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Abstract

This article recasts the traditional challenge of calibrating a material constitutive model into a hierarchical probabil-
istic framework. We consider a Bayesian framework where material parameters are assigned distributions, which are
then updated given experimental data. Importantly, in true engineering setting, we are not interested in inferring the
parameters for a single experiment, but rather inferring the model parameters over the population of possible
experimental samples. In doing so, we seek to also capture the inherent variability of the material from coupon-to-
coupon, as well as uncertainties around the repeatability of the test. In this article, we address this problem using a
hierarchical Bayesian model. However, a vanilla computational approach is prohibitively expensive. Our strategy
marginalizes over each individual experiment, decreasing the dimension of our inference problem to only the
hyperparameter—those parameter describing the population statistics of the material model only. Importantly, this
marginalization step, requires us to derive an approximate likelihood, for which, we exploit an emulator (built offline
prior to sampling) and Bayesian quadrature, allowing us to capture the uncertainty in this numerical approximation.
Importantly, our approach renders hierarchical Bayesian calibration of material models computational feasible. The
approach is tested in two different examples. The first is a compression test of simple spring model using synthetic
data; the second, a more complex example using real experiment data to fit a stochastic elastoplastic model for 3D-
printed steel.

Impact Statement

In this article, we provide a hierarchical Bayesian methodology for calibrating mathematical models of complex
materials. Importantly, this approach naturally includes experimental data from a set of (potentially different) tests.
Using the hierarchical approach, we are able to quantify the population statistics for uncertainties arising from
variations of the test, measurement uncertainty, andmodel misspecification. Our approach is tested on two different
test cases, including a real world application for 3D-printed steel, proving both its efficiency and versatility.

1. Introduction

In engineering and across the physical sciences, both in academia and industry, the parameterization of
constitutive models for materials from a set of experiments is a very common research question.
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Parameterization of constitutive models is often used to classify or compare the response of different
materials, or as the starting point for establishing mathematical models of the system, in which that
material is used such as finite element analysis. The standard approach is to carry out a series of
experiments. For each, the parameters which minimize the squared difference between the experiment’s
output and the model response are found. This procedure is often called the least squared method (LSM).
The population statistics of the derived model parameters over all experimental tests are then computed,
and often limited to a simple mean and standard derivation of the samples.

Although very common, the LSM approach requires a sufficient number of experimental tests to
establish “good” estimates. This makes it hard to establish good estimates for the distribution of
parameters, particularly, if experimental data are limited. Although various contributions have enhanced
the LSM method (Charnes et al., 1976), statistical information about the measurement uncertainty in the
experiment and the model misspecification (i.e., “all models are wrong”) are generally not captured. The
simple averaging approach to establishing population statistics, and evenmore advanced assumptions like
taking into account covariances between parameters, also lose much information about the population
distribution of the parameters and their often complex interdependencies.

Bayesian model calibration is a popular framework for estimating the values of input parameters into
computational simulations in the presence of multiple uncertainties (Kennedy and O’Hagan, 2001;
Bayarri et al., 2007), and provides a formalized way to include prior knowledge of parameters to support
cases where there are limited measurement data. They have been applied broadly across many area of
science in engineering, healthcare, and ecology (Solonen et al., 2012; Thomas et al., 2015; Valderrama-
Bahamóndez and Fröhlich, 2019). Although less common in engineering, Bayesian approaches have also
been used to calibrate material models from experimental data. The first such use, to the best of the
authors’ knowledge, was by Isenberg (Isenberg, 1979),who used it to identify elastic material parameters
for a simple model and experimental test. It is only relatively recently that Bayesian-based approaches
have been used to parameterize models: elastic constants of composite and laminate plates (Gogu et al.,
2013), time-dependent material models in viscoelasticity (Rappel et al., 2018), and large strain elasto-
plastic models for 3D-printed steel (Dodwell et al., 2021), to give just a few examples. Beyond the straight
probabilistic calibration of material parameters based on a single experiment, Bayesian approaches have
been used to access the relatively predictive quality over a family of possible models, so-called Bayesian
Model Selection (Chipman et al., 2001; Johnson and Rossell, 2012). Such approaches have had particular
impact in a number of computational material science applications, since there are often many choices of
possible material model. A Bayesian model selection approach formalizes the material model selection,
balancing both prior knowledge and evidence from experimental data. Notable examples include
hyperelastic constitutivemodels for tissue (Madireddy et al., 2015), phenomenological models for tumour
growth (Oden et al., 2013), models of damage progression in composites due to fatigue (Chiachío et al.,
2015), and also for fatigue descriptions of metals (Babuška et al., 2016).

The Bayesian approaches in the literature have focused on the calibration of a material model from a
single experiment. In many engineering applications, it is the distribution of possible model parameters
derived from a set of experiments, rather than individual experiments, that is of interest. The set of
experiments may be generated from different samples of material and tested under different conditions, or
multiple tests are repeated to explore the variability in the material and/or the measurement uncertainty in
the test itself. If we consider a setting where we have performed J experiments of the samematerial and ψj
represents the model parameters which describe the jth experiment. It is expected that the parameters ψj
and parameters for another experiment ψi will be positively correlated, since they offer model param-
eterizations for the same material, albeit in different instances of the same physical experiment. A natural
way to build this dependency into a Bayesian setting is to define prior distributions for our material
parameters, and see ψj is seen as themselves samples from a common population distribution over the set
of all possibly observable experiments. This population distribution itself can be parameters ϕ (referred to
as hyper-parameters)—which might are typical population statistics (e.g., mean, variance, or higher
moments). In a Bayesian setting, the hyper-parameters themselves are also equipped with a probabilistic
specification, and with that they assign themselves prior distributions, hyper-priors. This gives a natural
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hierarchical representation of multiexperimental parameterization problem. This framework defines a
Hierarchical Bayesian Model (HBM) (Gelman et al., 2013; Figure 1). HBMs have been widely used in
statistical applications (Kwon et al., 2008; Loredo, 2013; Wolfgang, 2016; Bozorgzadeh et al., 2019).
Probably, most notably, they have been used in statistics models for drug trials to determine population
statistics in response to a new drug when the data received are unique to an individual patient (Babapulle
et al., 2004; Huang et al., 2006).

