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ON HOMEOMORPHISMS OF A 3-DIMENSIONAL
HANDLEBODY

SHIN'ICHI SUZUKI

1. Introduction. By a 3-dimensional handlebody V, of genus n, we mean an
oriented 3-manifold which is a disk-sum of n copies of D? X S', where D? is
the unit disk and S* is the boundary dD?; and by a surface F, of genus n we
mean the oriented boundary surface 9V,,.

Let S (F,) be the group of all orientation preserving homeomorphisms of
F, onto itself, and & (F,) the normal subgroup consisting of those homeomor-
phisms which are isotopic to the identity. Then the mapping class group
M (F,) of F,is defined to be the quotient group J#(F,)/<Z (F,). By a classical
result of Dehn [7], later simplified and reproved by Lickorish [14], the group
M (F,) is generated by so-called Dehn twists, see Birman [3; 4, Chapter 4].
Now we consider a subgroup, say J*(F,), of J(F,) consisting of those
homeomorphisms which can be extended to homeomorphisms of V, onto itself,
and a subgroup, say #*(F,), of .#(F,) consisting of isotopy classes of ele-
ments in J£*(F,). The purpose of this paper is to determine generators for
AM*(F,), which responds partially to Problem 4 of Birman [5]. The group
M*(F,) is trivial, the group .#*(F;) has been studied extensively, and gen-
erators for .#*(F,) were determined by Goeritz [9].

After establishing a standard model of V, and loops on 98V,, we note in
Section 2 a characterization of J£*(F,) given by Griffiths [10]. In Section 3 we
define some elementary maps, and in Section 4 we prove our main theorem.
We shall only be concerned with the combinatorial category, so all homeomor-
phisms and isotopies are piecewise linear, and all curves are polygonal.

The author acknowledges his gratitude to Professor Terasaka and Professor
Murasugi for conversations.

2. A model for V, and a characterization of # *(F,).

2.1. For the sake of convenience, we first introduce a model for V, in the
3-dimensional euclidean space R3.

Let B? be a 3-cell in R3 On 4B° we take » mutually disjoint 2-cells
Ci?, ..., G2 and also we take two disjoint 2-cells B, and Bj; in Int(C2)for
1=:=n Let h;:D*XI—R 1=17=mn be embeddings with
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hy(D?* X {0}) = By, hi(D?* X {1}) = Buy,
B3N hy (DX I) = 93dB3*M hy(D? X dI) = B;p\U By

and h(D? X I) N\ hy(D? X I) = @ for © # j, as shown in Fig. 1. We obtain a
handlebody V, = B3\U (D2 X I)\J ---\U h,(D? X I) of genus n, and we
call #,(D? X I) the i-th handle of V,. 1, has the orientation induced from that
of R3, and we give orientations to By, C;® and so dB; = b;, dC* = sy
1 £ 17 £ n, as shown in Fig. 1. We take simple oriented loops ay, ..., a, on
dV,, apoint pin dB® — (C2\U ... U (C,?) and simple oriented arcs dy, . . . , d,
on 4V, such that a;/M b; consists of one crossing point, a; /N s; = @,
ad;=p\J (aiMby),diN (11U ... Us,) = d;MN s, consists of one crossing
point, d; M d; = dd; M dd; = p for ¢ # 7, as shown in Fig. 1.

d

s

FIGURE 1

To avoid a multiplicity of brackets, we refer to loops rather than to these
homotopy or homology classes. Then it is obvious that {ai,...,a,} and
{ai, ..., a,, by, ...,0b,} form, respectively, free abelian bases for the first
integral homology groups H,(V,; Z) and H,(F,; Z). We also use a;, b; and s;
as p-based loops dia.d;, dbd;~! and d;sdi~' unless confusion, where d;
denotes an appropriate subarc of d;, 1 = ¢ = n. Then, the fundamental group
m1(V,, p) is freely generated by f{a,, ..., a,}, and = (F,, p) is generated by
{at, ..., a, by, ..., b,} subject to the single relation

n

H b % has~1 rel pon F,.

1=1

It holds that s; ~a;/%;ab,rel pon F,, 1 =1 =< n.

