
Journal of Functional Programming 1 (4): 417-458, October 1991 417

A semantic basis for Quest
LUCA CARDELLI

Digital Equipment Corporation Systems Research Center, 130 Lytton Ave, Palo Alto Ca 94301 (USA)

GIUSEPPE LONGO1

LIENS (CNRS), Dept. de Mathe'matique et Informatique, Ecole Normale Supe'rieure, 45, Rue d'Ulm
75005 Paris (France)

Abstract

Quest is a programming language based on impredicative type quantifiers and subtyping within
a three-level structure of kinds, types and type operators, and values.

The semantics of Quest is rather challenging. In particular, difficulties arise when we try to
model simultaneously features such as contravariant function spaces, record types, subtyping,
recursive types and fixpoints.

In this paper we describe in detail the type inference rules for Quest, and give them meaning
using a partial equivalence relation model of types. Subtyping is interpreted as in previous work
by Bruce and Longo (1989), but the interpretation of some aspects - namely subsumption,
power kinds, and record subtyping - is novel. The latter is based on a new encoding of record
types.

We concentrate on modelling quantifiers and subtyping; recursion is the subject of current
work.

Capsule review

The language Quest is essentially an extension of Girard's system Fm with subtyping and
recursive types and terms. The paper describes a semantic model for Quest, not taking
recursion into account however. The model is based on partial equivalence relations (p.e.r.'s).
The paper applies and extends the work reported in [Longo, Moggi 88] and [Bruce, Longo 89]
(see the paper for references), but differs from it in aspects concerning subsumption, power
kinds and records.

The construction of models for higher-order typed lambda calculi is currently an active
research area. The p.e.r.-model approach seems to be a viable one. The paper shows how
subtyping and coercion can be interpreted in such a model in an elegant and convincing manner.
Considering the relevance of these notions for modelling inheritance, the work reported is a
useful contribution to the theory of functional object-oriented programming languages.

Contents

1 Introduction 418
2 Quest rules 420

2.1 Terms 421
1 This author's work has been supported in part by Digital Equipment Corporation.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

418 L. Cardelli and G. Longo

2.2 Judgments 421
2.3 Environments and variables 422
2.4 Equivalence and inclusion 422
2.5 Subsumption versus coercion 423
2.6 Power kinds 424
2.7 Operator kinds 425
2.8 The kind of types 425
2.9 Formal system 426

2.10 Records and other encodings 431

3 PER and to-Set 434
3.1 Semantics of kinds and types 435
3.2 Inclusion and power kinds 440
3.3 Operator kinds 442
3.4 The kinds of types 442
3.5 Records 444

4 Semantic interpretation of Questc 445
4.1 Interpretation 446
4.2 Emulating coercions by bounded quantification 448

5 Semantic interpretation of Quest 449
5.1 Preliminaries and structures 450

5.2 Interpretation 452

6 Conclusions 456

Acknowledgements 457

References 457

1 Introduction

Type theory provides a general framework for studying many advanced programming
features including polymorphism, abstract types, modules and inheritance (see
Cardelli and Wegner, 1985 for a survey). The Quest programming language (Cardelli,
1989) attempts to take advantage of this general framework to integrate such
programming constructs into a flexible and consistent whole.

In this paper we focus on the Quest type system by describing and modelling its
most interesting features. At the core of this system is a three-level structure of kinds,
types (and type operators) and values. Within this structure we accommodate
impredicative type quantifiers and subtyping. Universal type quantifiers can then be
used to model type operators, polymorphic functions and ordinary higher-order
functions. Existential type quantifiers can model abstract types. Subtyping supports
(multiple) inheritance, and in combination with quantifiers results in bounded-

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 419

polymorphic functions and partially abstract types. Subtyping is realized in a uniform
way throughout the system via a notion of power kind, where ^(A) is the kind of all
subtypes of A.

Formally, Quest is an extension of Girard's Fro (Girard, 1972) with additional kind
structure, subtyping structure, recursive types, and fixpoints at all types. Alternatively,
it is a higher-order extension of the calculus studied in Curien and Ghelli (1990),
which is the kernel of the calculus in Cardelli and Wegner, 1985). Recursion is
necessary to model programming activities adequately, and causes us to abandon the
Curry-Howard isomorphism between formulas and types.

New kinds and types can be easily integrated into the basic Quest system to model
various programming aspects. For example, basic types can be added to model
primitive values and their relations (Mitchell, 1984); record and variant types can be
introduced to model object-oriented programming (Cardelli, 1988; Wand, 1989;
Cardelli and Mitchell, 1989; Cook et ah, 1990); and set types can be introduced to
model relational data bases (Ohori, 1987). In all these cases, subtyping performs a
major role. Many of these additional type constructions can, however, be encoded in
a very small core system, which is the one we investigate in this paper.

The type rules we consider are very powerful, but not particularly complex or
unintuitive from a programming perspective. This contrasts with the semantics of
Quest, which is rather challenging. In particular, difficulties arise when we try to
model simultaneously features such as contravariant function spaces, record types,
subtyping, recursive types and fixpoints. In this paper we concentrate on modelling
quantifiers and subtyping; recursive types and values are an active subject of research
(Amadio, 1989; Abadi and Plotkin, 1990; Freyd et al, 1990).

The model we present for such advanced constructions is particularly simple; the
basic concepts are built on top of elementary set and recursion theory. This model has
been investigated recently within the context of Category Theory, in view of the
relevance of Kleene's realizability interpretation for Category Theory and Logic. Our
presentation applies and further develops, in plain terms and with no general
categorical notions, the work carried on in Longo and Moggi (1988) and Bruce and
Longo (1989). Our work is also indebted to that by Amadio, Mitchell, Freyd,
Rosolini, Scedrov, Luo and others (see references).

The presentation of the formal semantics is divided into two parts, corresponding
to Sections 4 and 5, where we discuss variants of the language with and without
explicit coercions. However, the underlying mathematical structure is the same and
the interpretations are strictly related.

We conclude this section with a few examples, both to introduce our notation and
to provide some motivation.

The polymorphic identity function below introduces the universal quantifier over
types (II) along with ^.-abstraction over types (k(X-TYPE)) and type application, and
the function space operator (->) along with ^.-abstraction over values (X(x-X)) and
value application:

let idU(XTYPE)(X^X) = X(X-TYPE)X(x-X)x

id(Int)(3) = 3-Int.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

420 L. Cardelli and G. Longo

Abstract types are obtained by existential quantification over types (Z) (Mitchell
and Plotkin, 1985). (As is well known, these existential quantifiers, with their
associated primitives, can be defined in terms of IT and ->. Similarly, cartesian
product (x) , can be defined from IT and -K) The following might be the type of a
package providing an abstract type X, a constant of type X, and an operation from
Xto Inf.

(X^ Int)).

Bounded universal quantifiers allow us to write functions that are polymorphic
with respect to all the subtypes («) of a given type. This is particularly useful for
subtypes of record types, which are generally meant to model object types in object-
oriented programming languages. Here (age-Int) is the type of records that contain
a field age of type Int, and {age = 5, color = red} is a value of type (age-Jnt,
colonColory, which is a subtype of {.agelnty. The following ageOf function
computes the age of any member of a subtype of (age-Inty.

X(X<-.iage-Inty) X(x-.X) x. age

ageOf(^age-Jnt, color-Colory)((age — 5, color = red~)) = 5-Jnt.

Bounded existential quantifiers are useful for representing types that are partially
abstract, in the sense that they are known to be subtypes of a given type, but are not
completely specified:

I.(X<-iageJnty)...

Bounded existential quantifiers also model types that are subtypes of abstract or
partially abstract types:

These last two features are present, in specific forms, in Modula-3 (Cardelli et al.,
1988).

We refer to Cardelli (1989) for detailed programming examples that use the full
power of the system.

The paper is organized as follows. Section 2 describes the formal theory of Quest,
including its typing rules, and can be understood on its own. Sections 3, 4 and 5 are
more technical, and are concerned with semantics. Section 3 provides background
material on partial equivalence relation (p.e.r.) models, and more specific material on
subtyping. Section 4 gives meaning to Questc (with explicit coercions), while section
5 gives meaning to Quest (with implicit subsumption).

2 Quest rules

In this section we discuss the typing and reduction rules for Quest. We use K, L, M
for kinds; A, B, C for types and operators; a, b, c for values; X, Y, Z for type and
operator variables; and x, y, z for value variables. We also use 3T for the kind of all
types, and 3?(B) for the kind of subtypes of B. In general, we use capitalized names
for kinds and types, and lower-case names for values.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

The pre-terms

A semantic basis for Quest 421

2.1 Terms

are described by the following syntax. Only those pre-terms that are
validated by the rules in the following subsections are legal terms:

&-„

0>{A)
U(X-K)L

A-,=
X
Top
U{X-K)B
A^B
X(X--K)B
B(A)
\L{X)A

a~ =
X

top
X(X--K)b
b(A)
X{x-A)b
b(a)
cA B(a)
\i(x-A)a

Kinds
the kind of all subtypes of a type
the kind of operators between kinds

Types and Operators
type and operator variables
the supertype of all types
polymorphic types
function spaces
operators
operator application
recursive types

Values
value variables
the distinguished value of type Top
polymorphic functions
polymorphic instantiation
functions
function application
coercions
recursive values

The following abbreviations will be used:

U(X)Ls
n(X)B=
X(X)B =
X(X)bs

0>(Top) the kind of all types

U{X--$-)L Tl(X<.A)L = n(X..0>(A))L
n(X-$~)B U(X<-A)B = n(X-:0>(A))B
X(X-^)B X(X<-A)B = X(X-..0>(A))B
X(X--.^-)b X(X<-A)b = X(X.:0>(A))b

From the abbreviations above we can see that this calculus includes all the terms of
Feo (Girard, 1972) and Fun (Cardelli and Wegner, 1985).

2.2 Judgments

The formal rules are based on eight primitive judgment forms plus three derived ones,
listed below:

\- Eenv

E\-Kkind
E\-A«K
E\- A type

E is an environment

K is a kind (in an environment E)
type A has kind K
A is a type (abbr. for E\— A~$~)

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

422 L. Cardelli and G. Longo

E \— a-A value a has type A

E h- K<--L kind AT is a subkind of kind L
E\-A<B type A is a subtype of type B (abbr. for £h- A--0>{E))

E \- K<=>L K and L are equivalent kinds
E \— A<->B--K A and B are equivalent types or operators of kind K
E\-A<»B type A and 5 are equivalent types (abbr. for E\- A<->B--S~)
E \— a«-»fr/1 a and ft are equivalent values.

A judgment like E I— a-A is interpreted as defining a relation between environments,
value terms and type terms. This relation is denned inductively by axioms and
inference rules, as described in the following sections. The rules are then summarized
in section 2.9.

2.3 Environments and variables

An environment E is a finite sequence of type variables associated with kinds, and
value variables associated with types. We use dom(E) for the set of type and value
variables defined in an environment.

[Env0] [EnvX] [Envx]

E\- KkindXidom(E) E\-A typex$dom(E)
\-0env I- E, X--Kenv h- E, x-A env '

[VarX] [Varx]

\— £", X--K, E" env \— E', x-A, E" env
E',X--K,E"\-X--K E',x--A,E"\-x-A'

2.4 Equivalence and inclusion

Equivalence of kinds (<=>) is the least congruence relation over the syntax of kinds that
includes the following rule involving type equivalence:

[KEq0>\

E\— A«>A' type

Equivalence of types and operators (<=>) is the least congruence relation over the
syntax of types that includes P and T| type conversions (shown later), and the
following rule for recursive types. Here A \Xmeans that A must be contractive in X
in order to avoid non-well-founded recursions; see the definition in Section 2.9. The
third rule below claims that every contractive context C has a unique fixpoint:

E, X-3T \-A type A\X
E\-n(X)Atype

[T\x]

A\X

E\- \L(X)A<->A{X+- \I{X)A) type

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 423

[TEq Contract]

E\-A<-->C{X<-A}type EY-B<->C{X<-B}type C\X
E h- A«>B type

Inclusion of recursive types is given by the following rule, working inductively from
the inclusion of the recursive variables to the inclusion of the recursive bodies:

[Tlncl n]

EI-]x(X)A type E\-\i{Y)Btype E, Y«F, X<--Y\- A<B
E\-\a(X)A<-\i{Y)B

Equivalence of values (<->) is the least congruence relation over the syntax of values
that includes p and r\ value conversions (shown later), together with the following rule
for recursive values:

EY-\i{x-A)b-A
E I- ii(x--A)b «-> b{x <- \i(x--A)b}--A'

The rules for recursive types and values will not be modelled in the later sections.
Nonetheless, we consider them an essential part of the language, and refer the reader
to Amadio (1989), Abadi and Plotkin (1990) and Freyd et al. (1990) for related and
ongoing work.