As far as the authors are aware, this article sets out the first hierarchical Bayesian framework for the
parameterization of material models from a set of experimental data. It starts by recapping the calibration
of a material model from a single experimental test (Section 2.1), and then extends the approach to a full
set of data (Section 2.2). An efficient computational strategy for ensuring the resulting Markov Chain
Monte Carlo (MCMC) computations for the HBM remains feasible and is presented. This uses a simple
trick to marginalize all realization of the model parameters for a particular experiment in an offline stage.
Online, during MCMC sampling of the hyperparameters, an approximate likelihood can be efficiently
estimated. The uncertainty in this approximation is captured using Bayesian Quadrature (O’Hagan, 1991;
Osborne et al., 2012) to approximate the marginalization integral. The set of approaches is demonstrated
for two examples. The first is a simple analytical model for the calibration of a linear spring, and the
second an application of the methodology to a more complex nonlinear hyper-elastic model solved with
the help of Finite Element Method, in which real experimental data are used (Gardner et al., 2020).

The results demonstrate that a hierarchical Bayesian framework is a natural setting for the calibration of
material constitutive in themodel from a set of experiment tests. The approach addresses the limitations of
standard, nonprobabilistic approaches (e.g., least square) and enables the capture of measurement, model
uncertainties, and complex interdependencies between model parameters, including prior knowledge in
cases where data are limited. It provides a framework, in which the population statistics of the material
parameters can be estimated, rather than snapshots of individual experiments under the assumption, they
are independent and correlation between parameters is not significant.

2. A HBM for Estimating Material Parameters from a set of Experiments

Westart this section by first recapping the parameterization of amaterial model from a single experimental
test. This single experiment approach is then extended into a hierarchical Bayesian framework (Gelman
et al., 2013), in which we infer the population statistics of the material parameters from a set of
experimental tests. It then considers computationally efficient strategies for implementing the hierarchical
approach.

Figure 1.Model parameters ψi can be calibrated to a specific experimental dataset di. If repeated over J
experiments 1,…,Jf g, natural variations in each ψi would be observed. In this contribution, a hier-
archical Bayesian framework is developed which learns the population distribution of the ψi‘s. If this
population distribution is parameterized by some hyper-parameters (e.g., in this figure, we assume

ϕi �N μ,vð Þ, which are themselves equipped with prior distribution, reflecting uncertainty in their values
and representation.
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2.1. Bayesian calibration of a material model given a single experiment

We first set up a Bayesian formulation, fromwhichwe can estimate the distribution ofmaterial parameters
given that we observe the outputs of only a single experiment. Let ψ¼ ψ1,…,ψmð ÞT ∈ψ⊂ℝm denote a
vector of random parameters which define the parameter space Ψ of a particular material model. It is
assumed that the material parameters have a prior distribution defined by the density π0 ψð Þ :ψ!ℝþ.

Let the recorded outputs of an experimental test be defined by the vector d¼ d1,…,dsð ÞT ∈ℝs. These,
for example, could be the load measurements to achieve a given displacement by the test machine, or the
strain measurement from strain sensors or digital image correlation software. Let f ψð Þ :Ψ!ℝs be a
parameter-to-observablemap. The connection between model and data is then established by defining a
statistical model:

d¼ f ψð Þþ ε, (1)

where ε represents themeasurement or observational noise.We assume that this noise is distributed so that
ε�N 0,Σεð Þ, where Σε∈ℝs�s is a symmetric-positive definite covariance matrix.

The aim in material model calibration is to estimate the posterior distribution of the model parameters,
that is the distribution of parametersψ given the observed experimental data. Under the assumption thatψ
and ε are independent random variables, Baye’s theorem gives:

π ψjdð Þ≔ 1
Z
π djψð Þπ0 ψð Þ such that Z≔

Z
ψ
π djψð Þπ0 ψð Þdψ: (2)

The conditional distribution π djψð Þ defines the likelihood, that is the probability of observing the data d
given a set of material parameters ψ. Having define the statistical model (1), it follows that:

logπ djψð Þ¼ 1
2
d� f ψð Þð ÞTΣε�1 d� f ψð Þð Þ: (3)

In this setting, we have a classic Bayesian inverse problem for which there are well-
established methods in computational statistics for solving. Having said this, the estimation of
the posterior distribution of model parameters, even for a single experiment, can be extremely
challenging. This is particularly the case when: (a) the evaluation of the parameters-to-observ-
able map f ψð Þ are computationally expensive, (e.g., a nonlinear finite element model); (b) the
material parameter space is high-dimensional (i.e., m is large); or (c) the posterior density has a
complex geometry, for example, when multiple parameters have complex nonlinear dependen-
cies. In this article, we use MCMC methods to perform the Bayesian computations and therefore
briefly set out the detail here, but they are widely covered in the literature (Liu, 2008; Gelman
et al., 2013).

