CHARACTERIZATIONS OF COMMUTATIVITY FOR C*-ALGEBRAS

by M. J. CRABB, J. DUNCAN and C. M. McGREGOR

(Received 6 November, 1973; revised 12 December, 1973)

Let \(\mathcal{A} \) be a C*-algebra acting on the Hilbert space \(H \) and let \(\mathcal{S} \) be the self-adjoint elements of \(\mathcal{A} \). The following characterization of commutativity is due to I. Kaplansky (see Dixmier [3, p. 58]).

Theorem 1. \(\mathcal{A} \) is commutative if and only if 0 is the only nilpotent element of \(\mathcal{A} \).

In this note we use the above result of Kaplansky to give two numerical characterizations of commutativity. Ogasawara [5], Sherman [6], and Fukamiya, Misonou and Takeda [4] characterize commutativity for \(\mathcal{A} \) in terms of the usual order structure on \(\mathcal{S} \). We show that Kaplansky's theorem reduces the proofs of these order characterizations to simple computations.

1. Numerical characterizations. Taylor [7, Lemma 3.3] proves that, if \(A \) and \(B \) are self-adjoint elements of \(\mathcal{A} \) with \(0 \neq \| A \| \leq \| B \| \), then

\[
\| A + B \| \leq \| A \| + k \| AB \|,
\]

where \(k \) may be taken as 2. If \(\mathcal{A} \) is commutative, the inequality holds with \(k = 1 \). Taylor asks if the converse is true; in Theorem 2 we prove this.

Note that an inequality of the form (1) can hold for all elements of a Banach algebra \(\mathcal{B} \) only if \(\mathcal{B} \) is commutative. For, setting \(B = A \) in (1), we obtain \(\| A \|^2 \leq k \| A^2 \| \) and thence \(\| A \| \leq kr(A) \), where \(r(A) \) is the spectral radius of \(A \). Thus \(\mathcal{B} \) is commutative (see, for example, [1, p. 33]).

A simple argument shows that inequality (1) holds if and only if it holds for self-adjoint \(A, B \) of norm 1.

Remark. We assume that \(\mathcal{A} \) has a unit element when there is no loss of generality in so doing.

Theorem 2. \(\mathcal{A} \) is commutative if and only if

\[
\| A + B \| \leq 1 + \| AB \|
\]

for all self-adjoint elements \(A, B \in \mathcal{A} \) with \(\| A \| = \| B \| = 1 \).

Proof. If \(\mathcal{A} \) is commutative, the result follows from the inequality

\[
(I - A)(I - B) \geq 0.
\]

Assume that \(\mathcal{A} \) is not commutative. By Theorem 1, there exists nonzero \(T \in \mathcal{A} \) such that \(T^2 = 0 \). Let \(H_1 \) be the subspace \((TH)^-\) and let \(H_2 \) be the orthogonal complement of \(H_1 \) in...
H. If we represent H as $H_1 \oplus H_2$, T, T^* are represented by the 2×2 matrices of operators

$$T = \begin{bmatrix} 0 & S \\ 0 & 0 \end{bmatrix}, \quad T^* = \begin{bmatrix} 0 & 0 \\ S^* & 0 \end{bmatrix}. $$

We may suppose that $\|S\| = 1$. Let

$$A = TT^*, \quad B = \alpha TT^* + \alpha T^*T + \beta T + \beta T^*, $$

where $\alpha, \beta > 0$, $\alpha + \beta = 1$, so that $A, B \in \mathcal{A}$. Then

$$A = \begin{bmatrix} SS^* & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \alpha SS^* & \beta S \\ \beta S^* & \alpha S S^* \end{bmatrix}. $$

Clearly $\|A\| = 1$. Since $\|S\| = 1$, there exist $x_n \in H_1$ such that $\|x_n\| = 1$ and $SS^*x_n - x_n \to 0$. To see this, note that $\|SS^*x_n - x_n\|^2 = \|SS^*x_n\|^2 - 2\|S^*x_n\|^2 + \|x_n\|^2 \leq 2(\|x_n\|^2 - \|S^*x_n\|^2)$, and choose x_n such that $\|S^*x_n\| \to 1$. Hence

$$B(x_n + S^*x_n) - (x_n + S^*x_n) \to 0, $$

and so $\|B\| \geq 1$. But

$$\|B\| \leq \alpha \|TT^* + T^*T \| + \beta \|T + T^*\| \leq 1, $$

and so $\|B\| = 1$. Next,

$$\|AB\| = \sup \{\alpha \|SS^*x + \beta SS^*y\| : \|x\|^2 + \|y\|^2 = 1\} \leq \sup \{\alpha \|x\| + \beta \|y\| : \|x\|^2 + \|y\|^2 = 1\} = (\alpha^2 + \beta^2)^\lambda.$$