The following rules state that the property of having a kind (resp. a type) is
invariant under kind (resp. type) equivalence; that is, equivalent kinds and types have
the same extensions:

[KExt](Kind Extension) [TExt] (Type Extension)

EY-A--K E\-K<-->L EY-a-A E\- A<->B type
E\-A--L E\-aB "

The relations of type and kind inclusion are reflexive and transitive:

[Kind Reft] [Kind Trans]

E H K<-->L E \- K<-L E \- L<--M

E\-K<-L E\-K<--M

[Tlnd Reft] [Tlncl Trans]

E\-A<->Btype E\-A<B E\- B<-C
E\-A<-B E\-A<-C '

We shall see shortly that the subtype relation is actually defined in terms of power
kinds, then all the rules written in terms of subtyping are interpreted as rules about
power kinds.

2.5 Subsumption versus coercion

The following rules reflect the set-theoretical intuitions behind the subtyping
relation. We present two alternatives: subsumption and coercion.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

424 L. Cardelli and G. Longo

Subsumption formalizes a computationally natural way of looking at subtypes.
When viewing computations as type-free activities, any element of a type is directly
an element of its supertypes:

[TSub] (Subsumption)

E\-a-A E\-A<-B

E\-aB

A mathematical model of Quest with subsumption is given in part 5. That model is
the main semantic novelty of this paper.

Before that, in part 4, we consider a system without subsumption, called Questc. In
Questc, subsumption is replaced by a coercion rule, where a value of a type A must
be explicitly injected into a supertype B by a coercion function cA B. Invariance under
type inclusion will be true only for modulo coercions in the most straightforward
semantics given in part 4.

[TSub] (Coercion)

E\-a-A EY-A<-B

In the semantics of Questc we obtain a single coercion function c: Tl(X~$~)Tl(Y<-X)
Y-^X; then c{B)(A) gives meaning to cA B.

Coercions satisfy the following basic rules; more rules will be given later:

[VCoer Id/Quest ^ [VCoer Comp/Questc]

EY-aA E\-a-A E\- A<B E\- B<C

The important intuition about coercions is that they involve little, if any,
computational work. Often they are introduced as identity functions with the only
purpose of 'getting the types right'. In compilation practice they are often removed
during code generation. Semantically, this will be understood in the model for Questc

below by observing that they are computed by (indexes of) the identity function. In
Quest, the subsumption rule above is a strong (or explicit) way of saying that
coercions have no computational relevance.

2.6 Power kinds

For each type A there is a kind 0>(A) of all subtypes of A. The kind 0>(Top) is then
the kind of all types, and is called 3~. Here are the formation and introduction rules
for # ; the subsumption/coercion rule serves as an elimination rule for &.

[KF3>\ [Tlncl Reft']

E\— A type E\— A type

E\-S?{A)kind

The subtype judgment E\-A<B is denned as an abbreviation for a judgement
involving power kinds:

E\-A<B iff E\- A*

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 425

The subkind judgment E \- K<-L is primitive, but has very weak properties. It is
reflexive and transitive, it extends monotonically to 2P, and it extends to IT via a
covariant rule:

[KInct&] [KlnclU]

E\-A<--A' E\-Kkind E,X~KV- L<-L'

Note that the first rule above implies
Moreover, we have a subsumption rule on kinds:

[KSub] (Kind Subsumption)

E\-A--K
E\-A--L "

Unlike type subsumption, kind subsumption is satisfied by both models in Sections
4 and 5.

2.7 Operator kinds

The kind of type operators is normally written as K=> L in F<o (operators from kind
Kio kind L). In our system, as in the Theory of Constructions, we use a more general
construction Yl(X-K)L, since X may actually occur in L within a power operator, for
example in Yl(X-3r)0>(X).

Individual operators are written \(X~K) A with standard introduction, elimination,
and computation rules, shown later.

2.8 The kind of types

The kind of all types 3~ contains the type Top, the types of polymorphic functions,
the types of ordinary functions, and the recursive types.

The type Top is the maximal element in the subtype order:

[TFTop] [TInclTop]

\-Eenv E\- A type
E \— Top type E \— A<-Top

Hence the power of Top is the collection of all types and, as already mentioned, we
can define the kind of all types as follows:

F = 0>{Top).

There is a canonical element of type Top, called top. Moreover, any value belonging
to Top is indistinguishable from top:

[VITop] [VEqTop'](Top Collapse)

\-Eenv E\- a-Top E \- b-Top
E\—top-Top E\— a *-* b-Top

When using the subsumption rule, we obtain that every value has type Top, since
Top is the largest type. Moreover, every value is equivalent to top when seen as a

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

426 L. Cardelli and G. Longo

member of Top, and hence cA iTop(a) <-> cBiTop(b) for any a-A and b-B. By this, when
using the coercion rule, there is a unique coercion cA Top(a) from A into Top. This
rather peculiar situation will be understood in the semantics by the meaning of <= and
by the interpretation of Top as the terminal object in the intended category. Top and
its properties will play a crucial role in the coding of records.

The types of polymorphic functions are modelled by an impredicative general-
product construction, Yl(X-K)B. Although we do not show it here, from this product
we can derive 'weak' general sums, which are used in the Quest language for
modelling abstract types.

The standard formation, introduction, elimination and computation rules (shown
in Section 2.9) are complemented by rules for subtyping and coercion:

[Tlnclll]
K E,X--K'\-B<:B'

E\-n(X--K)B<:Tl(X--K')B'

[VCoerYl]

E\-bn(X--K)B E\-A-K'

AUB.{X<

Ordinary higher-type functions are modelled by a function space construction (->).
We avoid first-order dependent types (Yl(x-A)B, which generalize A -> B), because in
practice they are hard to typecheck and compile. Again, most rules are standard, but
we may want to notice subtyping and coercion:

E\-A'<--A
E\-A^

[VCoer^]

E\-bA-+

B

B

E\-B<B'
•••A'-*B'

EV-a-A' EY-A -+B<--A''-+ B'

B,sib(cA,A(a

2.9 Formal system

In this section we summarize the formal systems for both Quest and Questc. The rules
of these systems are presented simultaneously as they largely coincide.

Rules are named, for example [TExt/Quest] (Type Extension) extra. Here TExt is
the proper name of the rule. The notation /Quest means that this rule applies only to
Quest, while the notation / Questc applies only to Questc; otherwise, the rule applies
to both systems. This rule is sometimes called Type Extension in the text. Finally,
extra means that this rule is actually derivable or admissible and is listed for
symmetry with other rules or for emphasis (for example [KEq Refl] and [TEq Refl] are
provable by simultaneous induction on the derivations).

The rules grouped as 'computation' rules may be oriented in order to provide
reduction strategies.

A recursive type \i(X)C is legal only if C is contractive in X, written C^X
(MacQueen et al., 1986). A type C is contractive in a (free) type variable Xtf and only

It https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 421

if C has one of the following six forms: a type variable different from X;
Top; U(X'--K)C with A^free-variables(AT) and C\X; A-^B; (k(X'-.--K)B)(A) with
B{X' <- A} IX; or \i(X')C with C" [X (as well as CIX').

We are conservative about the contractiveness conditions on Y\{X'-K)C, and these
deserve further study. The condition X$ free-variables(A^) prevents constructions
such as \JL(X)YI{Y<-X)X^X, whose semantics is unclear. The condition C [X agrees
with one of the semantics we give to IT as a non-expansive intersection, although
syntactically this restriction seems unnecessary.

Judgments

\- Eenv E is an environment

E \- Kkind AT is a kind (in an environment E)

E\-A~K type A has kind K

E\-A type A is a type (abbr. for E\- A---3T)

E I— a-A value a has type A

E \- K<-L kind K is a subkind of kind L

E\-A<-B type A is a subtype of type B (abbr. for E\- A--0>(B))

E \- K<*>L K and L are equivalent kinds

EI- A<>B--K A and B are equivalent types or operators of kind K

E\- A<>B type A and B are equivalent types (abbr. for E\- A

E\— a<->b-A a and b are equivalent values.

Environments

[Env0] [EnvX] [Envx]

E\-Kkind X$dom(E) E\-Atype x$dom(E)
\— E, x-A env\- 0 env

[VarX]

\-E',X--K, E'

V- E, X--Kenv

[Varx]

'env \— E',x-A,E" env

E', X--K, E" \- X--K E', x-A,E" \- x-A

Kind formation

[KF&] [KFYl]

E\-Atype E\-Kkind E,X-K\- Lkind
E\-0>(A)kind E\-Tl(X-K)Lkind '

Kind equivalence

[KEq Reft] extra [KEqSymm] [KEq Trans]

£ 1 - Kkind E\- K<-->L E\- K<-->L E\-L<~->M
E\-K<-->K E\-L<-->K E\-K<-->M

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

428 L. Cardelli and G. Longo

[KEq0>] [KEqU]

E\-A<-.> A' type EY-K<~~>K' E,X--KY-L<-~>L'

E Y- &(A)<-->l?(A') E Y- n(X:-K)L<~->U(X::K')L'

[KExt] (Kind Extension) extra

EY-A*K E\-K<-->L

EY-A--L

Kind inclusion

[Kind Reft] [Kind Trans]

EY-K<-->L EY-K<--L EY-L<--M

E Y- K<-L EY-K<:-M

[Kind9] [KlnclU]

EY~A<--A' EY-Kkind E,X-KY- L<-L'
EY-

[KSub] (Kind Subsumption)

EY-A'K
EY-A-L

Type and Operator formation

[TFTop] [TF»]

h- Eenv E,X-JI- A type A\X
E \— Top type E \— \L(X)A type

[TFY\] [TF^]

Er-Kkind E,X--KY-Btype E\- A type E\-Btype
Er-n(X-K)Btype E \- A -> B type

[Tl n] [TE U]
EY-Kkind E, X-Kr-B--L Eh-B-fl(X.K)L EY-A--K

E h- X(X.K)B::U(X'K)L EY-B{AyL{X±-A) '

Type and Operator equivalence

[TEq Refl] extra [TEq Symm] [TEq Trans]

EY-A^K EY-A«>B::K EY-A<t>B*K EY- B<->CK

EY-A<:>A-:K EY-B<->A-K E Y-A<:>G-K

[TEq X] [TEq Top]

E\-X*K Y-Eenv
EY-X<'>X--K EY- Top<->Top type

[TEqU] [TEq-+]

E Y- K<*>K' E, X-K Y- B<>B' type EY- A<-->A' type EY- B<>B' type

E Y- n{X-K)B<->Tl(X-K')B' type EY- A^B<->A' -+B' type

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 429

[TEq Abs] [TEq Appl]

Eh K<-->K' E, X--Kh B<>B-L Eh B<>B'J\(X:-K)L Eh A<->A'-..K
E h X(X-:K)B<:>X(X::K')B'-:U(X::K)L E h B(A)<:>B'(A'}L{X ̂ A}

[TEq n]
E,X--^hB<->B'type B,B'jX

E\-\i(X)B<:>v(X)B'type

[TEq Contract]

E\-A<-->C{X*-A}type E h-B<->C{X ̂ B} type C\X
E \- A«>B type

[TExt/Quest] (Type Extension) extra [TExt/QuestJ (Type Extension)

E\-a>A E\-A<~Btype E\- a-A E \-A<->B type
E\-aB E\-aB

[rnti]
E V- B:\l(X-K)L Xi dom(E)

Type and Operator computation

E h- (k(X-K)B)(A)<->B{X^A}-:L

[T\i]

E,X-S'\- A type A^X

E h- \L(X)A<->A{X^ \i(X)A} type

Type inclusion

[Tlncl Reft] [Tlncl Trans]

