
ON COEFFICIENT FIELDS
by A. GEDDES

(Received 12th September, 1958)

1. Introduction. Let Q be a complete local ring which has the same characteristic as its
residue field P, and, for the present, let us denote by A the image of a subset A of Q under the
natural homomorphism of Q onto P. Then a subfield F of Q is called a coefficient field i£F = P.
It has been shown in [2] and in [3] that a complete equicharacteristic local ring, such as the
above, always possesses at least one coefficient field ; this is the embedding theorem for the
equicharacteristic case.

In the present paper, we shall be concerned with the following more general question.
When can a given subfield K of Q be extended to a coefficient field ? Cohen [2] has constructed
examples to show that it is not always possible to extend K in this way.

To give full force to our results, we shall deal with a situation which is more general than
the above in two respects.

Firstly, we shall establish our results for complete weak local rings rather than for com-
plete local rings. A complete weak local ring, we recall, is a ring Q (commutative and with an

00

identity element) in which the non-units form an ideal m such that D m' = (0), and which is
t=i

complete with respect to the topology imposed on it by taking the powers of m as a funda-
mental system of neighbourhoods of zero.

Secondly, we shall suppose that, besides being given a subfieldf K of the complete weak
local ring Q, we are also given a subfield Fx of P which contains K, and shall consider conditions
under which a subfield F of Q can be found, which is an extension field of K and such that
F = Fv

I t will be noted that, if we take Q to be a complete local ring with Fx = P, then our con-
siderations reduce to those described above, concerning the extension of if to a coefficient
field of Q. We shall see later that, by further specializing our data, we can arrange for the
embedding theorem to emerge as a particular case of our main result.

In what follows, we shall make use of the notion of separability. We recall that an
extension field F of a field K is separable over K, in the classical sense, if F is an algebraic
extension of K, and if the minimal polynomial over K of any element of F has distinct roots.
I t may be shown (see, e.g., [5], p. 113) that a generalization of this concept is obtained if we
make the

DEFINITION. An extension field F of a field K is separable over K if either

(i) K has characteristic zero, or

(ii) K has prime characteristic p, and the following condition is satisfied: given any
elements xv x2, ... , xm of F which are linearly independent over K, theirp-t\\ powers
x\, x\, ... , x\ are also linearly independent over K.

This concept of separability is much more general than the classical one ; e.g., it can be

t If Q is a weak local ring and if S is a subring which has an identity element (in particular, if S is a
subfield of Q), then the identity of S coincides with that of Q, since (see [4], foot-note) Q has no non-trivial
idempotent elements.
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shown (see, e.g., [5], p. 113) that, according to this definition, all pure transcendental extensions
of a given field K are separable extensions of K. From now on, we shall use the term " separ-
able " in the sense just described.

In this paper we shall prove that, if (as above) F1 is separable over K, then K can be ex-
tended to a field F with the required properties ; and, in particular, that K can be extended
to a coefficient field when P is separable over K. I t must be pointed out, however, that, while
the condition of separability takes account of a large number of cases, it is not a necessary
condition for an extension of the desired type to be possible. This may be seen by taking F
to be an inseparable extension of a field K, and considering .F[[X]], the ring of formal power
series in an indeterminate X over F ; this complete local ring has F as a coefficient field
containing K, and the separability condition is not satisfied.

2. Weak primary rings. A iveakprimary ring of exponent p ([3], [4]) is a complete weak
local ring, with maximal ideal p (say), in which pp = (0), p" *t> (0) if v < p.

For any such ring R of prime characteristic p, we shall denote by Rv the subring of R .
consisting of all elements which have a p-th root in R. Further, if K is any subfield of R, we
shall write KRP for the smallest subring of R which contains K and Rv ; this subring clearly
consists of all elements of R expressible in the form

ayxf + a2x% + ... + anx% (ate K, x(e R).

LEMMA 1. Let R, a weak primary ring with maximal ideal p, have prime characteristic p
and exponent p, where 1 < p < p. Let Kbea subfield ofR. Then K can be extended to a cofficient
field of R if and only if

p = (0) (1)

Proof. I t has been shown [3] that, under the stated conditions")", Rv is a subfield of R and
that the coefficient fields of R are precisely the maximal subfields of R which contain Rv.