2.2. By Nielsen [16] and Mangler [15], .#(F,) can also be characterized
algebraically as the group of classes (mod Inn 7 (F,, p)) of automorphisms
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of 71 (F,, p) induced by free substitutions on the generators a;, b; which map
Mioibia'ba; to its conjugate, see Birman [3, §1] and Birman-Hilden

(6, §1].

It will be noticed that for any ¢ € J£(F,), there exists an n € Z (F,) with
m(p) = p.

Let {xi, - -, x,}” be the smallest normal subgroup of =(F,, p) containing
the elements x4, - - -, x, of w1 (F,, p).

It will be noted that:

2.3. PropositioN. (Griffiths [11, Theorem 7.2]) Let « : F, — V, be the natural
inclusion, and K = ker (ip : m1(F,, p) — m1(V,, p)). Then K = {by, - - -, b,}".

Now we have the following characterization of J*(F,).

2.4. ProrositioN. (Griffiths [10, Theorem 10.1]) Let ¢ : (F,, p) — (F,, p)
be an orientation preserving homeomorphism. Then, ¢ € H*(F,) if and only if

¥ (K) C K.
In [5, (14)], Birman defined two conjugate subgroups
M = {[‘p] € ‘%<Fn)|¢#({alv Ty an}y) C {a«l, e yan}y}

and
g = {[‘p] € '%(Fn)l‘ll#({blv Ty bn}y) C {bly ) bn}”}
of A (F,). So the group & is exactly #*(F,).

3. Elementary homeomorphisms of a handlebody. Throughout
Sections 3 and 4, we will make free use of fundamental results of curves on a
surface which are given by Baer [1] and Epstein [8]. In this section, we con-
struct various homeomorphisms of ¥, onto itself. By s (V,) we denote the
group of all orientation preserving homeomorphisms of V, — V,, and for
Y € H(V,) we denote the restriction ¢|», by € H*(F,).

3.1. Cyclic translation of handles (cf. Griffiths [10, §4]). First we introduce a
simple homeomorphism which is the same map as ¢ in Griffiths [10]. Let p be
the rotation of V, (and so R?) on itself, about the vertical axis joining p and
the center of the 3-cell B?, and through 27 /% radians in the clockwise direction.
Of course, p € S (V,), and it induces the automorphism

=< n),

. a;— ay 157
Pyt 71'I(Fnrp)_)7|"1(Fmp) {bj—)b,l:ll ((1 << n)

where the indices are taken as modulo #.

3.2. Twisting a knob (Goeritz [9, p. 251], Griffiths {10, §5]). Since the loops
S1, * * +, S, are contractible in B?, we have mutually disjoint properly embedded
2-cells Cy'2, - - -, C/? in B3 with 9C/? = s,. C/? cuts off a handlebody, say K,
of genus 1 which contains the ¢-th handle %,(D? X I); we call K, the i-th knob

https://doi.org/10.4153/CJM-1977-011-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-011-1

114 SHIN'ICHI SUZUKI

of V, We take a 2-cell C* C K; which is parallel to Cy? in V,. Let
f:I X D?*— TV, beanembedding with f({0} X D?) = Cy2%, f({1} X D?) = (C?
and f(I X D*) N\ F, = f(I X aD?). We twist the knob K, about the line
f(I X {0}) through = radians keeping f({0} X D?) = C,? fixed. Now we have
amap w; € J(V,) with wy|y,—x, = identity (see Fig. 2).

S S

FIGURE 2

The induced automorphism is given by:

) m—ar s, a;—a; (227 =n),
Wi - 7r1(Fnr P) - 771(an P) . bl N (ll—lbl_lal, bj N bj (2 é ] é n)

For every 7, 1 £ 1 < #, we define w; ¢ S (V,) by the composites
w; = pilwp= (=D,

3.3. Twisting a handle (Dehn [7], Lickorish [14], Birman [3; 4]). The fol-
lowing maps 74, 1 < ¢ < n, are the same maps as ‘‘C-homeomorphisms’’ using
b; in Lickorish [14], or “Dehn twists” about b; in Birman [3; 4]. That is,
71 € A (1,) is defined in the following way. Cut 1/, along By, twist the new
free end h;(D?* X {0}) through 2w, and glue together again. We obtain the
induced automorphism as follows:

: , - ar—abY, a;—a; 2= <),
Tl#iﬂ(l'mp)ﬁm(f'n,p)Z{b:—uf1(15251;).( 7=m

We also define r; € £(V,), 1 £1i < n, by:

i

Ti=p —n,

—1
T1P

3.4. Interchanging two knobs (Griffiths [10, pp. 198-201]). The following
map pi2 € H(V,) is the same map as ¢ in Griffiths [10, §6]. In the notation in
Section 2, we take a simple arc e on dB? such that e spans s; and s,
and e (st U - Us, UdyU---Ud,) =eMN (51Usy) = de. Let D be
the regular neighborhood of C,2\U ¢ \U C2? on dB3. By twisting C;>\U e U C,?
in D through = radians in the clockwise direction we have a homeomorphism
plgl :D— D such that plgl(cl2) = 622, p]QI(CQZ) = C12, pm’(@) = ¢ and
p12’lap = identity (see Fig. 3).
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FIGURE 3
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Thus the homeomorphism p;2’ is easily extended to a homeomorphism of 1,
onto itself, so that p1a' (K1) = Ko, p12'(K2) = K; and p1o'|v,._x = identity,
where K is the regular neighborhood of K; U e\U K, in V,. We apply the
maps w; and wy, and we obtain the map pi; € #(V,) as

P12 = wawip1e’.
The induced automorphism is given by:

flll - 51—161251, Ay — Ay,
a;—a; B=j=n),
by — 51 'bas1, Dy — Dby,
b,—b;, (3Zj=n).

ﬁlZ# . 7r1(Fny P) - Wl(Fm P) :

We define maps in ¢ (V,) by:

2

piiv1 = p T lp1ap~ Y (1 £ 4 = m),

P114r = (p12™t - - Pr—l,r_l)Pr,H-l(Pr—l,r ©r e p12),

privr = p T lpip Y (1 Si=m 1 Sr=n-—1),

where the indices are taken as modulo #. It will be noticed that p; ;1, is ob-
tained by the same way as that of p;» using a simple arc e;,;;, on dB% such that
€4, spans s; and s, and e; ;0 , N (51 U---Us, Ud,U---Ud,) =
eqapr () (5:\U Siy) = 0€q, 14

3.5. Spin and sliding (cf. Birman [4, Chapter 4]). Let 1,7 be a handlebody
of genus n — 1 obtained from the V, by removing the ¢-th handle &;(D?* X I).
Let z;) and z;; be the centers of B, and B, respectively. Suppose that ¢ is any
simple oriented loop on 91V,  with 24 ¢ ¢, 21 € ¢. Let N be a cylindrical neigh-
borhood of ¢ on 4V, ¢, parametrized by (y, 6), with —1 =y = 1,0 <60 < 27,
where ¢ is described by y = 0, and z;; = (0, 0). We use the map ““spin of z,
about ¢’ given by Birman [4, p. 158] except for obvious modifications. An
orientation preserving homeomorphism ¢.,;, : 1, — 91,4, which will be
called a spin of =;; about ¢, is defined by the rule that if a point is in NV, then its

image is given by:

Geoir (0, 0) = (%0-{-2#(23’— 1)) if1/2 =
Geein(3,0) = (y,0 — 2r(2y + 1)) if =1 =
ffcm(% 0) (3’7 0) if *1/2 §y é 1/21

while all points of 41, — N are left fixed, see Fig. 4.

It is easy to see that the ¢.,;, is extended to an orientation preserving
homeomorphism of 17,* — V,%; which may be denoted by o.,,, and still called
a spin of zn about c. Without loss of generality we may assume that B;; C N
with —1/2 £y £1/2, and By N = . So we can extend the o.,,;, to a
map o.p,, € H(V,) with o.s;|n02x n = identity; and we will call it a sliding
of By about ¢. Replacing z,1 and B;; with z;0 and By, we obtain a spin o,
of 24 about ¢ and a sliding o.5;, of B about c.