In this contribution, we focus on Metropolis-Hasting-based MCMC algorithms (Roberts and
Rosenthal, 2009), where we generate a chain of n samples T ≔ ψ 1ð Þ,ψ 2ð Þ,…,ψ nð Þ� �

of statistically
dependent sets of parameters. The chain is produced from a current state ψ ið Þ, by making a proposal ψ0

generated from a known proposal distribution q ψ0jψ ið Þ� �
(Roberts, 2011). This new proposal is accepted

as the next state in the chain, that is ψ iþ1ð Þ ¼ψ0 with a probability:

α ψ0jψ ið Þ
� �

¼ min 1,
π djψ0ð Þπ0 ψ0ð Þq ψ0jψ ið Þ� �
π djψ ið Þð Þπ0 ψ ið Þð Þq ψ ið Þjψ0ð Þ

 !
, (4)

otherwise it is rejected, and ψ iþ1ð Þ ¼ψ ið Þ. The distribution of the complete chain T converges to the
desired posterior π ψjdð Þ. Although converge can be slow, computations are independent of estimating the
normalizing constant Z. In particular, the proposal distributions q �j�ð Þ can be carefully designed to be
scalable in high-dimensional parameters spaces, and asymptotically provide an exact (free from bias)
approximation of the posterior.
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Once a Markov chain T is generated, the expectations of a function h ψð Þ can be estimated by Monte
Carlo integration:

Eπ ψjdð Þ hð Þ¼
Z
ψ
h ψð Þπ ψjdð Þdψ≈bh≔1

n

Xn
i¼1

h ψ ið Þ
� �

: (5)

The computed value bh is an unbiased estimate for the expectation of h ψð Þ under the posterior
distribution, and has a mean square error of:

V bh� �¼ V hð Þ
ESS hð Þ¼

2V hð Þτ hð Þ
n

, (6)

where τ hð Þ is the integrated autocorrelation of h ψð Þ. The function ESS hð Þ is the effective samples size of
the chain, and gives the approximate number of independent samples from the set of correlated samples
generated by a Markov chain, and V :ð Þ represents the variance of distribution, following the notation in
(Kong, 1992) and (Kong et al., 1994).

2.2. Hierarchical Bayesian calibration of a material model from a set of experiments

In practice, engineers are seldom interested in finding the material parameters which best fit a single
experimental test, but rather in inferring the population distribution of the parameters given a complete
experimental dataset. Let us assume J independent experimental tests are performed, which gives the
complete dataset:

D≔ d 1ð Þ,d 2ð Þ…,d Jð Þ
n o

: (7)

Here, d jð Þ∈ℝs j denotes the vector of data for the jth experiment. As for the single experimental
formulation, we introduce the parameter-to-observablemap for each experimental testℱ j ψð Þ :Ψ!ℝs j .
We note, in particular, that in the formulation which follows, there is no requirement that the experimental
tests are the same, this is demonstrated in a computational example (Section 3.2).

We formulate our problem as a HBM (Gelman et al., 2013; Wolfgang, 2016). For each of the J
experiments, each experiment has its own data d jð Þ, and if a single Bayesian calibration was performed
(as described above), each could generate its own posterior distribution of material parameters, that is
π ψ jð Þjd jð Þ� �

. Such an approach neglects the connection between each experiment that they are different
experiments on the same material. It is therefore natural to view each ψ jð Þ as a sample from some
population distribution. We therefore define a statistical model for the population distribution, param-
eterized by additional parameters ϕ∈ℝS. In a hierarchical Bayesian setting, these are referred as hyper-
parameters, and in a Bayesian setting, are themselves uncertain and equipped with their own prior
densities π ϕð Þ, termed as hyper-priors.

The Bayesian task is, therefore, not to directly infer the distribution of model parameters for each
experiment (ψ j), but rather the distribution of hyper-parameter ϕ given our complete set of dataD, that is
to compute samples from π ϕjDð Þ. Assuming that each experiment is independent it follows that:

π ϕjDð Þ¼
YJ
j¼1

π ϕjd jð Þ
� �

¼
YJ
j¼1

Z
Ψ
π ϕ,ψjd jð Þ
� �

dψ∝
YJ
j¼1

Z
Ψ
π d jð Þjϕ,ψ
� �

π ϕ,ψð Þdψ: (8)

For each experiment, we note that the likelihood π d jð Þjϕ,ψ� �
is not directly dependent on ϕ, and

hence the dependency is dropped: π ψjd jð Þ� �
. The connection between model parameters ψ and

hyper-parameters ϕ is therefore through their joint distribution π ϕ,ψð Þ¼ π ψjϕð Þπ ϕð Þ. It hence
follows that:

π ϕjDð Þ∝
YJ
j¼1

Z
Ψ
π d jð Þjψ
� �

πðψjϕÞdψj
" #

π ϕð Þ: (9)
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If the expression (9) is compared to Baye’s formulae, we therefore identify:

L ϕjDð Þ≔
YJ
j¼1

Z
Ψ
π d jð Þjψ
� �

π ψjϕð Þdψ, (10)

as being proportional to the likelihood. This is then an integrated likelihood, which marginalizes out
model parameters ψ. We can therefore proceed with an MCMC calculation in the space of hyper-
parameters ϕ, replacing the likelihood directly with L.