E\-A~>Btype Eh- A<B E\-B<-C
E\-A<B E\-A<-C

[Tlncl Top] [Tlncl U]

Eh A type EhK'<--K E, X'-K'h B<-B' Eh A'<-A Eh B<B'
E h A<-Top E h n{X.-K)B<J\{X::K')B' E h A -+ B<-A' -> B'

[Tlncl \i]

Eh\i(X)A type Eh\i(Y)Btype E, Y*ST,X<--Yh A<B
Eh \i{X)A<-\i{Y)B

[TSub/Quest](Subsumption) [TSub/Questc](Coercion)

Eha-A EhA<B Eha-A Eh A<B
Eha-B EhcAB(a)-B "

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

430 L. Cardelli and G. Longo

Value formation

[VI Top]

\— Eenv
E\— top-Top

[Vin] [VEU]

E\-Kkind E,X--KY-bB EY-bIl(X-K)B E\- A---K
E\-\(X-K)b<n(X-K)B E\-b(A}---B{X<~A}

E\- A type E,x-AY-b-B EY-bA-^B E\- a-A
Ts EY-b{a)B

[VIc/Questc]

E\-A<B E\-a-A

[VI \l]

E\-Atype E,x-AY-b-A
E\-\i(x-A)bA '

Value equivalence

[VEg Refl] extra [VEg Symm] [VEg Trans]

Eh a-A

E\— a <-^&A E\— 6 <-> a-A E \— a <-> c-A

[VEqSub/Quest] (Subsumption Eg)

EY-a^a'-A EhA<B

[VEgSub/Quest^ (Coercion Eq)

E\-a<r->a'-A E\- A<B E\- A<->A'type E\- B<>B' type

[VEqx]

EY-x-A
E \— x <-> x-A

[VEg TAbs]

E\-K<~->K'

[VEg top]

\- Eenv
E \— top <-» top-Top

E,X--KY-b~b'B

[VEqTop] (Top Collapse)

E \— a <-• a-Top
E\-a<-

[VEg TAppl]

EY-b<^b'^{:

E\-b<
+ b-Top

F-.K)B

->b-Top

E\- A<-->A'--K
E I- X(X'--K)b <-> 'k(X--K')b'Tl{X--K)B E V- b(A) <-+ b'(AJ--B{X+- A}

[VEg Abs] [VEg Appl]

E\-A<->A'type E,x-A \-b*->• b'B EY-b^b'-A-^B EY-a^a'-A

E\-X{x:A)b<-+

[VEq v]

E\— A<-->A' type
E\-n(x-.A)b

1

X(x-A')b'-A^B

E,x-A\-b<->b'-A
^\i.{x-A')b'-A

E\-b(a)<- -+b'(aJB

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 431

[II r]/QuesQ [-+r]/Questc]

X$dom(E) Eh-b-A^B x$dom(E)
E H (k(X--K)b(X)) •-> b-U(X-.-K)B E \- {X{x-A)b(x))

Value coercion

[VCoer Id/Quest,.] [VCoer Comp/Quest^

E\-a-A E\-a-A E\- A<B E\- B<-C
E\-cA Ja)<->a-A E\-cB c(cA B(a))*->cA C{a)-C

[VCoer Top/'QuestJ extra

E\-a-A
E\-cATop(a)<r-> top-Top

[VCoer Tl/QueslJ
EY-A-K'

[VCoer ^ I Quest £

E\-bA->B EV-aA' E\- A -> B<-A'^ B'

[VCoer n/QuestJ

E\-a\i(X)A EV-A-K' E V- \i(X)A«\i(Y)B

Value computation

[np] KP]
E \- (X(X:K)b)(A}-B E h- (X(x-A)b)(a)-B

E h- (\{X---K)b)(A) <-> b{X<- A}--B Eh- (k(x-A)b)(a) <-> b{x +- a\-B

Eh-\i{x:A)b-A
E h- \i{x-.A)b <-»• b{x <- \i(x-A)b}-A'

2.10 Records and other encodings

Record types are one of the main motivations for studying type systems with
subtyping (Cardelli, 1988). However, in this paper we do not need to model them
directly (as already done in Bruce and Longo, 1989), since they can be syntactically
encoded to a great extent.

More precisely, we show how to encode the record calculus of Cardelli and Wegner
(1985), although we do not yet know how to encode the more powerful calculi of
Wand (1989) and Cardelli and Mitchell (1989). Moreover, we show how to encode the
functional update problem discussed in Cardelli and Mitchell; this problem cannot be
represented in the calculus of Cardelli and Wegner (1985).

In this section we discuss these encodings, and then we feel free to ignore records
in the rest of the paper.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

432 L. Cardelli and G. Longo

We start by encoding product types, in the usual way:

A x B = U(C){A -+ B^ Q-> C

pair •• n(A)Yl(B)A^B-*AxB

E= X(A) X(B)X(a-A) X(b-.B) X(Q X(fA -> B^ QJ[a)(b)

fst •• U(A)U(B)AxB^A

= X(A) X(B) X(oA x B) c(A)(X(x-A(X{y-E)x)

snd •• n(A)n{B)AxB-+B

= X(A) X(B) X(oA x B) c(B)(X(x-.A) X(yB)y).

We often use a more compact notation:

a,b =a,AXBb = pair(A)(B)(a)(b)

fst(c) ^fstAxB(c) =fst(A)(B)(c)

snd(c) = sndAxB(c) = snd(A)(B)(c).

The expected rules for products are now derivable:

E\-A<--A' E\-B<-B'
E\-AxB<-A'xB'

E\-P<-AxB E\-p-P E\-P<-AxB E\- pP
E^fstAxB(p}-A

As a first step toward records, we define extensible tuple types as iterated products
ending with Top, and extensible tuple values as iterated pairs ending with top. A
similar encoding appears in Fairbairn (1989):

Tuple(Ax,...,An) = A1x(...x(Anx Top)..)

tuple(a1,...,an) = a1,(..-,(an,top)..).
Hence:

E\-a{-A1...E\-at;-An

E\- tuple{ax,...,an)-Tuple(Ax,...,AJ

E \- A^B,... E V- An<Bn... E \- Am type
E V- Tuple{Ax, ...,An,..., AmyTuple(Bx, ...,BnY

For example: Tuple(A,B)<--Tuple(A) since A<-A,Bx Top<-Top, and x is monotonic.
We now need to define tuple selectors (corresponding to product projections). This

would be a family sel" of terms selecting the rth components of a tuple of length n.
In fact, by using subtyping it is sufficient to define a family selt of terms for extracting
the rth component of any tuple of sufficient length:

selx •• TliAj) Ax x Top -> Ax

= XiA^Xif-A, x Top)fstAiXTop(t),

sel2 •• U(A2) Top xA2x Top -± A2

= X(A2) X(t--Top x A2 x Top)

etc.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 433

We can also define tuple updators, that is, terms that replace the rth component of
a tuple with a given value. The crucial point here is that these updators do not forget
information about the type of the components that are not affected by the update. To
achieve this effect, we must use knowledge of the encoding of tuples as pairs. Again,
we can define a family updi instead of a family upd".

upd, •• n(5x)Tl(Btl)niA^B.xB^A^A.xBtl

'K{t-Bl x Btl)X(a1'A1)a1,AiXiiiii

upd2 •• nCBj)n(B 2)U(B U)n(A 2)B l xB 2 xB n ^A 2 -±B 1 xA 2 xB t l

X(tB1 xB2x Btl)X(a2'A2)fst(t), (a2,snd(snd(t))),

etc.

These definitions solve the functional update problem (Cardelli and Mitchell, 1989)
for tuples. This problem can be explained by the following example, where we update
a field of a tuple in such a way that the updating function works equally well on
subtypes of the stated tuple type.

We have a type of geometric points defined as Point = Tuple(Int,Int), where the
integers represent respectively the x and y components. Since these are tuples, a point
can have additional components, for example a color; then it is a member of
ColorPoint = Tuple{Int,Int,Color). We further assume that the subrange type 0. .9 is
a subtype of Int.

The problem consists in defining a function moveX that increments the x
component of a point, returning another Point. Moreover, when applied to a
ColorPoint (with adequate type parameters) this function should return a ColorPoint,
and not just a Point.

One might think that moveX has type Tl(A«Point) A -> A. This is not the case; we
show that the parameter type A must change appropriately from input to output:

Point = Tuple(Int,Ini)

moveX •• UIB^-Int) U(Btl<-Tuple(Int)) Bt x Btl -> Int x Ba

= XiB^Int) X(Ba<-Tuple(Int)) Xip^ x Ba)

upd^BJiB^IntXpXseWntXp) +1).

Obviously, we have:

p-Points tuple(9,0)

moveX(Int)(Tuple(Int))(p) = tuple(\0fl)-- Point.

However, note that in the following example the result does not, and must not, have
type TupleiO.. 9,Int):

p-Tuple(0. .9,Int)<-.Point = tuple(9,0)

moveX(0. .9)(Tuple(Int))(p) = tuple(l0,0)-.Point.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

434 L. Cardelli and G. Longo

We can also verify that color is preserved:

p-Tuple(0. .9,Int,Color)<-ColorPoint = ta/?/e(9,

moveX(0. .9)(Tuple(Int,Color))(p) = tuple(lO,0,red)-ColorPoint.

Hence, we obtain a moveX function with the desired properties, but only by taking
advantage of the encoding of tuples as products. Note that in the input type of moveX,
Point is split into Int and Tuple{Inf).

Now we turn to the encoding of records Rcd(lyA1,...,ln-An); these are unordered
product types with components indexed by distinct labels lt.

We fix a standard enumeration of labels if1,/2,.... Then a record type is the
shortest tuple type where the type component of label £* is found in the tuple slot of
index i, for each i. The remaining slots are filled with Top. For example:

Rcd(tz:C,tl>A) = Tuple(A, Top, Q.

Under this encoding, record types that differ only on the order of components are
equivalent, and we have the familiar:

E\-A1oB1...E\-An«Bn...E\-Amtype
,,..., ln-An,..., l^AJ'-Rcd^B,,..., ln-Bn)'

Record values are similarly encoded, for example:

rcd(P = cj1 = a) = tuple(a, top, c)

EY-a<-Al...E\-an-An

E \-

E\-r-Rcd(l1:A1,...,l1:An) E h- r-Rcdjl^,..., lfAt,..., ljAn) E\-bB
E\-r.lfAt E\-r.li^b--Rcd(l1'A1....,lfB,....ln'An) '

Here record selection r.lt is defined via selt(r), and record update r.lt ̂ bis defined via

Note that it is not possible to write a version of moveX for records solely by using
the derived operators above. The functional update problem can be solved only by
using knowledge of the encodings, as was done for tuples. In this respect (an encoding
of) a calculus like the one in Cardelli and Mitchell (1989) is still to be preferred, since
it can express the moveX functions independently of encodings.

Under the encodings above, more programs are typable than we would normally
desire; this is to be expected of any encoding strategy. The important point here is
that the familiar typing and computation rules are sound.

3. PER and co-Set

The rest of the paper describes the mathematical meaning of the Quest system
described in the previous section. The goal here is to guarantee the (relative)
consistency of Quest's type and equational theories. The model, though, is also meant
to suggest consistent extensions. This is one of the reasons why we construct a specific
(class of) model(s), instead of suggesting general definitions. These may be obtained
by slight modifications of the work in Bruce and Longo (1988), or even better, by

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 435

following the categorical approach in Asperti and Longo (1991). Indeed, in the latter
case, the invention of a general categorical meaning for subtyping and subkinds
would be a relevant contribution.

In this part, we first try to give the structural (and partly informal) meaning of
kinds, types and terms, as well as their crucial properties. The reader will find the
properties formally described in part 2 reflected over sets and functions, and should
grasp the essence of the translation. Part 4 develops further the details of the
interpretation of Questc that the experienced reader could give by himself, at that
point. Part 5 describes Quest with the subsumption rule, instead of with coercions.

Because of the presence of type operators, the structure of kinds is at least as rich
as the type-structure of typed ^.-calculus. Thus, kinds needs to be interpreted as
objects of a Cartesian Closed Category (CCC). The category we will be using is co-
Set below. Its objects must, of course, include the kind of types, which in turn must
be structured as a CCC.