11

y =
y = —1/2,

Il
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We use frequently a simple oriented loop ¢ on 9V, with 2, € cand 2,1 € ¢
(respectively, z4 € ¢ and 24 € ¢). For brevity, such a simple loop will be

called a z;-loop (respectively, a z,-loop). The followings are immediate con-
sequences of the definition of a sliding.

3.6. LEMMA. (1) Let ¢ be a z4-loop such that ¢ >~ 1rel 3,1 on dV," — z4. Let
C? be a 2-cell on oV, with dC?* = ¢ (as sets), and we assume that C? has the
orientation induced from that of OV, . Then o5, is isotopic to ;% or 7, according
as the orientation of ¢ does or does not agree with the orientation of dC2.

(2) Let ¢1 and ¢y be za-loops. Suppose ¢y~ carelz4 on dV," — z4; then
CerByy 1S 1S0L0PIcC L0 0 ¢yp;, modulo 7,

3.7. LEMMA. Let ¢y, ¢1, * -, C be z1-loops. Suppose that co >~ ¢y - - cprel 2,
) ’ y

on OV, — 340, then ap;, 1S 1s0topic to the product o ,p;, * * * Teipiy MOdulo 7.

From now on, we will select some special loops on dV,* and define some
special slidings.

3.8 Slidings 0. Let o be a z1;-loop such that

aM (a2 JbJ U, Jb,Jd\J---Ud,) =aM b,

consists of one crossing point and a >~ as on 3V, — z10. Now we will denote by
612 the composition map ¢,5,,71~ . Then the induced automorphism is given by:

fal — a1(bs "ay'hy),
aj—a; (G#1),

b2 hand afzbg((ll—lbldﬂ (bg—laqubz),
We define 0, 012%, 0,,* € (V,) by:

612# . 771(]?717?) - WI(FmP) :

0114, = p2,1+1012p2,1+r_1, 1=r=sn-—1,

Oi 000 = P 701,140~ Y, 1 Sr=mn—11=1=n,
612% = w17 010ws,

61,1+r* = P2,1+7»012*p2,1+r_1, l1=sr=sn—1,

014, = p7 0114, 7, 1 Zr=n—1,1217=n,

where p;; = identity, and the indices are taken as modulo #.
It should be noted that:

(1) 612* is a sliding gap,, of Big about & modulo 71, where « is a z19-loop such
that a M (a2 Vb U -+ - U, Jb,Jd,\JU---Ud,) =aMby consists of
one crossing point and a« >~ a» on dV,! — 2.

(2) 6;; (respectively, 0,;*) is a sliding o.p;, of Bi1 (respectively, gap,, of Bio)
about a« modulo 74, where a is a z;-loop (respectively, a z;-loop) such that

aN (@ Iy J---Ja,. 1 Vb1 YVag Yo V- Ua, I, U
d\J--\Jd,) =aMNb,
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consists of one crossing point and a=~a; on dV,' — z; (respectively,
(')Vni _ zil)-
3.9. Slidings £. Let B be a z11-loop such that
BN (s Jb, U - Uge, VDb, Jd\J---Ud,) =MNa:

consists of one crossing point and 8 ~ by on dV,' — z1,. We also denote by &1
the composition map agp,; 71! Then, the induced automorphism is given by:

5(11 - b1d1b2_152(al_lbl_la1),

ago — a2b2(01_lb1_lal)b2_ly
a;—a; (_7¢ 1’2)y
b;—b, (1 =1=5mn).

We also define &5, £12%, £:,% € S (V,) by:

512# : 7r1(Fm P) - Wl(Fn»p) :

51,1+r = P2,1+7512P2,1+r_17 1=sr=n-—1,
Eiipr = p Ty Y, 1SEr=n—-1,1=21=mn,
£10* = w

51,1+r* = p2,1+7512*p2,1+r_1, 1=5r=n— 1,
£t = p D) 12 rEn—-1,124 =24,

where p;; = identity, and the indices are taken as modulo 7.

It will be noticed that:

(1) £12* is a sliding ogp,, of Bjg about 8 modulo 7,, where 8 is a z14-loop such
that 8M (a2 J b\ J -+ - U, I, JdyU---Ud,) =M ay consists of
one crossing point and 8 >~ by on V,! — z11.