For all but the simplest ofmodels, the likelihoodwithin (9) cannot be analytically calculated, and hence
must be approximated. On the face of it, this looks like an extremely expensive task since, in general, for
each of the examples considered in this article, the evaluation of likelihood for an experiment π d jð Þjψ� �

is
computationally expensive (a nonlinear finite element model) and the number of experiments J maybe
large. Yet, a key observation is that the expensive part of the calculation, the evaluation of π d jð Þjψ� �

, is
independent of ϕ. The component dependent on ϕ, π ψjϕð Þ, is analytical evaluation of a density (in our
examples, a multivariant Gaussian). Therefore, strategies to approximate π d jð Þjψ� �

can be done prior to
any sample of the hyper-parameters in an “offline” step.

There are various approaches to approximate the integral L, and which is optimal will be problem
dependent. In the examples considered in this article, we choose (before sampling) to build a Gaussian
process (GP) emulator to replace the expensive mapping ψ! π djjψ� �

. The approximation of likelihood
using statistical emulators is described by (Rasmussen, 2003), see also (Fielding et al., 2011). As is done
this contribution, the emulator of the likelihood is trained on a set of space-filling samples from the input
space. Although not considered here, it is possible to consider an additional step, whereby a MCMC
computation with a specific accept–reject step is carried out to improve the likelihood estimation, by
ensuring samples come from the posterior distribution. Where a prior/initial parameter range is poorly
specified, it is easy to see this could have a big effect of the quality of the emulator of likelihood,
particularly in the case where very sparse evaluations of the model are possible due to computational
constraints. This additional step in the article has not being consider, since via cross-validation, the quality
of the approximations of the likelihood seem sufficient. However, this additional step could be readily
added to the computational pipeline, with no methodological effect of the results presented in this
contribution.

Since we have an emulator precomputed for π djjψ� �
, it is natural to use Bayesian quadrature for the

marginalization integrals in (10). Bayesian quadrature (Paleyes et al., 2019) gives a mean (μL) and
standard deviation (sL) for integralL ϕð Þ. For the MCMC step (in the hyperparameter space), a sample
L¼ μLþ sLω where ω�N 0,1ð Þ, can be drawn. By doing so, the MCMC traces will also account for
the uncertainty in the approximation of (10). Details of Bayesian Quadrature implemented in this article
can be provided in classic contribution (O’Hagan, 1991). Since also a Monte Carlo approximation can be
used, without any changes to the computational framework presented, the Bayesian Quadrature step is not
central to the core idea of this contribution, and we do not provided further details.

3. Demonstrative Examples

In this section, we demonstrate the hierarchical Bayesian framework set out with two computational
examples. The first is a simple model for the calibration of an elastic spring, the second is an elastoplastic
model for 3D-printed steel using real experimental data.

3.1. Example 1: spring model

In this first example, we consider a simple toy model to demonstrate the methodology presented before
considering a much more computational intensive example in Section 3.2 based on a nonlinear finite
element model. In this case,wewish to calibrate a simple linear Hookes lawmodel for the load response of
the springs under deformation. Due to the manufacturing process, material variability, and measurement
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uncertainty, the springs display a distribution of responses. To understand the resulting distribution of
model parameter, the behavior of N independent springs are tested by compressing each spring by an
increasing displacement xi and the force yi for i¼ 1,…,M to achieve each displacement, which is
recorded. From these experiments, we obtain the complete set of data:

D≔ d 1ð Þ,…,d Nð Þ
n o

where d jð Þ∈ℝM : (11)

In this example, the data are generated synthetically, by the (nonlinear) spring model given by:

f jð Þ
i ¼ c1xiþ c2x

α
i þ ε, so that d jð Þ ¼ f jð Þ

1 ,…, f jð Þ
M

h iT
, (12)

where c1 �N þ 1:1,0:12
� �

, c2 �N þ 0:24,0:22
� �

, α�N þ 2:7,0:32
� �

, ε�N 0,0:022
� �

, where N þ
:, :ð Þ

denotes a truncated normal distribution. The control points xi are taken to be M¼ 5 equally spaced
displacements between x1 ¼ 0 and x5 ¼ 0:5, and synthetic data were generated for J¼ 10 experiments.

We assume the parameter-to-observable map is taken to be a linear mathematical relationship between
force and displacement (Hooke’s Law), and is the same for each experiment j¼ 1,…,J:

f x,kð Þ¼ kx, where k∈ℝþ: (13)

For each experiment, the misfit between model and data points are assumed to be independent,
isotropic, Gaussianwith zeromean and unknown variance s2, that is as defined by (3)withΣε ¼ s2I∈ℝ4�4

with Σε ¼ s2I∈ℝ5�5. This captures the measurement uncertainty (generated by ε in (12)) and in this case,
the model misspecification here is that the data are actually generated from a nonlinear model (12). The
uncertain parameters for each experiment are therefore wrapped into a vector ψ¼ k,s½ �T.