If, then, K can be extended to a coefficient field F, we have KRV Q F, so that

KB'r>p Q Fr.? = (0).

This establishes the necessity of the condition.
For the sufficiency, we note that the condition (1) implies that KRV is an integral domain ;

and R contains the quotient field of KRV. A simple application of Zorn's Lemma to the set
of all subfields of R which contain this quotient field (partially ordered by inclusion) now
establishes the existence of a maximal subfield of R containing the quotient field. This
maximal subfield contains K and Rv, and hence is a coefficient field of the required type.

In the lemma which follows, we use the bar notation for residues modulo p.

LEMMA 2. Let Kbea subfield of a weak primary ring R of exponent p, where p < 2 in the case
of characteristic zero and p < p in the case of characteristic p( > 0). Assume that the residue
field E of R is a separable extension of K. Then K can be extended to a coefficient field of R.

Proof. We first observe that, if p = 1, then R is a field, and the result is trivial.

t In [3], only p = 2 was considered. The proof extends at once, however, to the case in which
In the next section, we shall require this result and those of Lemmas 2, 3 and 4 only in the case of exponent
2, but it is of interest to consider here the more general situation to see to what extent these results are
dependent on the exponent being " small ".
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Suppose now that R has characteristic zero and that p = 2. Then, as was shown in [3],
any maximal subfield of R is a coefficient field. To complete the proof in this case, we apply
Zorn's Lemma to the set of all subfields of R which contain K, to show that there exists a
maximal one.

We may now assume that R has prime characteristic p and that 1 < p < p. By Lemma
1, the result will follow if we can prove that KRvr^p = (0), p being the maximal ideal of R.

Assume, then, that x is any element of KRpr^p, so that, for suitable a,- e K and xt e JR,
we have

. £ < ? (2)

From the set {xlt x2, ... , xn} of elements of E, we choose a subset consisting of elements which
are linearly independent over K and such that the subset is maximal with respect to this
property. We may suppose that the x( are numbered in such a way that the elements so
chosen are xv x2, ... , xm (m <: n). Because of the maximality of this subset, we may write

Accordingly

m _
= 2 bijXj (bucK ; i = 1, 2,..., n).

1

m

S h) « P.J = l

so that, since p < p,

m
(xt - 2 1>ijxi)v e Pp — Pp = W (i = 1, 2 ?i).

Thus, using the fact that R has characteristic p, we obtain

and the relation (2) becomes
m

• c — ZJ Gj'cj . • \")

where

c = J ^ ^ j f ( j = l , 2 , . . . , m ) (4)

Reading relation (3) modulo p and noting that x e p, we obtain in E

m

0= J « ^ (5)

Now the elements xv x2, ... ,xm are linearly independent over K ; consequently, by the
separability of E over K, the elements if, x\, ... , x%, are also linearly independent over K.
But cy e K, by (4), and hence (5) gives c3- = 0, so that
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= (0) (j = 1,2, . . . , m ) ;

accordingly, by (3), x = 0. This proves that the only element of KRVr\$ is the zero element,
which is Avhat we had to show.

If a is any proper ideal of a weak primary ring (i.e. if a is an ideal other than the whole
ring), then a is contained in the maximal ideal, and hence there exist positive integers /x such
that a" = (0). We shall call the smallest such positive integer ^ the exponent of a.

LEMMA 3. Suppose that S and S' are weak primary rings, and let a be a homomorphism of
8 onto S'with kernel of exponent fi. Then, if F' is a subfield of S',R = a~1(i'1') is a weak primary
subring of S of exponent /x. Further, there exists an isomorphism T of the residue field of R onto
F', and, if <f> denotes the natural mapping of R onto its residue field, then T<J> gives the restriction of
atoR.