(2) £4; (respectively, £,;*) is a sliding ogp,, of By (respectively, ogg,, of Byo)
about 8 modulo 7;, where 8 is a z;-loop (respectively, a z4-loop) such that

ﬁﬂ(aIUbIU'-~Uai_1Ubi_1Ua,~+1Ubi+1U°--UanUan
U \Ud) =B8N a,

consists of one crossing point and B=~b; on dV,' — z,, (respectively,
aVni - Z”).

3.10. LEMMA. Let ¢ be any z-loop. Then, the sliding o.;, of B, about ¢ is
isotopic to a power product of 8,;;'s, £;;'s and 7's, where j # 1,1 = j = n. This
remains valid if o.p,,, 01,5, £ are substituted for .p,,, 04, £1j, vespectively.

Proof. From the definitions in 3.3, 3.5, 3.8 and 3.9, it suffices to show the
case 7 = 1 of o.5,,- We choose a system of z;-loops {as, * -« , ay, B2, - * -, 8,
on dV,! such that a; Na; =211(J Z k), B, B =2u(f = k), a; MNP, =
z11{l £j, h = n) and a; and B,;(2 £ j £ n), satisty the conditions of « and 8
in 3.8(2) and 3.9(2) with 7 = 1, respectively. We know that the set
{ag, « -+, ay, B2, - - -, Ba} forms a free basis of 71(8V,' — 210, 211); a free group
of rank 2n — 2. So, ¢ is homotopic (rel z1; on dV,,} — z14) to a power product
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of ag, *++,a, B2, "+, By By virtue of Lemma 3.6, Lemma 3.7 and the re-
marks 3.8(2) and 3.9(2), we conclude the lemma.

3.11. COorROLLARY. Any shding o.5;, of By and any shding o.p;, of B,
1 £ 1 £ n, are 1sotopic to power products of p, p1s, w1, T1, 612 and &1s.

3.12. For future reference, we introduce maps u; € J(F,), 1 £ 1 £ n, with
wy @ S*(F,). With K, as in 3.2, let U; = dK; N\ dV,; U, is a compact
oriented 2-manifold of genus 1 with dU; = s;. Cutting U; along the simple
loops a; and b;, we have an annulus U,’, and we twist the new boundary of Uy’
through /2 radians keeping s, fixed. Now we have a map u; € J(F,) with
pilpa—v, = identity, wi(a;) = b1, p1(b1) = —ai. The induced automorphism

is given by:
—1 .
) . 2 Jar—m bldl, a;—ay (] #= 1);
pi : m1(Fy, p) — mi(F, ) '{bl—ﬂll—l, b;—b; (G#1).

For every ¢, 1 £ ¢ £ n, we define u; € J(F,) by:

i—1 —(i—l)‘

MHi = p TH1p

4. Generators for .#*(F,). In this section, we will establish the following:

4.1. THEOREM. The group M*(F,) is generated by [p], [p12], [@1], [F1], [012]
and [£12]. In particular, M*(Fy) = 0, M*(F,) is generated by (@] and [#1], and
A*(I5) by [p], (@], [71], [612] and [£12].

The proof will be given by an induction on genus #, utilizing Birman's result
in [4] and Corollary 3.11.

4.2. The cases n = 0 and n = 1. In the case n = 0, it is well-known that
M(Fy) = M*(Fy) = 0; recall that Fy is a 2-sphere. In the case n = 1, it is
also well-known that # (F,) = Sp (2, Z), the group of 2 X 2 integral matrices
with determinant 1; see, for example, Birman [3, p. 58]. .#*(I',) is isomorphic

to a subgroup of Sp (2, Z) consisting of matrices (CL Z with ¢ = 0. Such a

. . 1 —1 —1 0
subgroup is generated by two matrices 0 1 and 0 —11 and these
are representation matrices of 74 and wyy, respectively, as automorphisms
of the free Z-module =, (Fi, p) = H,(f1; Z) with the basis {a1, b1}. The
topological proof is omitted here.