In a sense, we need a frame (or global) category, inside which we may view the
category of types as an object. More precisely, we need a frame category and an
internal category, but we will not go into this here, except in Remark 3.1.5. The
general approach by internal categories was suggested by Moggi, and has been
developed by several authors (see Remark 3.1.5 for references).

The specific structures used here, that is to-Set and PER below, are described in
Longo and Moggi (1988), where their main categorical properties are also given. The
approach in Longo and Moggi is elementary: indeed, these categories may be seen as
subcategories of Hyland's Effective Topos (see Hyland, 1982, 1987) for the topos
theoretic approach). The idea of interpreting subtypes as subrelations is borrowed
from Bruce and Longo (1989), where the semantics of Quest's progenitor system,
Bounded Fun (with coercions), was first given.

3.1 Semantics of kinds and types

The key idea in the underlying mathematical construction is to use a set-theoretic
approach where the addition of some effectiveness prevents the difficulties discussed
in Reynolds (1984). In this regard, the blend of set-theoretic intuition and elementary
computability provides a simple but robust guideline for the interpretation of
programming constructs.

The construction is based on Kleene's applicative structure (co, •), where co is the set
of natural numbers, together with a standard godelization §n of the computable
functions in co->• co, and where • is the operator such that n-m = <$>n(m). However, the
same mathematical construction works for any (possibly partial) combinatory
algebra, in particular on any model of type-free ^.-calculus. We prefer, in this part,
Kleene's (co,) in view of everybody's familiarity with elementary recursion theory. In
part 5, though, we will base our construction on models of the type-free ^.-calculus.

Definition 3 . J . I
The category to-Set has:

objects: <^,lh^>eco-Set iff

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

436 L. Cardelli and G. Longo

A is a set and Iĥ c co x A is a relation, such that VaeA.3n.ri \\-A a
morphisms: fe ro-Set [.4, B] iff

where n\\- A^BfoVae A.Vp. p\\- Aa=> n- p\\- Bj{a) D

Thus, each morphism in co-Set is 'computable' in the sense that it is described by
a partial recursive function that is total on {p \p M-A a}, for each as A. If p Ih a (we may
omit the subscripts), we say that p realizes a (or p computes a).

We next define the category of types. When A is a symmetric and transitive relation
on co, we set:

nAm iff n is related to m by A,

dom(A) = {«| n A n},
rn'lA = {m\mAn) the equivalence class of n with respect to A,

Q(A) = {rn~iA\nedom(A)} the quotient set of A.

Definition 3.1.2
The category PER (of Partial Equivalence Relations) has
objects: A e PER iff A is a symmetric and transitive relation on co,
morphisms :/ePER|>4, B] iff

and ln.Vp.(pAp*>/Lrp\) = rn-piB). •

PER is a category where the identity map, in each type, is computed by (at least)
any index of the identity function on co.

The category PER can be fully and faithfully embedded into co-Set. In fact, for
every partial equivalence relation (p.e.r) A, define the (O-set In(A) = (Q(A),eA},
where Q(A) are the equivalence classes of A as subsets of co, and eA is the usual
membership relation restricted to co x Q(A). Clearly, eA defines a readability relation
in the sense of Definition 3.1.1 and the functor In is full and faithful. Note that eA is
a single-valued relation, as equivalence classes are disjoint subsets of co.

The following simple fact may help in identifying which are the maps in PER, by
viewing them also as morphisms in w-Set. (The reader should practice going from one
category to the other; the next proposition is just an exercise with this purpose.)

Proposition 3.1.3
Let fe PER[y4, C\, then

p\VA^f(in co-Set)oVr.frAr*>rp-r\ =Arr\))

Proof

since Ih coincides with e (with respect to an equivalence class).

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 437

Hence we must show:

1
Case<=) Obvious, since p-rerp-r1

c

Case =>) Suppose rp-ri
c =t=/(rr"lJ, then I > / / 1

C n T C V J = 0 since £>(C) is a
quotient, but prerp-r~*c, and by hypothesis preffr1^. Contradiction. •

What is relevant for us, though, is that PER may be viewed also as an object of to-
Set; this interprets the fact that !T is a kind. The point is that the objects of PER form
a set and every set may be viewed as an co-set:

Definition 3.1.4
Let A: Set ^co-Set be given by A(S) = <S, lrs>, where lhs = GO X S, that is,
VnVsn\\-ss (the full relation). The function A is extended to a functor by setting
A(/) = / , the identity on morphism. •

In particular, set Mo = A(PER) e co-Set, the co-set of types.

Remark 3.1.5 (For readers with some experience in Category Theory.)
co-Set was equivalently defined in Hyland (1982) as the ' ~ ~ separated objects' in his
Effective Topos, Eff. The category to-Set has all finite limits and is a locally CCC (see
below for the cartesian closure). The embedding A above preserves exponents and
limits. Moreover, one may embed to-Set into Eff by a functor which preserves limits
and the 1CCC structure.

By this, the present approach applies in a simple set-theoretic framework the results
in Hyland (1987), Pitts (1987), Hyland and Pitts (1987), Carboni et al. (1987) and
Bainbridge et al. (1987). The general treatment of models, as internal categories of
categories with finite limits, which was suggested by Moggi, is given in Asperti and
Martini (1989) and Asperti and Longo (1991). The elegant presentation in Meseguer
(1988) compares various approaches. We use here the fact that co-Set is closed under
products indexed over itself and, in particular, we use the completeness of PER as an
internal category. The categorical products are exactly those naively defined below (to
within isomorphism). Both the explicit definition of PER as an internal category and
the required (internal) adjunctions are given in detail in Longo and Moggi (1988),
which is also written for non category-theorists. (See also Asperti and Longo, 1991.)
•

The reason for the next definitions is that we need to be able to give meaning, over
these structures, to kinds and types constructed as products, as expressed in rules
[£FFI] and [77-TI] in section 2.9. We take care of this point first, since it deals with
the crucial aspect of impredicativity in Quest. A first idea is to try to understand those
rather complex kinds and types as indexed products, in the naive sense of set theory.
Namely, given a set A and a function GA -* Set, define as usual:

[JaeAG(a) and Aa)eG(a)}.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

438 L. Cardelli and G. Longo

This product would not work, but the following simple restriction to realizable maps
/ , will work.

Definition 3.1.6
Let (A,H-A)eco-Set, and G-A^ co-Set. Define the co-set <IIo<M(j(a), lhnc> by

{\)feUasAG{a) iff fexaeAG(a) and 3n.VaeA.Vp\\-Aa.n-p\\-eia)fLa),
(2)»H-n o/ iff VaeA.Vp\\-Aa.n-p\\-Gia)fia) D

When the range of G is restricted to PER we obtain a product in PER:

Definition 3.1.7
Let (A,\\-A)eco-Set and GAFFER. Let na&4G(a)PERePER be defined by

n(Tla£AG(a)vm)m iff VaeA.Vp,q\\-Aa.n-pG{a)m-q •

A crucial property of co-Set is that the products defined in 3.1.6 and 3.1.7 are
isomorphic for G-A -> PER.

Theorem 3.1.8 (Bruce and Longo, 1989)
Let {A, \\-A> e co-Set and G-A -> PER. Then

<JlaeAIn{G{a)), lhnG> s In(TlaeAG(a)pm) in co-Set.

Proof
Let lhnG be defined as in 3.1.6. We first prove that lhnG is a single-valued relation.
Assume that n Wnof A n \Yna h. We show that VaeA. J{a) = h(a) and thus, that
/ = h. By definition VasA. Vp\\-Aa. n-pl\-G(a)f{a) A n-p\\-0{a)h{a), and thus/(a) = h(a)
since, for all a, the relation lhG(a) is single valued (and any a in A is realized by some
natural number).

The isomorphism is given by J{f) — {n\n ll-nG/}; thus the range of / is a collection
of disjoint sets in co (equivalence classes). The isomorphism / and its inverse are
realized by the (indices for the) identity function. •

The existence in PER of 'products' indexed over arbitrary co-sets is a very relevant
fact. The point is to show that these objects are real products, in a precise categorical
sense; this is hinted in Remark 3.15. What we can do here, in our elementary
approach, is to use the idea in Definition 3.1.7, in order to construct exponents as
particular cases of products.

Corollary 3.1.9
co-Set and PER are CCCs. Moreover, the embedding 7«:PER -• co-Set is full, faithful
and preserves the structure of CCC.

Proof
Observe that if G-A -^co-Set is a constant function, G(a) = <5, lhB> for all as A, say,
then (JlaeAG{a),\\-nay = (BA,\\-A^By is the exponent representing (a-Set[A,B] in
co-Set. Clearly, in that case, n\bA^Bf iff MaeA.Vp\\-Aa.n-p\\-Bf{a). Products are

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 439

defined by using any bijective pairing functions from GO X CO to co. Any singleton set S
gives a terminal object A(S). Eval and the currying operation A are defined as in Set
and are realized by (the indexes of) the universal function and the function s of the
s-m-n theorem. (The reader may check this as an exercise, or see Asperti and Longo,
1991 for details.)

The same argument applies to PER by taking, for A e PER, G-A -> PER constant in
3.1.8. (Just recall that PER may be viewed as the co-set Mo = A(PER) and set
{A, \VAy = Mo.) Or also, by embedding PER in co-Set by In, the corresponding co-sets
give exponents, products, and terminal objects (up to isomorphisms), as In trivially
satisfies the properties stated. •

To clarify the construction, let us look more closely to exponent objects in PER.
Take, say, A^-B, that is, the representative ofPER[A,B]. Then by definition each
map fePER[A, B] is uniquely associated with the equivalence class of its realizers,
rp1

A_BeA^-B, say, in the sense of 3.1.3.
It should be clear that the notion of realizer, or 'type-free computation' computing

the typed function, is made possible by the underlying type-free universe, (co, •). As we
will discuss later, this gives mathematical meaning to the intended type-free
computations of a typed program after compilation. As for now, this feature of the
realizability model suggests a distinction between isomorphisms in our categories,
which does not need to make sense in other frames (and is relevant for the intuition
on which our mathematical understanding is based):

Definition 3.1.10
An isomorphism//! ^ B in co-Set is identical (or is an identical isomorphism) if both
/ a n d its inverse/"1 are realized by the indices of the identity function. •

It is easy to rephrase this notion for objects in PER. Note though that A ^ B in
PER via an identical isomorphism iff A = B (that is, A and B are equal).

In co-Set, though, the isomorphism in 3.1.8 is identical (but it is not an identity).

Proposition 3.1.11
/H 'PER -»• co-Set preserves produces and exponents to within identical isomorphism.

Proof
Exercise. (The category oriented reader may check these preservation properties also
for equalizers, limits... and observe that they are generally not on the nose.) •

In summary, our types may be essentially viewed as kinds, by a very natural (and
strong) embedding. We applied this embedding in Theorem 3.1.8, and gave there a
unified understanding of various products and arrows in the syntax. However,
Theorem 3.1.8 really leads to much more than the cartesian closure of PER, which
is shown in Corollary 3.1.9. In plain terms, 3.1.8 is the crucial step towards the
meaning of the second-order (polymorphic) types, namely of the types obtained by

17 FPR 1

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

440 L. Cardelli and G. Longo

indexing a collection of types over a kind, possibly over the collection of all types (an
impredicative construction, see Longo, 1988).

3.2 Inclusion and power kinds

The purpose of this section is to set the basis for the semantics of the subkind and
subtype relations in Quest.

Definition 3.2.1 (subkinds)
Let <^,H-^>,<fl,ll-B>eoj-Set. Define:

<A,U-Ay^(B,U-By iff A^B and ^asA. Vn.(n¥Aa=>n\\-Bd) U

The idea in this definition is that kinds may be related by the ^ relation in co-Set
only when they are actually subsets, and when the realizability relation is defined in
accordance with this. Thus there is no need of coercions (equivalently, coercions are
just identity functions). Hence, the subsumption rule [KSub] for kinds is realized.
Subtyping will be interpreted in PER in a more subtle way, which allows a closer look
at the computational properties of the types of programs.

Definition 3.2.2 (subtypes)
Let A, Be PER. Define:

iff \/n,m. (nAm^>nBm) Q

Both < relations in co-Set and PER are reflexive and transitive. They are even
antisymmetric, because for (A, lh^>, <fi, H-6>6co-Set we have (A,\\-A) = <£, Il-B>o
{A,\\-Ay ^ {B,lhB> A (B,lhB> ^ (A, WAy. Similarly, for C , D E P E R we have
C = DoC^D AD^C.