Proof. Clearly R is a subring of S.
Let x be any non-unit of R. Then x must belong to the maximal ideal of 8, since other-

wise there would exist y e S such that xy = 1, and hence such that a(x) a(y) = 1. This would
imply that o(y)eF', from which it would follow that y e R. Accordingly we should have
xy = 1, with y e R, contradicting the fact that x is a non-unit of R. Consequently, if A is the
exponent of S, then x* = 0, so that {a{x)Y = 0 ; hence a(x) = 0, since F' is a field. This
proves that x, any non-unit of R, belongs to the kernel, say a, of a. Combining this with the
fact that a is necessarily a proper ideal of R, we see that a consists of all the non-units of R.
Now

a" = (0), a" * (0) if v < /x,

from which we deduce that R is a weak primary ring of exponent /x.
To prove the last part of the lemma, we observe that a induces a homomorphism of R

onto F' with kernel a. Thus there exists an isomorphism T of R/a (i.e. the residue field of R)
onto F'. By the definition of T, we have, for any x e R, r(f>(x) = a(x) ; consequently T</> = <j
onR.

LEMMA 4. Let T be a commutative ring ivith an identity element, and let 8, 8' be weak
primary rings which present the equicharacteristic case. Let 6, 8' be homomorphisms of T onto
S, S', respectively, and assume that there exists a homomorphism a of S onto 8' such that

(i) 6' = ad, and
(ii) if fj. is the exponent of the kernel of a, then /x ̂  2 when 8 has characteristic zero and

H < p when it has characteristic p( > 0).
Let K be a subfield of T, and F' a subfield of S' which contains 6' (K). Then, if F' is separable
over d'(K), there exists an extension field F of 8(K) in S such that a(F) - F'. Further, F is a
separable extension of 6(K).

Proof. Let R = a~x(F') ; then, by Lemma 3, R is a weak primary subring of S, whose
exponent /x satisfies the conditions of Lemma 2 ; and

o6(K) = B'(K) Q F', so that 6(K) £ a-i(F') = R,

showing that 6(K) is a subfield of R. Moreover (Lemma 3), there exists an isomorphism T of
the residue field, say E, of R onto F'; consequently, since F' is separable over O'(K), we find
that T"1 (JF") ( = E) is separable over T-1^' (K), i.e. over T-1CT0(Z), But, by Lemma 3, r~xtt = <)>
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on R, where <j> is the natural mapping of R onto E ; accordingly E is separable over <j>0(K).
Hence, by Lemma 2, 8(K) can be extended to a coefficient field, say F, of R, and we have

<j(F) = r<f>(F) = T(E) = F',

as required.
Finally, F is separable over 8(K) since a induces an isomorphism of F onto F', and under

this isomorphism 8(K) corresponds to d'(K).

3 . The principal result. Let Q be a weak local ring with maximal ideal m. Denote by Qt

the weak primary ring Q/m*, and let 0i and at be the natural homomorphisms of Q onto Q( and
°f Qi+i onto Qi, respectively, for all i — 1,2,3, ... . Then it is clear that 8( = CT,#,+1. Further,
the kernel of the homomorphism a( is nx'/Tn'+1, and so has exponent 1 or 2. (The exponent
may be 1 if Q is a weak primary ring.)

We note that Qx is the residue field of Q, and that 0X is the natural homomorphism of Q
onto its residue field.

In proving the theorem below, we shall essentially make use of the projective limit of the
Qt. We have already applied this notion to a situation similar to the above in [3] and [4], but
here we shall use the concept in a slightly different form, in order to show precisely where the
completeness of the ring is required.

We first prove

LEMMA 5. If x is an element of a weak local ring (not necessarily complete) such thai
0.(3:) = 0 for all i, then x = 0.

Proof. We have x e m' for all i, so that

00

x e .0 m* = (0).

The following result is contained in Lemma 5 of [3].

LEMMA 6. If Q is a complete weak local ring and if {xJ is a sequence such that x{ e Qt and
O{(zi+1) = xtfor all i, then there exists an element x e Q such that 8t(x) = xtfor all i.

We now establish our main result.