Let $\lambda = \alpha + \frac{1}{2} + (\frac{1}{2} + \beta^2)^\frac{1}{2}$, so that λ satisfies the equation

$$(\lambda - \alpha)(\lambda - \alpha - 1) = \beta^2.$$

Let x_n be as above and let $y_n = \beta(\lambda - \alpha)^{-1} S^*x_n$. Then

$$(A + B)(x_n + y_n) - \lambda(x_n + y_n) \to 0,$$

so that $\|A + B\| \geq \lambda$. If we choose α, β so that

$$\alpha + \frac{1}{2} + (\frac{1}{2} + \beta^2)^\frac{1}{2} > 1 + (\alpha^2 + \beta^2)^\frac{1}{2},$$

then we have $\|A + B\| > 1 + \|AB\|$. It is enough to take

$$\alpha = \frac{2}{3}, \quad \beta = \frac{1}{3}.$$

Remark. If \mathcal{A} is commutative, we even have $\|A + B\| \leq 1 + \|AB\|$ for all elements $A, B \in \mathcal{A}$ with $\|A\| = \|B\| = 1$.

We recall that the numerical index $n(\mathcal{A})$ of \mathcal{A} is defined by

$$n(\mathcal{A}) = \inf \{w(A) : A \in \mathcal{A}, \|A\| = 1\},$$

where

$$w(A) = \sup\{\|Ax\| : x \in H, \|x\| = 1\},$$

and that $\frac{1}{2} \leq n(\mathcal{A}) \leq 1$ (see [1, pp. 43, 44]).
Theorem 3. \mathcal{A} is commutative or not commutative according as $n(\mathcal{A})$ is 1 or $\frac{1}{2}$.

Proof. If \mathcal{A} is commutative, each $A \in \mathcal{A}$ is normal and so has $w(A) = \|A\|$. If \mathcal{A} is not commutative, then, by Theorem 1, there exists $T \in \mathcal{A}$, with $T \neq 0$, $T^2 = 0$. A result of Bouldin [2, Corollary 2, p. 214] shows that $w(T) = \frac{1}{2} \|T\|$, so that $n(\mathcal{A}) = \frac{1}{2}$. (The condition T^*H orthogonal to TH in [2] is equivalent to $T^2 = 0$.)

2. **Order characterizations.** We recall that the usual order on \mathcal{S} is defined by

$$A \succeq B \Leftrightarrow \langle (A-B)x, x \rangle \geq 0 \quad (x \in H).$$

Let T, S be as in the proof of Theorem 2. Let

$$P = \begin{pmatrix} SS^* & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & (SS^*)^*S \\ S^*(SS^*)^* & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & 0 \\ 0 & S^*S \end{pmatrix},$$

so that $P, Q, R \in \mathcal{A}$. We make frequent use of the following lemma.

Lemma 4. Let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\gamma > 0$. Then $\alpha P + \beta Q + \gamma R \succeq 0$ if and only if $\alpha \gamma - \beta^2 \geq 0$.

Proof. For $x \in H_1, y \in H_2$ we have

$$\langle (\alpha P + \beta Q + \gamma R)(x+y), x+y \rangle = \|\beta \gamma^{-\frac{1}{2}}(SS^*)^*x + \gamma^\frac{1}{2}Sy \|^2 + \gamma^{-1}(\alpha \gamma - \beta^2) \|S^*x\|^2.$$

Since $(TH)^{-} = H_1$, for any $x \in H_1$ there exist $y_n \in H_2$ such that $\gamma^{-\frac{1}{2}}Sy_n \rightarrow -\beta \gamma^{-\frac{1}{2}}(SS^*)^*x$. The result follows.

\mathcal{S} is said to be **lattice ordered** if, for each $U \in \mathcal{S}$, there exists $U^+ \geq 0$ such that $U^+ \geq U$ and $U^+ \leq V$ for any V such that $V \geq 0$ and $V \geq U$. \mathcal{S} is said to have the **decomposition property** if, given $A, B, C \in \mathcal{S}$ with $0 \leq A \leq B + C, B \geq 0, C \geq 0$, there exist $A_1, A_2 \in \mathcal{S}$ with $A = A_1 + A_2, 0 \leq A_1 \leq B, 0 \leq A_2 \leq C$.

Theorem 5. ([4], [5], [6].) The following statements are equivalent.

