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1. Introduction

Although the harmonic series
1434343+

diverges, there is a sense in which it “‘nearly converges”. Let N denote the
set of all positive integers, and S a subset of N. Then there are various se-
quences S for which

(l) T ngs "

converges, but for which the ‘‘omitted sequence’” N—S is, in an intuitive
sense, sparse, compared with N. For example, Apostol [1] (page 384)
quotes, without proof, the case where S is the set of all positive integers
whose decimal representation does not involve the digit zero (e.g. 7€ S but
101 ¢ S); then (1) converges, with T < 90.

It is shown in this paper that Apostol’s example is a special case of a
general theorem on a class of sequences S for which T converges. From this
it follows that certain integer sequences — in particular the sequence of
prime numbers — include, for each integer d, a term whose representation
to a given base contains any given digit at least 4 times. For example,
there exists a prime p whose decimal representation contains at least 100 zeros.
Although the existence proof for  is not constructive, an asymptotic bound
for p is obtained, using the prime number theorem of Hadamard and de la
Vallée Poussin.

2. Harmonically convergent sequences

An increasing sequence of positive integers {n;, #,, - - -}, for which the
series of reciprocals
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(2) —d—
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converges, will be called ‘‘harmonically convergent”. The sum of the series
(2) will then be called the ‘“harmonic sum’ of the sequence. A sequence for
which the sum of reciprocals (2) diverges will be called ‘“harmonically diver-
gent”.

A large class of harmonically convergent sequences is characterised
by the following theorem.

THEOREM 1. For integers b= 2,3, 4, ---, d=1,2,3,---, =0, 1,
2,---,b—1, let S(b, d, t) denote the increasing sequence of all positive integers
whose representation to base b tnvolves the digit t at most (d—1) times. Then
S(b, d,t) is harmonically convergent, and its harmonic sum is (strictly) less
than b4(1+4-d log b).

ProoF. For each positive integer 7, denote by D(r) the set of b% consecu-
tive integers whose least member is 4%7.

If r ¢ S(b, 4, ), then D(r) contains no members of S(b, 4, t).

Ifr € S(b, d, t), then D(r) contains at most (*—1) members of S(b, 4, ¢),
since one member of D(r) has the digit ¢ in each of its last 4 positions. Let
C(r) denote the sum of the reciprocals of these at most (b4—1) integers.
Then, for r € S(b, d, t), C(r) is (strictly) less than (b*—1)(b% ). In partic-
ular, if 7, is the least member of S(b, 4, {), then

A4 = (b%—1)(b%y) 1 —C(ry) > 0.
Denote also
1

C(0) =%+%+%+ et P11

Let T, denote the sum of the reciprocals of the first ¢ members of
S(b,d,t). Let 3, denote summation only over values of  which belong to
S(d, d,t). Then, for all ¢ > (r,+1)b%,

T, < C(0)+ 3' C(r);

r=1

since the right side includes all terms of T',, plus additional positive terms.
Therefore
T, < {1+log (62 —1)}+{(64—1)b—°T ,—A4},
so that
T, < b%(14-dlog b—A4).
Hence S(b, d, ¢) is harmonically convergent, and its harmonic sum T'(, 4, ¢)
satisfies the inequality

T (b, d, ¢) < bé(1+d log b).
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3. Harmonically divergent sequences

Let W = {n,, n,, -} denote any harmonically divergent sequence.
For § =1, 2,3, -, define the functions
3 Gl =~ 4~ 4 4o
(3) e .
4 Hi) =~ 4+ = geee g
) 1) = ”_1 n_2 "

where n, is the largest member of W not exceeding j.

Since G(j) and H(j) are increasing functions, their inverses G~!(z)
and H-'(z) are defined for values of z which fall in the ranges of G and H
respectively. For values of 2 which do not, let ' denote the largest number,
not exceeding «, which lies in the range of G; then define G—1(z) = G-1(z').
Similarly define H-'(x).

THEOREM 2. Let W be a harmonically divergent sequence. Let b = 2 and
d =1 be integers. Then for every choice of the integers b’ = 2,3, --, b and
£=0,1,2,-+,b —1, there is a member n, = n,(b, d, t) of W whose represen-
tation to base b' contains the digit t at least d times, and such that

(5) n; < HY (T, 4,1))
(6) i < G (T, 4, 1)).

Proor. Let b, 4, ¢ be given. Then by Theorem 1, W is not contained in
the set S(b, 4, t), so W includes an integer #» whose representation to base
b contains the digit ¢ at least  times. Again by Theorem 1, a partial sum (3)
which exceeds T'(b, 4, t) must contain such a number #, so (5) is proved,
for 8" = b. A similar proof applies to (6).

For & < b, (5) and (6) thus hold, if 4" replaces b. Now if £ and 4 are
given, T (b, d, t) increases as & increases, because an increase of b replaces
each integer in the ““omitted sequence” by a greater integer. So (5) and (6)
hold as stated, since H-! and G-! are increasing functions.