4.3. Proof of 4.1; Furst step. From now on, we assume that n = 2. For brevity,
let G denote the set {p, p12, w1, 71, 012, £12}, and let Z(V,,) denote the subgroup
of A(V,) whose elements are itosopic to the identity, and . (n) a subgroup
of S (17,) which is generated by all slidings, and so by 8;, 8,,*, &, £;;* and 7,
1 =4 j =< n by Lemmas 3.6 and 3.10. From the definiticns of maps in §3
and Corollary 3.11, it suffices to show that .#*(F,) is generated by [p], [p1,],
[@4] and the isotopy classes of slidings in .% (n).

https://doi.org/10.4153/CJM-1977-011-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-011-1

HOMEOMORPHISMS 121

Lety € J*(F,) and ¢ : V, — V, an extension homeomorphism. We claim:

4.4, LEMMA. There exists an elemeni o € S (V,) that is power product of
elements in G and D (V,,) such that Yop|s,, = tdentity.

Proof. Let V denote the union By \J By \J -+ - \U B, \J B,;. Since V, is
irreducible, there exists an 71 € & (V,) such that ny(B,) M V consists of a
finite number of simple arcs; we denote niy by 1. Let I C ¢1(B,o) M V be an
innermost arc on ¥;(B,0), and let A C ¢1(B,o) be the 2-cell cut off by I with
Int ANV = @. We assume I C ¢1(B,o) M Bro, and m = 9A — L.

If m Ch(8D% X I), there is 19 € ZD(V,) with 9w1(Bn) NV C
W1(Bn) M V) — 1. So we may assume that m M h(dD?* X I) = @. The
simple loop I \U m divides dB? into two 2-cells, say Z; and 2, and we assume
that 2, D Bji. If By C 2, (respectively, B C Z4), ¢ # k, we can choose a
240~ (respectively, a z;—) loop ¢ such that ¢ M 9By, consists of one crossing
point; and we apply o.p;, of By (respectively, o.5,, of B;1) about ¢. Now it is
easy to obtain an element 7, € Z(V,) such that

n20en, (Z1) C 21, Mm0ep (1) N Bie=0, e=0or L
We denote 120,41 by yo. It will be noticed that:
*) If BicM ¢1(Bno) # 0, then some new intersections occur in ¥z (B,o) M Byo.

Repeating the procedure, we can assume that 5o, (I\Um) =
I\J ny0p,,(m) bounds a 2-cell n0.5,,(Z1) on dB? with nywo.p, () NV =
21 M Byo. Now, there exists 73 € & (V,) with

a2 (Bro) NV C W1 (Bu) NV) — [

it will be noticed that the new intersections given in (*) are also removed.
By the repetition of the procedure, we can conclude that there exist
n € 2(V,) and ¢ € ¥ (n) with 9oy (B,s) M V = @; let ¥; denote nao.
There are two cases to be considered.

Case 1: There exists a handle, say &, (D? X I), with ¢3(B,o) C h(D? X I).
Since dB,0 %1 on F,, there exists ny € & (V,) with n4/35(B,) = Bio. Then
0" s (Bao) = Bpo; let Y4 denote p"Fnups. If the orientation of ¥4(B,o) does
not agree with that of B,s, we apply w, and an appropriate 75 € Z(V,), so
that nsw,Ws(Bro) = Bpoand nsw,4(B,o) has the same orientation as that of B,,.

Let ¢5 = ¢4 or nsw,¥s according as the orientation of y,(B,) does or does
not agree with that of B,,. Since ¥s;|5,, is orientation preserving, there exists
ne € D (V,) with ne¥s|s,, = identity, this completes the proof of 4.4 in Case 1.

Case 2: Y3(B,o) C B* Now the simple loop ¢3(dB,0) C dB* — V bounds
two 2-cells £, and 2, on dB?%. Since 9B, is not homologous to zero on F,,
there exists a handle, say &, (D? X I), of V, with By C 2/ and By, C Z.
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If there isa handle k;(D? X I),j # k, with B;o C =, (respectively B;; C Z/),
we can choose a z;— (respectively, z;-) loop d such that d /M 8B, consists
of one crossing point, and we apply oaz,, of Bjo (respectively. o4z, of Bj).
Then there exists 17 € Z(V,) such that neep;(21)) C ZV', m0ap; (1) N
B =0, e = 0or1;let Y5 = nr04p;¢3. Repeating the procedure, we can now
assume that y4(8B,0) bounds a 2-cell £,/ on B3 with 2/ NV = Z/ N
Byo = Bio;and we have ng € Z(V,) with ngys(Ba) = Bio. In the same way as
that of Case 1, we also conclude 4.4 in Case 2.