THEOEEM 1. Let Q be a complete weak local ring with K as a subfield. Suppose that Ft

is a separable field extension of dl (K) in Qv Then there exists an extension field F of K in Q such
thatd^F) = Fv

Proof. We first note that, from the observations made at the beginning of this section,
the conditions of Lemma 4 are satisfied if we take

T = Q, S = Q2, S' = Qlt 0 = 02, 8' = 8V

Accordingly we can find a subfield F2 of Q2 such that 92(K) £ i ^ and aj(.F2) = Ft; and Fz

is separable over 82 (K), i.e. over o-203 (K). Hence, again by our earlier observations and Lemma
4 with

T -Q,8 = Q3, S' =Q2J = 93, 6' = 82,

there exists a subfield F3 of Q3 such that 83(K) £ F3, o2(F3) = F2, and F3 is separable over
83 (K). We continue in this way to determine a sequence {JP,} such that F{ is a subfield of Q, and
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0t(K) £ Fit Oi(FM) = Ft.

Suppose now that Q is a weak primary ring of exponent A. Then, after A - 1 applications
of the above procedure, we obtain 0^(K) Q F^, i.e. K £ FA, and

If we now take F = F*, we obtain a subfield of the required type.
Consider now the general case. Let F denote the set consisting of all elements x e Q such

that #,• (x) e F{ for all i. I t is clear that F is a subring of Q. Let x e F, and assume that x ^ 0.
We assert that 9X(x) # 0. Suppose the contrary. Then, from d± - a^d^ and the fact that a1

induces an isomorphism of F2 onto Flt we obtain 92(x) = 0 ; and similarly

63(x) = e,(x) = ... = 0.

Thus 6i(x) = 0 for all i, so that, by Lemma 5, x = 0, contrary to hypothesis. From this it
follows that x 4 m ; accordingly there exists y e Q such that xy = 1, and hence, for any ?',
Qdx) t̂(2/) - 1- But, since 0,(a;) e F{ and i^ is a field, this implies that 6{(y) e Ft for all i, i.e.
that y e F. This proves that any non-zero element of F possesses an inverse in F, and
establishes that F is a field.

To complete the proof, we now show that 6X (F) = Fv and we first observe that, from the
definition of F, it follows that ^ ( J ) £ Fv Assume now that x± is any element of F1; then,
since at (i*\-+i) = Ft for all i, we can determine a sequence {a;,} such that x( e Ft and a( (xi+1) = x{.
Accordingly, by Lemma 6,f there exists x e Q such that O^x) = x( for all i. Since x{ e Ft, we
in fact have xe F, by the definition of F, and this gives xl = S^x) e O^F), showing that
F1 £ O^F). Thus O^F) = Flt as required.

COEOLLAKY 1. Let Q be a complete weak local ring, and let Kbea subfield of Q such that the
residue field of Q is separable over 61 (K). Then K can be extended to a coefficient field of Q.%

Proof. In the theorem, take J \ to be the residue field.

CoROLLABY 2 ( T H E EMBEDDING THEOREM). Any complete equicliaracteristic toeak local
ring Q possesses a coefficient field.

Proof. If Q has characteristic zero, then Q contains an isomorph K of the rational field ;
while, if Q has prime characteristic, the integral multiples of the identity form a subfield K of
Q which is perfect. Now any extension of a field of characteristic zero is a separable extension,
and it may be shown (see, e.g., [5], p. 113) that any extension of a perfect field is a separable
extension. Thus, in either case, K can be extended to a coefficient field of Q (Corollary 1), so
that a fortiori Q possesses a coefficient field.

COROLLARY 3. Any maximal subfield of a complete (equicharacteristic) weak local ring of
characteristic zero is a coefficient field.§

Proof. Let K he & maximal subfield ; then, since the characteristic is zero, K can be
extended to a coefficient field (Corollary 1), which must coincide with K because of the
maximality of K.

t I t is at this stage that the completeness of Q is required.
I Chevalley [1] has proved this result for the case in which Q is a complete local ring and the residue field

is separable over 61(K) in the classical sense.
§ This result has been established by Cohen [2] for complete local rings.
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