If ' = b, the bounds (5) and (6) are “‘best possible”, in the sense that
for any positive ¢, there is a harmonically divergent sequence for which

n, > HYT(b,d, t)—e)
and
1> G YT, d, t)—e).

It suffices to take a harmonically divergent sequence W which contains
only terms of S(b, d, ¢), until the partial sum of the series of reciprocals
exceeds T'(b, d, t)—e. :
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Combining (5) and (6) with the bound of Theorem 1 proves the
COROLLARY. With symbols as in Theorem 2,
(7) n; < H-1(4%(14-d log b))
(8) i < G7Y(b%(1+d log b)).

4. Applications

As one application of theorem 2, let « and ¢ satisfy 0 < « << 1 and
¢ > 0. Then the sequence {»,;}, where n, = [¢j%], and [z] denotes ‘‘greatest
integer =< x”’, is harmonically divergent. For this sequence,

Mg (1)1
G() >f c(l—a) ;
so by (8),

(9) i £ {1+c(1—a)b%(14-d log b)J0-= 1.

Thus, for example, for every choice of b < 10 and 0 <{ < b, there is an
integer # < 4.3 10 (approx.), such that the representation of [nnt]
to base b’ contains digit ¢ at least 6 times.

Similar conclusions apply to the sequences {[clog 41} and {[cj log 71},
where 1 =1,2,3,--

Let P denote the sequence of prime numbers {p,, p,, - -}. Let P,,
denote the subsequence {P,,,,:2=0, 1, 2, - - -}, for given integers « and §.
It is well known (e.g. [2]) that P,, is harmonically divergent, therefore
Theorem 2 applies to P_;. To approximate to the bounds (7) and (8), let
a(n) = 1 when ne P,,, a(n) = 0 otherwise; let 4(n) = a(1)+a(2)+
~+a(n); then A (n) equals the number of primes in P,, which do not exceed
n. Then for P,,,

o Soalf)  A@) T2 .(1 1 )
HE) =3 & +346) (5

by Abel’s transformation

2 k 2‘—1A 1 1
=2 2407 - 1+1)

>3 4@ ( 1 _1
=2 ( ) 2"”1 - é;)

since A(j) is non-decreasing

=13 A(2e-1)20,

o &
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From the Prime Number Theorem, A4(n) is given asymptotically by

(10) An) ~ as n—> oo.

n
Blogn
Here the symbol f(#) ~ g(#) means that

lim f(n)/g(n) = 1.

-+ 00
It will be convenient also to use the expressions “f(n) is asymptotically
less than g(n)” or “g(n) is asymptotically greater than f(n)” to mean
lim sup f(n)/g(n) < 1.

n-00

If this holds, then for any ¢ > 0, f(n) << (1-+e)g(n) for all » sufficiently
large; g(#) may thus also be termed an ‘‘asymptotic upper bound to f(n)”,

as # —> 0.
Now from (10), for any £ > 0,
(11) i’(zn_) > ﬂllogsn for all n > n(e).
Therefore
1S A@yp sty 1L p
z4 28 % log 291 ’

where the constant B represents the error arising from those terms in
the summation to which inequality (11) does not apply; since the number of
such terms depends on ¢, but not on %, B does not depend on k.

Now if 2 = [log n/log 2], then, for » sufficiently large,

1— LIS |
mwzmw>3+$migaj
(12)
(1—¢) log ([log n/log 2])
> B+ 26 log 2 '
Let

L(n) = {log (log n/log 2)}/{2f log 2}.
Then, from (12), for any £ > 0,
lim sup L(n)/H(n) < 1/(1—¢).

- 00

Consequently, H(x) is an asymptotically greater than L(n), as # — o0.
Therefore, from (7), an asymptotic upper bound % for #,, as d — o0, is
given by
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(13) 28 log 2 - (b%(1+d log b)) = log (log 7i/log 2).

Let P}, denote the set of prime numbers obtained by selecting arbi-
trarily exactly one prime from each subset

{Iba+hﬁ: Pa+hﬂ+1n T Pa+(h+1)ﬂ—1}r

where 2 =0,1,2,-+-. Then P:‘ﬂ is also harmonically divergent, and the
same asymptotic estimates, including (13), apply to P, as to P,,.

Similar results apply also to primes in arithmetic progression. Let y and
z be relatively prime integers. Let Q denote the set of all primes $ =z
(mod y). Then LeVeque [3] shows that the number of primes in Q which do
not exceed » is asymptotically

1 * du
$(y)J: logu

where ¢(y) is Euler’s function.

A similar discussion to that for P,, then shows that Q is harmonically
divergent, and the asymptotic bounds (12) and (13) apply also to @, with
B =9

As a numerical illustration of (13), set & = 10 and 4 = 100. Then for
any base = 10, there exists a prime p whose representation contains a
given digit at least 100 times; and an upper bound % to $ is asymptotically
estimated by

{14) as # — 00,

logyg logye 7 = 1.4 X 10102,
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