The problem can now be formulated into the hierarchical Bayesian setting, and therefore, hyper-
parameters which describe the population statistics of k and s are introduced:

k�N þ μk ,vkð Þ and s�N þ μs,vsð Þ:
This gives four hyper-parameters, which are collected into a single vector ϕ¼ μk ,vk ,μs,vs½ �T. Finally,

hyper-priors are defined for each component of ϕ, such that:

μk �N þ 1:0,0:1ð Þ, vk �N þ 0:3,0:1ð Þ,
μs �N þ 0:3,0:1ð Þ and vs �N þ 0:03,0:01ð Þ: (14)

The next step is to build J¼ 10 independent GPs, for the mapping between ψ! π ψjd j
� �

, for
j¼ 1,…,J. GPs were trained using the open source package GPy (GPy, 2012). After some initial testing,
an ARD 5=2Matérn kernel with a zero mean function was chosen to define each GP emulator. The kernel
is defined by the two-point correlations function:

c ψ,ψ0ð Þ ¼ σ2r d ψ,ψ0ð Þ5=2
Γ νkð Þ25=2 K5=2 d ψ,ψ0ð Þð Þ where d ψ,ψ0ð Þ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
X2
i

ψi�ψ0
i

ℓi

	 
2
vuut , (15)

where K5=2 �ð Þ is a modified Bessel function and Γ �ð Þ is the gamma function. The additional hyper-
parameters for the Matérn covariance σ2r , the variance and ℓ¼ ℓ1,ℓ2½ �, the characteristic length scale, are
free-parameters that are optimized during the training process. To train each model, we consider 100
samples drawn using a Latin Hypercube (SMT2019, 2019), a quasi-random (space-filling) sampler.
Given initial starting points for the hyper-parameters of the Matérn kernel (15), the parameters are
optimized to maximize the log-likelihood over the complete dataset using GPy’s default optimizer
L-BFGS-B (GPy, 2012; Paleyes et al., 2019).

To test the resulting emulators, we perform a fivefold cross-validation test. The 100 training points are
divided into five groups. The GP is trained with four groups and last group is used for the test, the process
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is repeated five times assigning a different “test group” each time. In each case, we consider the individual
standardized errors for j¼ 1,…,20 left out samples defined by:

e j ¼
f x j
� ��m∗ x j

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v∗ x j,x j
� �q ,

where f x j
� �

is the value of the actual model, m∗ x j
� �

, v∗ x j,x j
� �

is the value of the mean and covariance
function of our GP at x j. Figure 2 (right) shows the standardized error for 20 points alongwith lines of one
standard deviation. As it is assumed that the noise error follows a normal distributionN 0,1ð Þ along with
the natural uncertainty, we expect the standardized error to follow the same normal distribution and that no
more than two points of each fold falls outside of the standard deviation line. This derives from the fact that
we target in a 90% confidence interval (CI) which is a well-trained emulator. In every subfigure, each
different fold is marked with a different color (and shape), so overall, we conclude that the emulators are
well-trained as no more than two points of the same color (shape) are outside of the bounds in any figure.

Following the HBM setup in Section 2.2, a Metropolis-Hastings algorithm driven by precondition
Crank–Nicolson (pCN) proposal distribution including a simple adaptive scaling was used (Cotter et al.,
2013). A single MCMC of 25,000 samples was computed with a target acceptance rate of 25%. The first
5,000 samples were discarded for burn-in. The effective sample size for each of the hyper-parameters was
computed such that Neff : ¼ 1813,424,367,349½ �T giving sampling error
Serr ¼ 0:090,0:021,0:018,0:017½ �, for μψ, vψ , μs, vs, respectively. The sampling errors are sufficiently
small relative to the quantities estimated, and hence the number of effective samples in each case are
deemed sufficient. Figure 3 shows the traces and the posterior distribution of all hyper-parameters
considering 10 independent data. The effective sample sizes for each parameter could be improved using
more sophisticated samplingmethods, for exampleHamiltonianMonteCarlo (Duane et al., 1987) ormore
refined adaptive Metropolis sampler (Haario et al., 2001).

We observe from Figure 3 that the posterior samples are strongly influenced by the data, demonstrated
by the qualitative difference between prior and posterior distributions. This is expected since the synthetic
data are generated from a nonlinear spring model, and the statistical model accounts for model mis-
specification and measurement uncertainty within a single parameter s. In particular, we observe an
expected value μk ¼ 1:17, higher than the prior value specified (μk ¼ 1), but closer to the value used to
generate the data μk ¼ 1:1mean value of c1 (μc1 ¼ 1:1). For real-world problems, additional work could be
done to better specify a statistical model for the model missspecification, accounting for the fact there is
greater model mismatch at larger strain values, and/or impose a more informed prior. However, this is
outside the scope of this article for a simple demonstrative example.

Figure 2. (Left) Five hundred samples from the full posterior of f ¼ kx alongside experimental data points
for J¼ 10. The mean of all posterior samples is plotted in as a solid black line. (Right) Shows the

validation of a single experiment and associated Gaussian process using a fivefold analysis. Results
demonstrate a well-trained model, since in the five folds only a single point has a standard error of

magnitude greater 1. Similar good validation results are observed for all 10 experiments.
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In testing, MCMC simulations were repeated with increasing amounts of experimental data, so that in
total, we have results for J¼ 1,5,10,15, and 20. In each case, posterior chains were thinned using
estimated auto-correlation lengths to achieve approximately independent samples for statistical analysis.
For each group of experiments, descriptive statistics for each chain were computed and are summarized in
Table 1.We analyze the convergence of posterior distribution under increasing number of experiments by
estimating the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951), comparing the posterior
distributions as new data. In the table, the KL divergence as the number of experiments are incremented
are denotedΔKL. The results in the Table 1, in particular, the decreasingKL divergence between sequential
distributions, and Figure 4 (left) shows the convergence of the distribution with increasing number of
experiments as expected. With the exception of the case J¼ 1, we observe a reduction in uncertainty
(decrease in estimated variance) as we increase the amount of data. This corresponds to the reduction in

Figure 3. (Top Row) Traces for the four hyper-parameters μk , vk , μs, and vs. (Bottom Row) Posterior
distributions of the hyper-parameters (left) μk and vk and (right) μs and vs of the hyper-parameters.