The semantic notion of subtype we are using here is the one defined in Bruce and
Longo (1989). However, we differ from that approach for subkinds, in order to model
the strong relation we formalized in the syntax of Quest.

Clearly, ' ^ ' is a partial order which turns the objects of PER into an algebraic
complete lattice. When A and B are in PER and A < B, then there is a coercer cA B

from A to B. It is defined by the map cA B: Q(A) -> Q(B) such that cA B{vn^A) = rn~*B,
which is computed by any index of the identity function. By definition, cA B is
uniquely determined by A and B. (We may omit the subscripts, if there is no
ambiguity.)

Intuitively, given n such that nAn, the coercion c^ B takes its ^-equivalence class,
rn~*A, to its (possibly larger) fi-equivalence class, V j . This is why cA B, the coercion
morphism, is computed by all the indices of the identity function. Note that in general
rn~*A is smaller than r«n

f i ; they coincide just when Q(A) s Q{B), a special case of
A < B. Note also that for A,BePER, if In(A) ^ In{B) regarded as co-sets, then
A ^ B. The reverse implication holds only when Q{A) c Q(B). The result is that, here,
< is used with a slightly different meaning in the two categories, in contrast to the
approach in Bruce and Longo (1989). The advantage is given by the construction of
a model of the current rich kind and type theory.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 441

The power operation is expressed in terms of quasi-functors, a weak notion of
categorical transformation between categories, widely used in several settings (see
Martini 1988 for recent applications to the semantics of the ^.-calculus). This
interpretation is due to the blend of set-theoretical and categorical intuition at the
base of the current model of subtyping in a higher-order language. Quasi-functors
take morphisms to sets of morphisms which behave consistently with respect to
application (see below), and are such that the image of each identity map contains the
identity in the target category.

Definition 3.2.3
The power quasi-functor ^=PER -> ro-Set is given by:
on objects: 0>A = {{BePER\B «S A}, lh>, where MB «S AVnnWB;

on morphisms: for f-A^-C and p \\-f, define &v(f)& A -> 8PC pointwise by

m3PJJ~){B)n iff ^m',ri.m' Bri and m=p-rri and n=p-ri

Set then 0>{f) = {0>p{f) \p Wf). •

For each/,4 -> C and/? Wf, one has &p{f) e co-Set \&A, &C] since to-Set [0>A, 0>C] =
Setl&A, 0>C] in view of the full readability relation given to the co-set 0>C. (More
generally, each set-theoretic function which has as its target an object in the range of
ASet -> co-Set is realizable by all indices.)

It is also easy to observe that ^(Jog) £ ^>(/)o^9(g) and ide^{id) for / ,g and id
in the due types. This proves that & is a quasi-functor.

We claim that the interpretation of subtyping we are using, faithfully corresponds
to the intuitive semantics of subtyping (or is ' compelling', as suggested in Mitchell,
1988 with reference to Bruce and Longo, 1989).

Note first that the coercion cA B in general is not a mono (or injective map) in
PER. It happens to be so only when Q(A) c Q(B), that is, when one also has
In(A) < In(B), as co-sets. Indeed, the topos theoretic notion of subobject as mono
from A to B, given by Q{A) ^ Q{B), would not be able to give us the antimonotonicity
of '->•' in the first argument, and thus the simple but important Theorems 3.4.1 and
3.4.2.

Moreover, in categories (and toposes) one usually works ' to within isomorphisms',
while the programming understanding of subtypes and inheritance is surely not ' to
within isomorphism'. At most, the programming understanding is ' to within identical
isomorphisms', as a general isomorphism may be a very complicated program and is
not likely to be computationally irrelevant.

In conclusion, we want a mathematical semantics which reflects the intuition of the
programmer, who views a subtype almost as a subset, but not exactly, as some
coercion may be allowed. Our model suggests what sort of coercions may be generally
natural: they must be computed by the type-free identical maps and preserved by
identical isomorphisms.

This interpretation explains why coercions may disappear in the description of the
programming language and why they do not show up at compile time, even though
they do not need to be exactly the identity. In our understanding, the compilation of

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

442 L. Cardelli and G. Longo

a typed program into its type-free version corresponds to the passage from a
morphism in the category of types or kinds, PER or co-Set, to its type-free realizers.
Type coercions, in particular, are realized by identical computations.

Because of this interplay between sets, computations and categories, the present
approach to subtypes is halfway between the set-theoretic notion of subset and the
category (or topos) theoretic subobjects. We claim that this is a suitable mathematical
understanding of the programmer's attitude.

We interpret now the formal equivalence of kinds and types as the equality in the
model. It is then easy to prove that the relations ^ in 3.2.1-3.2.2, and the quasi-
functor 0* in 3.2.3, satisfy the applicable properties listed under 'Kind inclusion' and
'Type inclusion', in section 2.9. We are then left with justifying subsumption and
coercion, described in section 2.5. We have already discussed the meaning of
coercions; these ideas will lead to the formal interpretation of Questc in part 4.
Subsumption and Quest will be dealt with in part 5. As already mentioned, recursive
types and functions are not considered.

3.3 Operator kinds

The formation, introduction and elimination rules for operators ([KFTl], [7YITJ, and
[TEH]) are easily taken care of. Definition 3.1.6 tells us that we can form a kind, the
co-set <Ilae/1G(a), II-JIGX

 ou-t °f any kind (co-set) (A, lh> and any function G-A ^-co-Set
[KFJI\. By definition, the elements of <TlaeAG(a), lhnc> are the (computable)
functions / such that, when fed with as A give as output elements j\a) of G(a). This
is exactly what rules [7711] and [TETl] formalize.

Rule [7T1P] is understood in the model by the behaviour of a ^.-term as a function.
Indeed, [7TI n] stresses that in any model, functions are interpreted extensionally.

3.4 The kinds of types

The lattice PER has co = (co, co x co) as largest element, that is, co with the full relation.
Clearly, co contains just one equivalence class, co. Thus co gives meaning to Top, and
co to top. Moreover, the co-set of all p.e.r.'s is given by Mo = ^"(co).

Rule [7*FII] here is given meaning by Definition 3.1.7. The interpretation is
apparently very simple, but there is a crucial asymmetry with respect to [KFII]. Rule
[KFU] has the structure:

kind kind
kind

Rule [rFITj, instead, looks like:

kind type
type

In particular, the kind on the left may be 9~, the kind of types.
The schema is the crucial type construction in explicit polymorphism. It is

impredicative in that, in order to know what types are, one must already know their

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 443

entire collection, 9~. (Feferman, 1987, 1988, and Longo, 1988 provide further
discussions.) This peculiar type construction is reflected in the related rules.

In [VIU] one allows the formation of terms where abstraction is not done with
respect to variables ranging over a type, as in the first-order case. Instead, they range
over a kind (possibly 9~, again). By this, it makes sense by rule [F£TI] to apply a term
to an element of a kind (possibly a type, and even the type of that very term). This
is the dimensional clash which is hard to justify mathematically, and is a central
difficulty in the semantics of polymorphism.

Theorem 3.1.8 relates [KFU] and [TFU] by telling us that they are interpreted by
the same construction, in the universe of co-sets. This gives mathematical unity and
clarify of meaning. In particular, it says that the interpretations of terms constructed
by [VIII] are going to be computable functions which may be fed with elements of
an co-set and which then output a term of the expected type, as required by [FisTI]
and as modelled in the structure by Definition 3.1.6.

Rule [TlnclTl] is validated by the following theorem:

Theorem 3.4.1
Let (A, \\-Ay, (A', Ih^) era-Set and GA -> PER, G'-A' -> PER. Assume A' ^ A in ra-Set
and that Va'eA', G(a') ^ G'(a'), in PER. Then:

UaeAG(a) ^ IWG'(a ') in PER.

Proof
Recall that «(nae/1G(a)PER) m iff VaeA.Vp,q\YAa.n-pG{a)m-q. Then VaeA'.yp,q
\\-A. a. n pG(a) m • q. Since n -pG{a)m • q implies n pG'(a) mq, we are done. •

With reference to the discussion on rules [AT.FITJ and [77<TI] above, a type
formation rule for products with the structure:

type type
type

would be a first-order rule and may be soundly interpreted over PER (Ehrhard, 1988).
Quest(c) has nothing of this structure for products, as it complicates typechecking and
compilation. An implicit use of it is the formal description and the semantics of
records given in Bruce and Longo (1989). In the current paper we could avoid any
reference to first-order constructs by coding record types in the second-order
language (section 2.10). More on their interpretation will be given in section 3.5.

As for ordinary higher type functions, the interpretation of their rules, by Corollary
3.1.9, is given as a special case of the meaning of the rules above, except for
[77«c/->-], since in this specific model types happen to be kinds (by the embedding In).
The arrow types are just degenerated products (that is, products defined by a constant
function, as in 3.1.9).

As an exercise, let us see what happens to the exponents in PER and their elements
(the equivalence classes). This may be done by a little theorem, which proves the
validity of rule [Tlncl^] in Section 2.8.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

444 L. Cardelli and G. Longo

Proposition 3.4.2
Let A, A',B, B'ePER be such that A' «S A and B < B'. Then A^B^A'^B'. In
particular, for n(A^B)n,rn1

A^B c rn1
A^B-

Proof

n(A -> 2?)w <=> V/J, q.(pAq=>n-pBm-q)

^\/p,q.(pA'q=>n-pB'mq),

aspA'q=>pAq=>npBm-q=>n-pB'mq

The rest is obvious. •

Proposition 3.4.2 gives the antimonotonicity of -» in its first argument, as
formalized in the rules of Quest [TIncl-+], and required by inheritance. Moreover,
and more related to the specific nature of this interpretation of ->, Proposition 3.4.2
reveals a nice interplay between the extensional meaning of programs and the
intensional nature of the underlying structure.

Indeed, typed programs are interpreted as extensional functions in their types, as
we identify each morphism in PER with the equivalence class of its realizers. That
is, if n .'.A_Bf, then rn~*A^BeA^B represents / e PER [A, B] in the exponent object
A^B. Assume for example that M--A-+B is interpreted by fePER[A, B]. (For the
moment we will call A both a type and that type's interpretation as a p.e.r.; see
part 4 where the interpretation of terms and types is given.) In the assumption of the
proposition, fePER[A,B] and c(f)ePER[A',B'] are distinct elements, and live in
different function spaces. The element c(J~) is uniquely obtained by the coercion c,
which gives meaning to adjusting the types in M in order to obtain a program in
A'-+B'. Also, when viewed as equivalence classes of realizers,/and c(f) are different
sets of numbers.

However, the intended meaning of inheritance is that one should be able to run any
program in A -> B on terms of type A' also, as A' is included in A. When n \\-A_Bf, this
is exactly what rn1

A^B £ rn*A.^.B. expresses: any computation which realizes/in the
underlying type-free universe actually computes c{f) also. Of course, there may be
more programs for c(f), in particular if A' is strictly smaller than A. Thus, even
though / and c(J) are distinct maps (at least because they have different types) and
interpret different programs, their type-free computations are related by a meaningful
inclusion, namely vn~*A^,B £

 rn~*A,_B, in this model.
This elegant interplay between the extensional collapse, which is the key step in the

hereditary construction of the types as partial equivalence relations, and the
intensional nature of computations is a fundamental feature of the realizability
models.

3.5 Records

Formally, there is nothing to be said about the semantics of records, as they are a
derived notion. However, we mention one crucial merit of the coding proposed and
its meaning.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 445

Record types should not be understood simply as cartesian products. The main
reason is that the meaning of a record type R' with more fields than a record type R
(but where all the fields in R are in R') should be smaller than the meaning of R.
Indeed, R' contains fewer record realizers. This situation was obtained, say, in the
PER interpretation of Bruce and Longo (1989) by understanding record types as
indexed, first-order products. That is, if / is a (finite) set of (semantic) labels, then
YIieIAl would interpret a record whose fields are interpreted by the Af's. By Theorem
3.4.1, WieIAt gives the required contravariance in the meaning of records.

