterizing the ‘hardness’ of the process).

The inelastic cross section can be expressed then as

dσ

dq2 dω
� 4πα2

q4
· F2(q2, ω), (4.33)

where we have introduced the scaling function F2 – an analogue of the
squared form factor in (4.32):

F2(q2, ω) = − q2

4M2
W2(pq, q2); F

(el)
2 (q2, ω) = Γ2

el(q
2)δ(ω − 1).

The SLAC experiment has found that F2 (and F1 = W1) becomes inde-
pendent of q2 starting from

∣∣q2
∣∣ ∼ 2−4 GeV2. This shows that the picture

of a smooth charge distribution inside a proton cannot be correct, hence
in such a case the ‘inelastic form factor’ would be falling with

∣∣q2
∣∣ together

with the elastic one.
On the contrary, the observed Bjorken scaling regime F (q2, ω) � f(ω)

perfectly fits the second picture: (4.33) tells us that the cross section of an
inelastic ep process equals that of the Rutherford elastic scattering off a
point-like particle. It is a point-like charge inside the proton – a quasi-free
‘parton’ – that takes an impact.

The question arises, can we say anything about the parton spin? Let us
ask ourselves, why did we get two structure functions in the first place,
not ten?

The virtual photon linking the lepton with the hadron block has three
polarizations (eλq) = 0, two orthogonal to the scattering plane {p, q}, and
one lying in it:

gμν − qμqν/q
2

q2
=

3∑
λ=1

eλμ(q)eλ∗ν (q); (eλp) = 0, λ = 1, 2.

The photon does not change its polarization in the cause of scattering:

Mλλ′
= eλμW

μνeλ
′∗

ν = Mλδλλ′ .

Invoking (4.24) we see that the scattering cross section σ⊥ of a transversal
photon (λ = 1, 2) is determined by the structure containing the gμν tensor
that is, by the function W1, while the longitudinal (in-plane) one, σ‖

(λ = 3), – by a definite linear combination of W1 and W2.

https://doi.org/10.1017/9781009290227.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.005


4.4 Deep inelastic scattering 109

n

q
′

q

m

Imagine that some charged parton
with momentum � absorbs the virtual
photon and scatters elastically. If the
parton has spin zero, its electromagnetic
vertex is proportional to the momentum,
Γμ ∝ (� + �′)μ, and we get

Wμν

2π
∼ (� + �′)μ

Im
π

[
1

m2 − �′2 − iε

]
(� + �′)ν ∼ 4�μ�ν

q2
δ

(
2�q
q2

+ 1
)
.

In this case the longitudinal photon interacts with a normal cross section,
while the transverse polarizations would be power suppressed (provided
the parton inside the proton has a limited transverse momentum):

σ‖

σpoint

= O(1) ,
σ⊥

σpoint

∼
〈
�2
⊥
〉

|q2| � 1.

On the other hand, for a spin-1
2 parton, the structure of Wμν reproduces

that of the electron tensor (4.22):

Wμν ∝
(

2
�μ�

′
ν + �′μ�ν
q2

+ gμν

)
δ

(
2�q
q2

+ 1
)
.

Here, on the contrary, the longitudinal polarization gets suppressed,

�μ ·
(
�μ�

′
ν + �′μ�ν − gμν(��′)

)
∝ �2 = m2,

and we have a situation just opposite to the previous case

σ⊥

σpoint

= O(1) ,
σ‖

σpoint

∼
〈
�2
⊥
〉

+ m2

|q2| � 1 .

The experiment shows

σ⊥ 
 σ‖

(σ‖/σ⊥ ∼ 1/5), hinting at spin-1
2 partons (quarks?).

The overall impression is that the picture with quarks in the rôle of
partons stands up to scrutiny.

Two phenomena have to be understood:

(1) the fact that the inelastic cross section is not small, F = O(1); and

(2) the Bjorken scaling, F (q2, ω) � f(ω).

If the Bjorken scaling phenomenon is verified by future more detailed and
more accurate experiments† we will be facing a serious puzzle! Actually,

† To hope this would not is a sin, because it is beautiful, in the first place.

https://doi.org/10.1017/9781009290227.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.005


110 Electromagnetic interaction of hadrons

the existence of this scaling challenges all we knew in ‘the past’. While the
observed scaling is apparently well explained by a naive parton model, it
cannot hold from the field-theoretical point of view.

Indeed, imagine a proton consisting of ‘points’, subject to some QFT
interaction. The Bjorken scaling emerges indeed in the toy model of scalar
fields with the λϕ3 interaction. Why? Because all the integrals in this
theory converge in the ultraviolet momentum region, and at large

∣∣q2
∣∣ all

the corrections vanish leaving us with a point-like particle without form
factor. Unfortunately, this is true not only for inelastic but for the elastic
scattering as well.

In principle, we could get a falling elastic form factor back if we sup-
pose that the fields ϕ may form bound states, in which case a falloff of
F 2

el(q
2) at large q2 would be explained by the decay of a bound state

into its point-like constituents. In spite of such an ‘improvement’, this
model still does not suit us, for two reasons. Firstly, one cannot build real
hadrons out of spinless particles, and, secondly, we would have σ‖ 
 σ⊥,
in contradiction with experiment.

As soon as we introduce fermions, the theory seizes to be super-
convergent and becomes (at best) renormalizable. Ultraviolet logarith-
mic divergences appear that have to be renormalized, etc. But this means
that interaction corrections are never small for any, whichever large, q2.

In a logarithmic quantum field theory, inside a physical particle there
are always virtual exchanges with arbitrarily large momenta, exceeding
the DIS momentum transfer:

∣∣q2
virt

∣∣ 
 ∣∣q2
∣∣. Under these circumstances,

when probing a hadron with higher and higher ‘resolution’, we encounter
more and more ‘constituents’; hence, the exact Bjorken scaling regime
simply cannot hold.
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