Table 1. Descriptive statistics of posterior samples for an increasing number of experimental tests J

J E μkð Þ V μkð Þ E vkð Þ V vkð Þ E μsð Þ V μsð Þ E vsð Þ V vsð Þ ΔKL

1 0.99 0.17 0.25 0.026 0.37 0.029 0.029 3.2e-4 –
5 1.05 0.09 0.22 0.018 0.40 0.017 0.025 3.1e-4 105
10 1.12 0.06 0.17 0.019 0.51 0.026 0.025 3.6e-4 15
15 1.19 0.05 0.17 0.015 0.53 0.021 0.024 1.8e-4 14
20 1.18 0.04 0.12 0.011 0.52 0.019 0.024 3.5e-4 6

Kullback–Leibler (KL) divergence ΔKL is approximated between distribution as each set of data is added.
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the sampling error of the experimental data, allowing us to better represent the population statistics. A plot
of a random 500 realization from the posterior for J¼ 10, alongside the original experimental data is
shown in Fig.4 (right). All samples bound the experimental results, while the mean of the posterior
samples provides a qualitatively sensible estimate for all the experiments.

Before considering an example with real experimental data, we apply the maximum entropy approxi-
mation of all posterior samples. A maximum entropy approximation for k was obtained with a four-
moment representation of the distribution to all posterior samples. The results are shown in four (right), in
which the maximum entropy approximation of the full posterior (dash-dot line) is plotted alongside the
mean estimate k�N E μk½ �,E vk½ �2

� �
(dot line). As expected, we see that full posterior distribution has

greater uncertainty. This captures the effects of approximating population distributions with only a finite
number of experiments, but also the uncertainty imposed by the assumption that the population
distribution is Gaussian. The maximum entropy calculations allow the posterior distribution to be
efficiently represented (here with just four numbers) rather than many thousands of samples, thereby
simplifying the stochastic computational pipeline in a sequence of engineering calculations.

3.2. Example 2: stochastic elastoplastic model for 3D-printed steel

In this section, our approach is applied to a real experimental dataset provided by coupon tests of 3D-
printed steel (Gardner et al., 2020). The study extends a previous Bayesian study for estimating uncertain
material parameters using these data, as described in Dodwell et al. (2021). In the previous study, a
standard Bayesian approach was presented, whereby all experiments were fitted with single values of
parameters rather than population distribution as developed in the HBM. This section provides a brief
overview of the engineering context, the mathematical and stastistical model setup and focuses on the
results using our presented approach.

Additive manufacturing (AM) technologies are developing at a rapid pace, enabling the manufacture
of advanced components with near arbitrary complexity. Various techniques have been developed for
metallic AM including powder bed fusion and direct energy deposition. An interesting class of direct
energy deposition are wire arc additive manufacturing (or WAAM), a process using a robotic arm and an

Figure 4. (Left) Shows the distribution of k�Nþ E μk½ �,E vk½ �2
� �

for increasing amounts of data
J¼ 1,…20. (Right) This figure shows the difference between the two distributions, the first which is

denoted with “point marker” comes for k�Nþ E μk½ �,E vk½ �2
� �

while the other (denoted with “dash-dot
line”) is a maximum entropy approximated (with four moments matched) constructed from all posterior

samples.
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arc welding tool (Figure 5, left). This novel technology can build large scale structures in situ, at relatively
high deposition rates (� 4 kg/h). Awell-documented example is the pedestrian bridge developed byDutch
startup MX3D (Figure 5, right). The complexity of possible parts along the uncertain thermal deform-
ations of the material during welding, means that the as-manufactured material properties of WAAM are
uncertain. In this section, we apply our hierarchical Bayesian approach to calibrate a stochastic elasto-
plastic model for WAAM.

The dataset reported by Gardner et al. (2020) are a set of six smoothed/machined tensile coupons,
manufactured and tested according to the EN ISO6892-1 standard (ISO, 2019), see Figure 6. The coupons
were cut at angles ψ¼ 0∘, 45∘ and 90∘ from a single larger WAAM steel plate. Here, θ is the angle of the
layering relative to the build direction as shown in Figure 6. In total, two experiments are performed for
each build direction, hence J¼ 6. For each test, the cross-sectional areas Ac of each coupon are measured,
while the testing machine measures the applied tensile load and a four-camera LaVision digital image
correlation system provides averaged surface strain measurements from both sides. Using these meas-
urements, for each of the six experiments, the longitudinal stress σL at eight equally spaced longitudinal
strain values εL between 0% and 0:8% is calculated. Each experimental test is modeled using a Ramberg–
Osgood model (Ramberg and Osgood, 1943),

εL ¼ σL
EL θð ÞþK

σL
σ0 θð Þ
	 
n

, (16)

whereEL θð Þ and σ0 θð Þ are the unknown longitudinal elasticmodulus and yield strengths, respectively, for
a coupon with layers oriented at an angle θ, n is an unknown scalar hardening exponent and K is a
constant. In this work, K is equal to 0.002 and, as a consequence, the yield strength σ0 corresponds to the
0:2% proof stress, which is widely used to define the yield ofmetals in the literature (Gardner et al., 2020).