In the present approach, we can use the expressive power of Quest as a higher-order
language with a Top type, and model records with little effort. Record types are coded
as ordered tuples. Top is the last factor of the product and replaces missing fields (with
respect to the order), and by doing so it guarantees contravariance. This intuition is
precisely reflected in the model, by interpreting Top as the largest p.e.r. Thus, any
extension of a given record type by informative fields, that is, by fields whose meaning
is different from the full relation on co, gives smaller p.e.r.'s.

4 Semantic interpretation of Questc

In this section we give the formal semantics of Questc over the co-Set/PER model. The
basic idea, for the inductive definition, is to interpret type environments as co-sets with
a realizability notion which codes pairs as elements of a dependent sum. In this way,
if for example E = (0,y: B, x: A), then [E] contains all pairs:

<e, a> with ts\0,y-E\ and ael0,y-B\-Atypeje

In this approach one has to interpret judgments, not just terms, as judgments contain
the required information to interpret (free) variables. For example, the variable x is
given meaning within the judgment E\- x-A, say, for E as above. In particular, its
interpretation {Eh-x--AJe', for a fixed environment value e' = <e,a>eIE], is the
second projection, and giwes a e{0,y-B\- A type]e. (See also Scedrov, 1988, and Luo,
1988.) The projection is clearly a realizable map, that is, it is computed by the index
of a partial recursive function. Note that the interpretation of closed terms depends
on the judgments they appear in, in particular on the types they are assigned to.

Moreover, the meaning of a judgment gives, simultaneously, the interpretation of
a construct (kind, type, or term) and makes a validity assertion; for example, it says
that a given term actually lives in the given type, under the given assumptions.

Kinds, types and terms are interpreted as maps from the co-set interpreting the
given environment to co-Set, PER, and the intended type, respectively. As our
morphisms are extensional functions, the interpretation is uniquely determined by
their behaviour on the elements of the environment. The indexes realizing these maps
may be computed by induction, using as base the indexes for the projection functions.
The crucial step is the interpretation of lambda abstraction and application for terms.
For example, given a realizer p for the map <e, A} H> [E, X»K\- bB\ <e, A}, a realizer
for e^-lEh- X(X-K)b-TI(X"K)B}e is obtained by the recursive function s of the s-m-n
(or iteration) theorem, namely by an index for n H> S{(J>, W » , where s{(p, n})(m) =
p{(n, m}). Similarly, any index for the universal partial recursive function gives the

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

446 L. Cardelli and G. Longo

realizers for an applicative term. We prefer to leave to the reader the intensional
details of the computations and focus on the extensional presentation of the
interpretation maps. These maps already require a fair amount of detail for a full
description, and should not be further obscured by the explicit mention of the indexes
of the realizable functions.

Observe that, in a fixed environment, kinds are interpreted as co-sets, while types are
p.e.r.'s. More precisely, operator kinds are functions which take an element of a kind
(possibly a type) as input and give an element of a kind (possibly a type) as output.
Also, these functions live in an co-set, which is obtained as an indexed product in the
sense of 3.1.6.

As is common when dealing with CCCs, we make no distinction between an
exponent object, the p.e.r. A-^-B, say, and the set of morphisms, PER[A,B], it
represents. Thus, the meaning of a term in PER[,4, B], say, may be viewed either as
a function from the p.e.r. A to the p.e.r. B, or as the equivalence class of its realizers
in the p.e.r. A^B (see also Definition 4.1.1.(1) below). This poses no problem with
regard to co-Set, since an exponent object is exactly an (co-)set of (realizable)
functions, as in the category of sets.

4.1 Interpretation

We interpret, in order, environments, kinds, types and terms.

Environments

E=0 IE] = <{l},ll-> where V«eco«lhl

E = E',X*K \E] = <{<e,A> \ee[E'] A Ae[E' HKkindje}, lh£>

where <«,w>lhE<e,^> iff nlhB,e and m\\-lE^Klctnd]eA

E=E',x>A [£l = <{<e,a>|ee[£'] A ae[E'\-Atype]e}, lhE>

where <«,w>lhE<e,a> iff n\hE,e and m\V{B,^Atype]ea

Kinds

\- Eenv Vee \E\. \E\V ̂ kindje = Mo

I- Eenv VeE IE]. IEIh &(A)kindje = 3P\E\Y A typeje

I- Eenv Vee[£J. [E\\- Tl(X*K)Lkmd]e = <ni4e,JI1_KM,fleG(A), \hnG}

where G-\E H Kkindje -> co-Set is given by

G(A) = IE, X-K \- L kind} <e, A >

I- Eenv Ve e \E\. \E \- \{X-:K)B-.n(X-:K)Lle e

n , £ , £ h « M | e IE, X-K\- L kind} <e,A}

such that \/A e IE \- Kkindje.

(lE\-X(X--K)B::Tl(X"K)L]e)(A) = [E, X-K\- B>L] <.e,A}

\-Eenv Vee[E].[El-B(AyL{X^A}le

= ({E \- 3>II(X*K)L]e)(lE \- A«K]e)

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 447

Types
\-E=E',XH-Kn,E'

\- Eenv
\- Eenv

\— Eenv

Terms
E= E',xn'An,E"

\— Eenv
\— Eenv
\— Eenv

Vee IE]. IE\- Top typeje = co = (co, co x co)
Vee IE]. IE\- n(X-K)B typeje
= nAeiE^K*inne \E, X--K\- B typej (e,A>

VeelE].lE\-A-+Btype]e = \E\-A typeje->\Eh-Btypeje

= ane\E' \- Antypejen

Vee IE]. [£•(- top-Topje = co
Vee[£].

e nAelE^KkindlJE, X«K H B type] <e, A >
such that \/A e [E \- Kkind]e.

(lE\-\(X--K)b-n(X.:K)B]e)(A) = [E, X*KV~ bB\ e, A)

= ({Et-b--n(X«K)B]e)(lE\-A type]e)
VeeIE]. IE\-\{x-A)bA-*B{<ie\E\-A type]t-+[E\-Btype]e

such that Va e \E \- A typeje.
(IE h- 'k(x-A)bA -> 5]e)(a) = [£, x ^ I- frfi] <e, a}

Vee [£]. [£h- i(a>5]e = {\E\-bA -+ B]e)(lE\-a--A]s)

\- Eenv

\— Eenv

\— Eenv

In view of the interpretation of kinds, types and terms, the meaning of the
judgments is the obvious one. The - and = relations go to 6 for co-sets and p.e.r.'s,
respectively; the relations <= and « are interpreted as subkind and subtype in co-Set
and PER; finally, <=> and <=> are just equality.

Indeed, by induction on types and terms, one may check directly that this is a good
interpretation. In particular, one can check that all the given functions are actually
realized, as mentioned above, and hence that types and terms inhabit the intended
function and product spaces; see 4.1.2. (For example, lE\-X(X--K)bn.(X--K)Bje is
actually in Y\Ae{E^Kkind]e\E,X"K\- B type](e,A~}.) However, this also follows from
general categorical facts, namely the cartesian closure of co-Set and the observation
that PER, viewed as Mo, is an internal CCC of co-Set where the internal product II
is right adjoint to the diagonal functor. (We obtain an internal model of Girard's Fco;
see Asperti and Longo, 1991, where the general categorical meaning of Fco is given.)

The next theorem, whose proof is left to the reader, summarizes all these facts, and
states the soundness of the interpretation. Before stating it, though, we set a better
foundation for the interplay of the interpretations of' terms as functions' and ' terms
as equivalence classes'. This is done by the following definition which extends the
applicative structure of (co, •) to equivalence classes, and also to the application of an
equivalence class to an element of an co-set (cf. 3.1.7).

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

448 L. Cardelli and G. Longo

Definition 4.1.1
(1) Let A and B be p.e.r.'s. Define then, for n(A^-B)n and mAm,

" A^B '" A " " ' B

(2) Let (K, lhK>e co-Set and GK^PER. Set, for short, II = UAeKG(A)PER and define,
for nYln, A eK, and p Ih A: rni •A — Tn-p'[

(Note that ' • 'TI x K^ U AeKG(A) depends on K and G.) This is well defined as
rn-p~l

GiA) does not depend on the choice of the number p, which realizes A. •

By this explicit reconstruction of the applicative behaviour, one may more clearly
understand equivalence classes in the p.e.r.'s A->B and TlAeKG{A)PEK as functions in
the due types.

Theorem 4.1.2
I- Eenv => [£•] is a well-defined co-set
E \- K kind => Ve e (E]. \E \- Kkindje is a well-defined co-set
E \~ A'K => Ve £ \E]. \E I- A----Kje e[Et- Kkind]e
E\-Atype =>Vee\E\.\E\-A type}eeM0

E (— a-A => Ve £ [E]. \E \— a--A]e e\E\— A type]e
E \- K<-:L => Ve £ IE]. IE I- Kkind]e ^[E\-L kind]e in co-Set
E\~A<B =>VeelE].[E\-A type]e ^{E\-Btype]e in PER
E\- K<-->L => Ve £ {E]. {E\- Kkind]t = {E\-Lkind]e
EY-A <»B => Ve e \E\.\E \- A typeje = {E\-B typeje

4.2 Emulating coercions by bounded quantification

In Questc and in its current interpretation we have no subsumption, but instead we
have coercions. This means that programs of the form

(k(x-.B)d)(a) where aA<-B (with A #= B) (1)

are not legal: an explicit coercion has to be applied, as in

(X(x-B)d)(cAB(a)) (2)

In this latter case, one may avoid both subsumption and coercions and recast (1)
via an additional bounded quantifier:

(X(X<-BMx.X)d)(A)(a) (3)

It is clear that (3) has the same effect as (1) or as (2), since this is how (1) can be
correctly expressed in our current framework, by coercions. The fact that (2) and (3)
are equivalent is a fairly deep property of the semantics, relating a bounded quantifier
to a coercion. In general, this is not derivable from the syntax.

The following theorem states that, semantically, coercions can be removed in
favour of bounded quantifiers.

Recall that E\-aA A E(- A<B =>Eh-c< B(a)B.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 449

Theorem 4.2.1
Assume that E\-dD,E\-a-A and E\- A<B. Then, in PER one has

{X{X<-B)X{x-X)d){A)(a) = (X(x-B)d)(cAtB(a))
Proof
For simplicity, we fix an environment e and identify types A, B and D with their
meanings as p.e.r. in e.

Set n = nxiiBX~+D and let •"«"•„ = lE\-(X(X<-B)X(x-X)dyn(X<B)(X^D)]een.
Then r « \ • C = rn 'P1

C^D for any C, such that £ I— C<-B, and any />, since any number
p realizes C, when C ^ B,by definition of the power quasi-functor.

Let m now be such that \E\-a--A]e = rm~V Then cA,B(rm\) = rwn
B and:

[£ I- (X(X<:B)X(x-X)d)(A)(a}Dle

= ""ŵ n ,4• <~m~l
A = r«•Jp

n
j4^o•rm'lA = rn-p-m~*D

= rn-p1
B^D-rm1

B where n-p(B^~D)n-p by 4.1.1(1)

= rn\-B-rm^B by 4.1.1(2)

= \E\- (X(x-B)d)cA B(a}-D}e by the syntax. •

In Questc, we dropped the subsumption rule in favour of coercions. However, there
is also a proof-theoretic reason to warn the programmer about the use of subsumption
in connection with (n); namely, the equational system of typed terms would not be
Church-Rosser any more (with respect to the obvious reduction rules). Consider, say:

X(x-A)(X(y.B)e)x (with x $ FV(X(y-B)e))

where x is not free in X(y-B)e, and let A<B.
In the presence of subsumption, this program would type-check, for any e and C

such that e=C However,

X(x--A)(X(yB)e)x~*X(y-B)e--B->C by(n)

X(x:A)(X(yB)e)x~*X(x:A)e--A -> C by ((3)

and confluence would be lost. Because of this, we abandon (T)) in part 5.
In Questc, the program one has in mind when writing X(x-A)(X(yB)e)x, is actually

described by the polymorphic term:

X(x-A)(X(X<-B)X(yX)e)(A)(x)

which yields confluent reductions.
For this reason, (r|) is adopted in Quest as an equality rule, but not as a

computation rule.
5 Semantic interpretation of Quest

In this section we model the original version of Quest, namely the language based on
the subsumption rule [TSub/Quest] of section 2.9, instead of on coercions.