(i) \mathcal{A} is commutative.

(ii) $A, B \in \mathcal{A}$, $A \geq B \geq 0 \Rightarrow A^2 \geq B^2$.

(iii) \mathcal{S} is lattice ordered.

(iv) The dual space of \mathcal{S} is lattice ordered.

(v) \mathcal{S} has the decomposition property.

Proof. If \mathcal{A} is commutative, the Gelfand–Naimark theorem readily shows that conditions (ii)–(v) hold. Assume that \mathcal{A} is not commutative and let T be as in the proof of Theorem 2.

(ii) \Rightarrow (i). With the above notation, let $A = 8P + 2R, B = 4P + 2Q + R$. Then $A, B \in \mathcal{A}$ and $A \geq B \geq 0$, by Lemma 4. For $y \in H_2$, we have $\langle (A^2 - B^2)y, y \rangle = -\langle (S^*S)y, y \rangle$, so that $A^2 \geq B^2$.

(iii) \Rightarrow (i). Let \mathcal{S} be lattice ordered and let $U = P - R$. Then $U \in S$ and it is elementary that $U^+ = P$. Let $V = 2P + 2Q + R$, and we have $V \in A, V \geq 0, V \geq U$, but $V \lneq U^+$, by Lemma 4.
(iv) \(\Rightarrow \) (i). Let \(\mathcal{S}' \) be the (real) dual space of \(\mathcal{S} \) with the induced dual order and let \(\mathcal{S}' \) be lattice ordered. Given \(x \in H_1 \) and \(y \in H_2 \), let \(f, g \in \mathcal{S}' \) be defined by

\[
f(V) = \langle V_1 x, x \rangle - \langle V_3 y, y \rangle, \quad g(V) = \langle V_1 x, x \rangle,
\]

where

\[
V = \begin{bmatrix} V_1 & V_2 \\ V_3 & V_3^* \end{bmatrix}.
\]

If \(V \geq 0 \), then \(V_1 \geq 0 \) and \(V_3 \geq 0 \). Hence \(f \leq g \) and so \(f^+ \leq g \), since \(g \geq 0 \). Then \(f(P) \leq f^+(P) \leq g(P) \) gives \(f^+(P) = \langle Px, x \rangle \) and \(0 \leq f^+(R) \leq g(R) \) gives \(f^+(R) = 0 \). Also \((g-f^+)(P + Q + R) = \mp f^+(Q) \geq 0 \), so that \(f^+(Q) = 0 \). Define \(h \in \mathcal{S}' \) by

\[
h(V) = \langle V(2^t x + y), 2^t x + y \rangle = 2\langle V_1 x, x \rangle + 2^t \text{Re} \langle V_2 y, x \rangle + \langle V_3 y, y \rangle.
\]

Then

\[
(h-f)(V) = \langle V_1 x, x \rangle + 2^t \text{Re} \langle V_2 y, x \rangle + 2\langle V_3 y, y \rangle = \langle V(x+2^t y), x+2^t y \rangle,
\]

which gives \(h-f \geq 0 \). But

\[
(h-f^+)(P + Q + R) = \langle Px, x \rangle + 2^t \text{Re} \langle Q_2 y, x \rangle + \langle Ry, y \rangle = \langle (P + 2^t Q + R)(x+y), x+y \rangle,
\]

and, by Lemma 4, we can choose \(x, y \) so that \(h \geq f^+ \).

(v) \(\Rightarrow \) (i). Let \(A = \frac{1}{2} P, B = P + Q + R, C = 4P + 2Q + R \). Then \(0 \leq A \leq B + C \), by Lemma 4. Suppose that \(A = A_1 + A_2 \), with \(0 \leq A_1 \leq B, 0 \leq A_2 \leq C \). Since \(A_1 \leq A \), it is easy to show that \(A_1 \) is of the form

\[
A_1 = \begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix}.
\]

Then, since \(A_1 \leq B \), for \(x \in H_1 \) and \(y \in H_2 \) we have \(\langle X x, x \rangle \leq \langle (P + Q + R)(x+y), x+y \rangle = \| (SS^*)^t x + Sy \|^2 \), from the proof of Lemma 4. Since \(H_1 = (TH)^{-} \), we can choose \(y_n \in H_2 \) so that \(y_n \to -(SS^*)^t x \). This gives \(A_1 = 0 \). Hence \(\frac{1}{2} P = A = A_2 \leq C \), which contradicts Lemma 4.

REFERENCES

UNIVERSITY OF GLASGOW

UNIVERSITY OF STIRLING

UNIVERSITY OF GLASGOW