Collectively, by testing coupons over a range of angles, the Ramberg–Osgood model can be used to
define a general anisotropic homogeneous, elastoplastic constitutive law under plane stress conditions
over all angles θ. In this contribution, the elastic part of the deformation is consider to be transversely

Figure 5. (Left) The 3D-printing protocol developed byMX3D uses a weld head attached to a robotic arm
(image by Joris Laarman, www.jorislaarman.com). (Middle) Pedestrian bridge manufactured using

3D-printed steel (7). (Right) Test set of up of individual coupons.

Figure 6.Test couponsweremachined to remove influence of geometric surface features and cut at angles
θ¼ 0∘, 45∘, and 90∘ perpendicular to the printing direction (Buchanan et al., 2018).
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isotropic, parameterized by E1,E2,G12, and ν12, respectively the elastic moduli perpendicular and parallel
to the build direction, a shear modulus and a Poisson ratio. For the plastic response, Hill’s quadratic yield
surface (Hill, 1948) is considered which, under plane stress assumptions, is uniquely parameterized by
three parameters (F,G,N). Post-yield, a simple isotropic hardening rule is defined by the single exponent,
n. The mathematical connection between the Ramberg–Osgood model and the two-dimensional elasto-
plastic material parameters is provided in the Appendix. As a result, all experiments are described by a
single vector of parameters, such that:

ψ¼ E1,E2,G12,ν12,σy 0∘ð Þ,σy 90∘ð Þ,σy 45∘ð Þ,n,se
� �

:

The data for each experiment is represented in a vector d jð Þ∈ℝ8, which contains the eight evenly
spaced strain values. The mapping between parameter values and data are defined by the forward map:

d jð Þ ¼ f ψð Þþ ε:

Once again, ε is a random vector that represents measurement error, whose components are inde-
pendent and Gaussian with ei �N 0,s2ed

2
i

� �
, whereby the noise-to-signal parameter se is to be learned,

providing a quantitative measurement of uncertainty in both the data and the model (i.e., as for the first
example allowing for model misspecification). For all parameters except se, it is assumed that it comes
from a normal distribution, that is ψi �N μi,v

2
i

� �
, while se is single value across all experiments.

Gathering the mean and variance for each parameter and a single value for se, gives a vector of hyper-
parameters of 17 parameters. Each of these is equipmentwithweakly informed prior distributions, defined
by normal distributions over plausible ranges for the parameters given the least mean square fitting
reported in (Gardner et al., 2020). All prior values are summarized and given in the Table 2.

MCMC simulations were carried out as described in Section 2. In this example, since the parameter
space is larger than the previous example, a more sophisticated sampling approach is required. Hence all
calculations are implemented in PyMC3 (Salvatier et al., 2016), for which sampling was achieved using
the inbuilt sampler DEMetropolizZ, a differential evolution Markov chain methods with embedding
snooker updating (Braak and Vrugt, 2008). Once again, Gaussian emulators are built for each of the six
experiments using GPy, for which a nine-dimensional ARD Matérn covariance (15) is used and trained
with 300 samples per experiment and using a sixfold cross-validation analysis, very much as described in
Example 1. In total, 5,000 samples were computed using MCMC, divided equally between four
independent chains. The first 250 samples in each chain were neglected for burn in.

Summary statistics of prior and posterior samples are given in Table 2. For the first example, the
distribution of possible observed individual samples can be constructed by sampling the hyper-distribu-
tions for hyper-parameters given by the posterior samples. Figure 7 (left) displays such posterior samples
showing the possible distribution of stress–strain curves in relation to the experimental data (solid dots),
with colors differentiating the build angles θ¼ 0∘, 45∘, and 90∘. the two polar plots in Figure 7 (middle and
right) shows posterior samples (green and red), the maximum a posteriori estimate of longitudinal elastic
modulus and proof stress over the sweep of possible build angles θ. Here, isotropic behavior would be
observed as a quarter circle (constant radius) for both properties. For both elastic and yield properties, the
posterior samples clearly show an uncertain anisotropic material response, as discussed in more detail in
Dodwell et al. (2021).

In our hierarchical Bayesian results, even with broad priors for the standard deviations of the
population distributions for each parameter, for example sE1 ,sE2 , we observe the posterior variances
for the hyper-distributions are relatively small, while the variance of themeans are large. This suggests the
limited data show good agreement with the low predicted population variances. Qualitatively visualizing
the evaluation of posterior samples of our model compares well with the data. However, some parameters
in this approach are relatively insensitive to moderate variations in their values. For example, parameter
E1 effects only 0∘ coupons and the initial linear part of the curve (approximately 1=4 of the curve), and is
therefore informed by only 1=12 of the data. Therefore, variations in fitting this value has a much smaller
effect on the overall likelihood than one might expect.
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Table 2. Summary statistics of prior and posterior distributions, N—normal and HN—half normal.