Subsumption is important for at least two reasons. First, programming with
explicit coercions becomes too cumbersome; much of the appeal of subtyping has to

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

450 L. Cardelli and G. Longo

do with the flexibility and compactness provided by subsumption. Second,
subsumption is intended not as an arbitrary coercion, but as a coercion that performs
no work; this is essential for capturing the flavour of object-oriented programming,
where subsumption is used freely as a way of viewing objects as members of different
types.

Hence we feel we are justified in presenting more complex semantic techniques in
order to give a faithful representation of subsumption.

Let {Si, •) be a model of type-free lambda calculus. The construction of the
categories ^-Set and PERS over {Si, •) works similarly. Indeed, all the work carried
on so far can be easily generalized to any (possibly partial) Combinatory Algebra or
model of Combinatory Logic. In view of the relevance of Kleene's realizability
interpretation of Intuitionistic Logic for these models, it is fair to call ' realizability
structures' the categories ®-Set and PERS over a Combinatory Algebra {Si,•)• As
already mentioned, we preferred (co, •) as it is more directly related to Kleene's work
and because of the immediate intuitive appeal of classical recursion theory. However,
we now need to be able to give meaning to type-free terms, which cannot be done over
(co, •). For this purpose, we work over an arbitrary X-model: that is, an applicative
structure {3>, •) with an interpretation S>\-\ of X-terms defined, say, as in Hindley and
Longo (1980) or Barendregt (1984).

The interpretation of Quest is given in two steps. First we translate typed terms into
terms of the type-free calculus, by 'erasing-types'. We add to the latter only a
constant symbol ' top ' , in order to take care of the corresponding constant in Quest.

In the second step, we use the meaning of the erased terms to interpret typed terms.
Environments, kinds and types will be interpreted as in Questc, except for an
'isomorphic change' in the interpretation of product types. As for types in particular,
this interpretation is possible since, in view of our formal definition of subkinds and
of its semantics, we had no kind coercions even in Questc, but just type coercions.

Terms may still be understood as morphisms, in the due types. We already used the
identification of morphisms with the equivalence classes of their realizers. In the
interpretation of Quest we exploit this correspondence and interpret typed terms
directly as equivalence classes, with no ambiguity.

Briefly, for each environment e — <... (en, an},...}e {Ej we choose an environment
map se: Var -> Si which picks up an element of the equivalence class an. Then, by using
these environment maps, we interpret a typed term as the equivalence class which
contains the interpretation of its erasure.

The interpretation will not depend on the particular choice of the environment
map.

5.1 Preliminaries and structures

The categories ^-Set and PERS over {Si, •) are defined exactly as co-Set and PERm

over (co, •), in 3.1.1 and 3.1.2. However, their use in the semantics of Quest will be
slightly changed in a crucial point. Second-order impredicative quantification will not
be interpreted exactly by the set-theoretic indexed product of realizable functions, as
in 3.1.7. We will use instead an isomorphic, but not identical, interpretation of this
quantification by p.e.r.'s obtained as a straightforward set-theoretic intersection. This

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 451

is made possible by the following simple, but fundamental theorem, which establishes
a connection between the previous interpretation of higher-order quantification and
the one given in Girard (1972) and Troelstra (1973). It was first suggested by Moggi,
and actually started most of the recent work on the semantics of polymorphism by
suggesting that Girard's model could be given a relevant categorical explanation. (See
Remark 3.1.5.) We use it here as a tool for our semantic interpretation of Quest. We
report its proof, since it matters for our purposes, as we point out in remark 5.1.2.
Note first that, if {A^^, is a collection of p.e.r.'s, then n ieIAt is also a p.e.r. by

«(n ielAt)m iff nA(m for all iel

Theorem 5.1.1

Let {A, Ih^) e 0-Set be such that \\-A = 2)xA and let G-A -> PERs. Then:

(nasA G(a))PER3 s n asA G(a) in PERS

Proof (Longo and Moggi, 1988)
Let S = n aeAG(a) ePERa. By definition both UaeAG(a)PERs and S are in PERS. Thus
we need to define a bijection HS^ no£/,G(a)PER and prove that it is realized with its
inverse.

Let H(rn1
s) = XaeA.rn1

GW. Clearly, /fCVs)eIIafMG(a) and H is well defined,
since rn1

s = r w n
s implies, nG(a) m for all as A, and hence r«n

G(o) = rm~l
G(a).

Consider now the combinator k such that k-pq = p, for all p, qeSd. Then k-n
realizes / /(r«n

s) , since

Va e A. V<? Iĥ a. k • n • q = n e ^n\ia) = H(Ws)(a),

and k realizes H. It is easy to observe that H is injective. Let us prove that H is
surjective.

If heTlaeAG(a), then by definition, 3m\\-nah; that is,

1m.VaeA.'iq\\-Aa.nvq lhG(a) h{a)
or, equivalently,

3m.VaeA.Vqe@.h(a) = vm-q~i
G(a), as 11-̂ = ^ x ^ 4

Fix now an element 0 of 2. Then, for n = mO, we have VaeA.n G(a)n, that is,
nSn. In conclusion, ^aeA.H(rn1

s)(a) = rnn
G(a) = h(a), that is, H(rn~*s) = h. There-

fore H'1 exists and it is realized by any p e 3) such that p.m = mO, for all m e 3). •

Remark 5.1.2
The key idea in the proof consists in defining the applicative or functional behaviour
of each equivalence class r « \ , say, in S = n aeA G(a) ePER3, by setting

n s a — n G(a)

This is how, to within isomorphism, rn1
s defines a function in YlaeAG(a). Observe

that, when the isomorphism is given by the ' constant-constructor' combinator k, the
proof relates this notion of application to the application r « n

n - a = rn-p~l
G(a), for

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

452 L. Cardelli and G. Longo

p\V Aa, as defined in 4.1.1. Indeed, rw^n
G (a) is constant with respect to p, under

the assumption II-,, = <2i x A in 5.1.1. The next proposition shows that this assumption
is satisfied by the i^-sets we are interested in: that is, by the definable ones, in the
language of Quest. •

Proposition 5.1.3
Let \-Eenv and E\-Kkind. Then, for all ee[E\,\E\-Kkind\s is a 9-set (A,\\-A}
with |t-^ = <2) x A.

Proof
This is clearly true for the base of the induction, in view of the interpretation of F
and 3P{C), for any type C. (Recall that one even has $~ = 0>(Top)). Consider
now E \- U{X-K)L kind- Then:

Vee [E]. IE \-Il(X:-K)L kindle = <UAel^Kk(nd]e \E, X*K\- Lkind\ <e, A), lhnG>,

where G(A) = \E, X~K\- Lkindle, A}. By induction, just assume that, for all e and
A, the ®-set L(e,A) = \E,X-K\-Lkindle, A} has the full lhL relation. Then any set
theoretic function/in x AelEf_ Kktnd]elE, X--K\- Lkind\(e, A} is realized by any ne@,
since one always has n p Ih^/j^), no matter which Ae[E\- Kkindje and p are taken.

•
Remark 5.1.4 (For readers with some experience in Category Theory.)
Continuing from Remark 3.1.5. In Hyland (1987) and Longo and Moggi (1988), the
existence of a (internal) right adjoint to the diagonal functor, that is, the small
completeness of PER in the Effective Topos or in co-Set, is shown by taking exactly
the intersection as product (see Asperti and Longo, 1991 for details). This fully
justifies the interpretation below of second-order impredicative types as intersections.

•
5.2 Interpretation [-}'

We now translate typed terms into terms of the type-free calculus, by erasing all type
information. The type-free X-calculus is extended by a constant symbol, top.

Definition 5.2.1
The translation map erase from typed terms into type-free terms is defined by

induction on the structure of terms:

erase(k(X-K)b) = erase(b)

erase(x) = x

erase(top) = top

erase{'k(x'A)b) = Xx. eraseib)

erase{b{d)) = erase(b)erase(a)

erase(k(X*K)b) = erase(b)

erase(b(A)) = erase(b) •

With the preliminaries above, it is now straightforward to implement our idea: a
typed term is interpreted by the equivalence class of its erasure, with respect to its type

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 453

as p.e.r. We then need to show that this interpretation is sound. Indeed, this
interpretation generalizes a theorem stated in Mitchell (1986) and tidily relates to the
alternative approach to the semantics of the subsumption rule [TSub/Quest] in Bruce
and Longo (1989). Observe that this interpretation, in contrast to the early attempt
in Bruce and Longo (1989), is direct. This is made possible by the use of Theorem
5.1.1, since by erasure the meaning of a second-order typed term becomes an element
of the intersection of all the types which form its range. For example, the polymorphic
identity function \(X--$~)X(x--X)x-Tl(X~$~)(X^X) will be interpreted as the
equivalence class of the type-free identity Xx.x, which happens to live in A-+A, for
any type A.

Note finally that, since the interpretations of type-free terms are elements of S>,
while the elements of types as p.e.r.'s are equivalence classes, we need a choice map
to obtain an environment for type-free terms from an environment for typed ones.
This is done by the following definition:

Definition 5.2.2
Given E= E',xn<An,E" and e = <. . .<en,an>, . . .>e[£], fixse'Var^2> such that
se(xn)eane{E'\- Antypefen, where [E] is defined as in section 4.1, and
\E' \- An type]'en is the interpretation of types given below. Q

Note that se is defined only on term variables and gives no meaning to X--K. The
interpretation below will not depend on the choice of se. Recall that 3)\-] is the
interpretation of type-free terms in (2, •).

Environments
IE}' coincides with IE] for Questc

Kinds
No change.

Types
No change, except for:

H Eenv Vee \E\. [Eh- Tl(X-K)Btypefe = n ^ i H , f l . e {E, X-K\- Btype}' (e,A}

Terms
\-Eenv Vee[£] ' . [£l-«,4] 'e = '2\erase{a)\s?{E^MypeXe

Since higher-order quantification is interpreted as intersection, by an even easier
proof than for Questc, we have:

Lemma 5.2.3
E\-A<B implies Ve6IE]'. IE\- A type]'e «S [£ I- fitype]'e •

The following theorem proves the soundness of the interpretation.

Proposition 5.2.4
The interpretation [] ' is a well-defined meaning for kinds, types and terms
and PER,,.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

454 L. Cardelli and G. Longo

Proof
We need to check only the result for terms, since kinds pose no problem, and there
has been enough discussion concerning types and the use of intersection as product.
Recall from Proposition 5.1.3 for \E\-Kkindj'e is a ^-set with the full relation.

Thus we show by induction on the derivation that, for each Eh-a<A,2#lerase(a)}se

is in the domain of [£ \- A typefe and that it has the correct functional behaviour.

Case E = E', x^-An, E" h- xn>An

h- EenvVeelEf.lEh- xjAJ'e = rse(xn)\EV_Antvperen

which corresponds to

Case E\-top-Top
Just recall that to is the only element of co.

Case Eh-b(a}B

= (IE h- b-A -> Bj'e). (IE h- a-Afe)

where application between equivalence classes is defined as in 4.1.1.
This simultaneously proves that f-]' decomposes soundly and that 2{erase(ba)\se is

in dom(lEh-B typefe).

Case Eh-X(x-A)b'A->B

X(A)bA Bft =

which is well denned because by induction, from the semantics of E, x-A h- b-B, one has
for all

n(lE\-AtypeYe)n=>(@[erase(b)}se[n/x]) is in dom([Eh-Btype\'e)

Thus S>(kx.erase(b)jse is in dom(\Eh-/!->BtypeJ'e), by virtue of the familiar
substitution lemmas in the type-free model (2,-,S>l-j). (See Barendregt, 1984.)

Case Eh-\(X.:K)bJl(X:-K)B

= r3>lerase(b)}se\

where S = n A,,K{fEh-B{X<-A}typefe}. (Note that, by the usual substitution
techniques, one has {Eh- B{X'+- A) typefe = \E, X~Kh- Btypef (e, A), where we keep
identifying the semantic and the syntactic type A by an abuse of language.) This is
well denned just as before, since, by induction, one has:

E,X-Kh-bB implies 2>lerase(b)\se is in dom(\E, X-Kh- Btypefc)

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 455

However, in contrast to the previous case, 3i\erase(b)}se does not depend on X-K,
while B and its semantics do. Exactly because of this, for all types A one has

3>lerase(b)]se is in dom{{E\- B{X ^ A) type}'€)

and thus @lerase(b)}se is in dom(L). The next case describes also the applicative
behaviour of lE\-\(X-K)b-Tl(X:K)BYe.