4.5. Proof of 4.1; Second step: By virtue of Lemma 4.4, to prove Theorem 4.1,
we may assume that y|z,, = identity. From the definition of handles, we may
assume that ¥|u.(p2x n = identity with appropriate isotopy. Let

‘pl = ‘llan" : Vnn - Vnn;

¥/ is an orientation preserving homeomorphism with ¢/|z,,us. = identity;and
we regard V" as V,_;. It will be noticed that ¢ will be isotopic to the identity
if and only if ¥’ is isotopic to the identity.

Now, induction of genus # is in order. The group .#*(F;) is generated by
the isotopy classes of the elements of G. We assume, inductively, that
M*(F,_,) is generated by the isotopy classes of the elements of G.

Let J*(F,_1; 2,0 \J 2,1) be the group of all orientation preserving homeo-
morphisms € S*(F,_1) with ¥ (2,0 \J 2,1) = 2,0 \J 2,1, and let A*(F,_,;
2,0 \U 2,1) be the group of all isotopy classes of elements in J£* (F,_1; 2,0 \J 2,1)
with respect to isotopies keeping 2,0 \JU z,: fixed. We can state our version of
a special case of Birman’s result.

4.6. LEmma. (Birman [4, Thecrem 4.2, Theorem 4.3 and pp. 158-160]). Let
Ju s M(Foiy 2,0 \J 2,1) > M*(F,—1) be the homomorphism induced by the
natural inclusion j : H* (Fo_1; 2,0 \J 231) — H*(Fo_y). Then,

tjl*(Fn—l; 20 V) an)

is generated by ker j« and the lifts of the gemerators of M*(F,_;) to
M*(Fo_1; 200 \J 2,1). Moreover, ker jy is generated by @, = &, p,_, and spins
of 2,0 and z,1 about appropriate loops.

We proceed with our proof. From the definitions of maps in Section 3, we
conclude that:

4.7. By slight modifications, if necessary, we may assume that every element of G
keeps 2,0 \J 3,1 fixed as a homeomorphism of V,_1 — V,_1.

Thus, by Lemma 4.6, J/ is isotopic to a power product of w,’, spins of z,o
and 2,; and p, p12, @1, 71, 612 and £;12; and so ¢ is isotopic to a power product of
w, = wyly._1, spins of 2, and z,; and elements of G (as homeomorphisms of
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Va1 — V,_1). By the definitions of spin and sliding given in 3.5, we conclude
that ¢ is isctopic to a power product of w,, slidings of B,, and B,; and elements
of G. By the definition of w, and Corollary 3.11, ¢ is isotopic to a power product
of elements of G, this completes the proof of 4.1.

4.8. PrROPOSITION. The group M (F,) is generated by [p], [#1], [612] and [u1].

Proof. By Lickorish [14] (cf. Birman [3; 4]), #(F,) is generated by Dehn
twists about simple loops a1, - - -, @y, b1, - - -, byand vy, - - -, y,—1 On F,, where
v, is contained in dB% — (Byo\J B;1\J - -\U B,s U B,;) which bounds a
2-cell T; C dB? with T'; N\ (B1y U Buu\J---\UB,w\U B,1) = B;i\U B0,
1 =7 = n — 1. Recall that the Dehn twist about b; is the same to 7;, see 3.3.
Since u; maps a; onto b;, and 6; ;41 maps v; onto b;,1, Dehn twists about a;
and v, are isotopic to power products of 7, wu; and 7,41, 8, 41, respectively.
From the definitions of maps 74, us, 6;,;+1, we conclude 4.8.

4.9. Remark. It is easy to check that our maps are topological realizations of
generators for the Siegel’s modular group Sp (27, Z) given by Hua-Reiner [12]
and Klingen [13]; cf. Birman [2].
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