Prior Posterior

Units Dist. Mean Std. Dev. Mean Std. Dev. Skew Kurtosis

μE1

GPa N 150.00 4.00 153.97 5.00 2.82 55

μE2

GPa N 150.00 4.00 149.72 4.25 0.80 11

μG12

GPa N 105.00 2.00 106.105 4.66 9.32 235

μσ 0∘ð Þ
GPa N 0.35 0.04 0.36 0.06 10.56 288

μσ 90∘ð Þ
GPa N 0.35 0.04 0.31 0.05 6.10 120

μσ 45∘ð Þ
GPa N 0.40 0.04 0.42 0.07 12.39 270

n – N 13.00 0.5 12.31 1.89 0.15 2

sE1

GPa HN – 5.00 1.60 4.19 4.57 27

sE2

GPa HN – 5.00 1.20 3.55 6.55 65

sG12

GPa HN – 5.00 0.92 3.06 6.33 51

sσ 0∘ð Þ
GPa HN – 0.05 0.03 0.05 3.42 17

sσ 0∘ð Þ
GPa HN – 0.05 0.05 0.09 18.88 650

sσ 0∘ð Þ
GPa HN – 0.05 0.07 0.07 8.99 226

n – HN – 0.05 0.30 0.69 3.37 13

Figure 7. (Left) Samples strain–stress curves via realization of the Ramberg–Osgood model (16). Data
points are for two experiments, two for each build angle. (Right) Posterior samples for longitudinal

stiffness and proof stress as a function of build angle. Bold lines show maximum a posteriori estimates.
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4. Conclusion

In this article, we develop a formal hierarchical Bayesianmethodology for the calibration of parameters of
a material model from a set of experiments. The article extends existing probabilistic mechanics literature
which previously only considered the calibration specific to a single experiment. When only a single
experimental result is used, this may lead to significant bias in the acquired posterior distributions.
Clearly, this is because it is a single experimental test is drawn from a population distribution of possible
tests, and a result inference from a single experiment will be over-optimistic. Using a formal HBM, we
naturally account for the population variation in the experiments with resulting posterior distribution
appropriately showing higher variance. This is supported in the test cases, both synthetic and real-world.

The computational challenges which arise for the hierarchical model are significant. Rather than
inferring over a single experiment, inference is required over all experiments simultaneously. However,
assuming that each experiment is independent, it is possible to marginalize all parameters for a given
experiment and formulate the resulting Bayesian calculations in terms of the hyper (population) param-
eters alone.While this marginalization integral appears computationally expensive, we show that it can be
readily approximated usingBayesian quadrature using a precomputedGaussian emulator as a surrogate to
good effect. There might be limitations where the number of material parameters for a model becomes
particularly high, but this is not typical in a material model. In such cases, a more crude Monte Carlo
approximation would work.

We compute full posterior distributions of hyper parameters using Metropolis Hasting MCMC.
Clearly, when there is a large number of experiments and the model and computations are very expensive,
then approximate approaches could be taken. For example, likelihoods could be approximated with only
random batches of experiments, or clearly approximate Bayesian methods, for example, a Laplace
approximation or variational methods could be readily deployed in the same framework.
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Appendix

Plane-stress elastoplastic model
Consider a coupon which occupies the domain Ω∈ℝ3, with global coordinate system x,y,zð Þ∈ℝ3, alongside a local coordinate
system x1,x2,x3ð Þ∈ℝ3. Here, the local coordinate x1 is parallel to the layering at an angle θ to the global x axis, x2 is the build
direction and x3 � z is normal to the plane of the coupon.

For each experiment with a layer orientation θ to the horizontal axis x, the experiments provide longitudinal stress values σL � σy
at given values of longitudinal strains εL � εy. The connection from this experimental data to global material parameters/properties is
a two-stage process. Each experiment is modeled using a 1D Ramberg–Osgood model

εL ¼ σL
EL θð ÞþK

σL
σ0 θð Þ
	 
n

: (17)

This model is defined by three parameters EL θð Þ, σ0 θð Þ, and n, where K is taken to be the fixed constant 0:02. In modeling the
overall material, since the z dimension is relatively thin, plane-stress assumptions are imposed. In this section, the connection is set
out between the independent Ramberg–Osgood parameters to eight global material parameters, which are made up of four elastic
material parameters E1, E2, G12, and ν12, three independent stress factors F, G, and N which define the onset of yield and a single
(θ independent) hardening parameter, n.

The transversely anisotropic elastic properties of the material are defined uniquely by four parameters E1, E2,G12, and ν12. The
connection between local stresses and strains are defined by the compliance or stiffness matrices, given by

S ¼

1
E1

�ν12
E2

0

� ν12
E2

1
E2

0

0 0
1

2G12

266666664

377777775 and C ¼ S�1, (18)

respectively. Our controlled data from the experiments are measure values of stress in the longitudinal direction σy � σL at known
longitudinal strain values εy � εL. For the experimental setup, the applied values of σx and τxy are both zero. The resulting global
strains, in global coordinates, can be calculated by rotating local coordinate properties by the layer orientation θ, so that

εx
εy
γxy

264
375¼T�1ST

0

σy
0

264
375 where T¼

c2 s2 2sc

s2 c2 �2sc

�sc sc c

264
375, (19)

where c¼ cos θð Þ and s¼ sin θð Þ. From this relationship, it follows that the elastic stiffness matrix in global coordinates is bC¼bS�1
,

whereby the longitudinal stiffness (the stiffness connecting longitudinal strains and stresses) is given by the entry bC22 ¼EL. This
relationship provides a direct-mapping between material parameters E1, E2, G12, and ν12 and the observed/controlled parameters θ
and EL. In general, the inverse of this map is ill-posed. However, in our setting data from experiments at multiple angles are
available, enabling all parameters to in principle be identified.

Cite this article: Papadimas N and Dodwell T (2021). A hierarchical Bayesian approach for calibration of stochastic material
models. Data-Centric Engineering, 2: e20. doi:10.1017/dce.2021.20
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