Case E\-c(A}-B{X^-A}

Vee[£]' . {E^c(A}.B{X^A}Ye = r®[erase(c)]se\B^Blx< A}typeye

by the definition of erase. Observe now that one must have E \- oTl(X~K)B. By setting

by the previous case and the definition of erase, one has

Vee IE}'. \E \- cIl(X:-K)B}'e = r$lerase(c)]se\ in dom(Z)

Thus, for all A 2>\erase{c)}se is in dom{\E\-B{X^-A}type\'€).
By this and by the definition of application of an intersection class to a p.e.r., given
in 5.1.2, compute

3>lerase(c)}seilE^Bix^A}typeVe = (r$lerase(c)}se\).({E\-A typefe)

= ([£• \- oTl(X-K)BYe) -(IE\-A typefe) Q

We have also proved:

Corollary 5.2.5
lf\-Eenv, then Vee^] . \EY-nAl'ze\E\- Atype\'z. •

It is a minor variant of the work done for Questc to check fully that we provided
an interpretation for Quest (that is, that the analogue of Theorem 4.1.2 holds for
Quest). The crucial point is the validity of the subsumption rule:

E\-a--A E\-A<B
E\-a*B '

This rule is valid simply because the interpretation of the term a, say, comes with
the meaning of the entire judgment E I— a-A or E I— a-B. We gave this meaning in such
a way that it automatically coerces a to Bin the semantics when interpreting E\— a-B.
Indeed, the meaning of E\- a-A is an equivalence class in the p.e.r. \E\- A typefc
(together with the assertion that it actually belongs to the class), while the meaning
of {E\-a>B}'e is an element of the p.e.r. [Eh-Btypefe, which is in general a larger
equivalence class.

It is worth noticing the essential role of the interpretation of polymorphic types as
intersections. The isomorphism between product and intersection in 5.1.1 is the core
of this interpretation. (See the last two cases in 5.2.1.) It says that type erasing does
not affect the meaning of polymorphic terms, modulo equivalence classes, and
reduces the entire challenging business of how to apply a term to a type, to a simple

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

456 L. Cardelli and G. Longo

type coercion in the model. That is, rn1
s-A = rwn

GM), which interprets the
polymorphic application for S = n AsKG(A) (see 5.1.2), corresponds to coercing vn~l

s

to the generally larger equivalence class r«n
G M).

This has a clear mathematical and computational meaning. Mathematically, it
derives from the fact that the maps from any <^-set with the full realizability relation
to a p.e.r. are constant functions (see Longo and Moggi, 1988, or prove it for
exercise.) This is a simple feature inherited from a deep fact: the validity of the
Uniformity Principle in the Realizability Universe, which is the categorical
background of this construction (Longo, 1988). Computationally, it says that at run
time we disregard types, or that computations are type-free, in particular the
computation of a polymorphic term. However, given a computation n of type
n AEK G(A), it happens that n is equivalent to more computations when updated to
type A: namely, all those in rn~l

G(A).

In Bruce and Longo (1989) yet another interpretation of Fun, the progenitor of
Quest, is given. The idea, in that paper, is to use the interpretation of the language
with coercions in order to give meaning to the one without coercions. This is based
on a series of theorems which relate abbreviated terms (that is, terms where all
coercions are erased) to their fat tenings (that is, terms where coercions are put back
in place). More precisely, in our language, given E\—ea-A, a judgment in Questc,
abbrevia) is obtained by erasing all coercions. Then, for E\— bB in Quest, b' is a
fattening when abbrev(b') = b. The ^.^-interpretation of the judgment E \— a-A in
Quest, is given by setting:

@%lE\-a:A\<z = IE\-Ca'--Aje

where \E\-Ca'-Aje is the semantics in part 4, for a fattening a' of a.
With some work, Bruce and Longo (1989) shows that this is well defined. Indeed,

it coincides with our current interpretation [-}'. In other words, by the results in Bruce
and Longo and some further work, we claim that, given a model of the type-free X-
calculus and the realizability structures over it as models of Quest, one has:

@Z£\E\-a-A\<z = [E\-a>Afe

Observe, finally, that this interpretation is 'coherent', in the sense of Curien and
Ghelli (1989), since by definition it depends only on the proved judgment and not its
derivation. More generally, the model satisfies the conditions in the coherence theorem
in Curien and Ghelli (1989).

6 Conclusions

We have described a formal system which can be considered the kernel of the Quest
language, and we have investigated a particularly attractive approach to its semantics.
The formal system requires a lot of semantics models, probably more than any
previous typed system. Fortunately, PER models promise to satisfy all the required
features, and more (e.g. dependent types). More work needs to be done both on the
syntactic side, studying the properties and the degree of completeness of the formal
system, and on the semantic side, mostly with respect to recursion and recursive types.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

A semantic basis for Quest 457

Acknowledgements

We would like to thank Roberto Amadio and Kim Bruce. Working jointly and in
parallel with them has provided us with a permanent source of ideas and inspiration.
The many discussions with John Mitchell and P.-L. Curien have been essential for
this work. We also thank Martin Abadi, Simone Martini, and Andre Scedrov for
important suggestions, and Narciso Marti-Oliet for careful technical proofreading.
Aspects of the formal system have been inspired by, and are still under investigation
by many of the authors above.

References

Abadi, M. and Plotkin, G. D. 1990. A Per model of polymorphism and recursive types. Proc.
Fifth Annual Symposium on Logic in Computer Science.
Amadio, R. 1989a. Recursion over realizability structures. Information and Computation, 1991.
Amadio, R. 19896. Formal theories of inheritance for typed functional languages. Note interne
TR 28/89, Dipartimento di Informatica, Universita di Pisa, Italy.
Asperti, A. and Longo, G. 1991. Categories, Types and Structures: an introduction to category
theory for the working computer scientist, MIT Press.
Asperti, A. and Martini, S. 1989. Categorical models of polymorphism. Information and
Computation (to appear).
Bainbridge, E. S., Freyd, P. J., Scedrov, A. and Scott, P. J. 1987. Functional polymorphism,
preliminary report. Proc. Programming Institute on Logical Foundations of Functional
Programming, Austin, Texas.
Barendregt, H. 1984. The lambda calculus; its syntax and semantics, (revised and expanded
edition), North-Holland.
Breazu-Tannen, V., Coquand, T., Gunter, C. and Scedrov, A. 1989. Inheritance and explicit
coercion. Proc. Fourth Annual Symposium on Logic in Computer Science.
Bruce, K. and Longo, G. 1989. Modest models of records, inheritance and bounded
quantification. Information and Computation, 87 (1/2).
Carboni, A., Freyd, P. J. and Scedrov, A. 1987. A categorical approach to realizability and
polymorphic types. Proc. Third Symposium on Mathematical Foundations of Programming
Language Semantics, New Orleans, USA (to appear).
Cardelli, L. 1988. A semantics of multiple inheritance. Information and Computation, 76:
138-164.
Cardelli, L. 1989. Typeful programming. Lecture Notes for the IFIP Advanced Seminar on
Formal Methods in Programming Language Semantics, Rio de Janeiro, Brazil. (SRC Report
#45, Digital Equipment Corporation, 1989.)
Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B. and Nelson, G. 1988. Modula-
3 report. Research Report n.31, DEC Systems Research Center (September 1988).
Cardelli, L. and Mitchell, J. C. 1989. Operations on records. Proc. Fifth Conference on
Mathematical Foundations of Programming Language Semantics, New Orleans, USA (to
appear in Mathematical Structures in Computer Science, 1.)
Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction and polymorphism.
Computing Surveys, 17 (4): 471-522.
Cook, W., Hill, W. and Canning, P. 1990. Inheritance is not subtyping. Proc. POPV90, San
Francisco, USA.
Curien, P. L. and Ghelli, G. 1990. Coherence of subsumption, Mathematical Structures in
Computer Science, 1 no. 3.
Ehrhard, T. 1988. A categorical semantics of constructions. Proc. 3rd Annual Symposium on
Logic in Computer Science, Edinburgh, UK.
Fairbairn, J. 1989. Some types with inclusion properties in V, -»-,u.. Technical Report No. 171,
University of Cambridge Computer Laboratory, UK.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

458 L. Cardelli and G. Longo

Feferman, S. 1987. Weyl Vindicated: Das Kontinuum, 70 Years Later. Preprint, Stanford
University. Proc. Cesena Conf. on Logic and Philosophy of Science (to appear).
Feferman, S. 1988. Polymorphic typed lambda-calculi in a type-free axiomatic framework.
J. ACM, 151, 185, 30, 1 January.
Freyd, P. J., Mulry, P., Rosolini, G. and Scott, D. 1990. Domains in Per. Proc. 5th Annual
Symposium on Logic in Computer Science.
Girard, J.-Y. 1972. Interpretation Fonctionelle et Elimination des Coupures dans VArithme'tique
d'Ordre Supe'rieur. These de doctorat d'etat, Universite Paris VII, France.
Hindley, R. and Longo, G. 1980. Lambda-calculus models and extensionality. Zeit. Math.
Logik Grund. Math. 26: 289-310.
Hyland, J. M. E. 1987. A small complete category. Annals of Pure and Applied Logic, 40.
Hyland, J. M. E. and Pitts, A. M. 1987. The theory of constructions: categorical semantics and
topos-theoretic models, Categories in Computer Science and Logic (Proc. Boulder '87),
Providence, USA.
Hyland, M. 1982. The effective topos. In A. Troelstra and Van Dalen (editors), The Brower
Symposium, North-Holland.
Longo, G. 1988. Some aspects of impredicativity: notes on Weyl's philosophy of mathematics and
today's Type Theory. CMU Report CS-88-135. In Ebbinghaus et al. (editors), North-Holland.
Longo, G. and Moggi, E. 1988. Constructive Natural Deduction and its "<o-Set" interpretation.
CMU report CS-88-131, Mathematical Structures in C.S., 1 no. 2, 1991.
Luo, Z. 1988. ECC, an Extended Calculus of Constructions. Report, LFCS, Department of
Computer Science University of Edinburgh, UK.
Martini, S. 1988. Bounded quantifiers have interval models. ACM Conf. Lisp and Functional
Programming Languages, Snowbird, USA.
Meseguer, J. 1988. Relating Models of Polymorphism. SRI-CSL-88-13, October, SRI Projects
2316, 4415 and 6729, SRI International.
Mitchell, J. C. 1984. Coercion and type inference. Proc. POPL '84.
Mitchell, J. C. 1986. A type-inference approach to reduction properties and semantics of
polymorphic expressions. ACM Conf. LISP and Functional Programming, Boston, USA,
308-319.
Mitchell, J. C. 1988. Polymorphic type inference and containment. Information and Computation,
76(2/3): 211-249.
Mitchell, J. C. and Plotkin, G. D. 1985. Abstract types have existential type. Proc. POPL '85.
Ohori, A. 1987. Orderings and types in databases. Proc. Workshop on Database Programming
Languages, Roscoff, France (September 1987).
Pitts, A. 1987. Polymorphism is Set theoretic, constructively. Symposium on Category Theory
and Computer Science, SLNCS 283, Edinburgh, UK.
Reynolds, J. C. 1984. Polymorphism is not set-theoretic. Symposium on Semantics of Data
Types, Volume 173 of Lecture Notes in Computer Science, Springer-Verlag.
Rosolini, G. 1986. Continuity and effectiveness in Topoi. DPhil. Thesis, Oxford University, UK.
Scedrov, A. A Guide to Polymorphic Types. CIME Lectures Montecatini Terme, June, (revised
version).
Troelstra, A. 1973. Metamathematical investigation of Intuitionistic Arithmetic and Analysis.
Volume 344 of Lecture Notes in Mathematics, Springer-Verlag.
Wand, M. Type inference for record concatenation and multiple inheritance. Proc. Fourth
Annual Symposium on Logic in Computer Science.

https://doi.org/10.1017/S0956796800000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000198

