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1. Introduction

Although the harmonic series

diverges, there is a sense in which it "nearly converges". Let N denote the
set of all positive integers, and S a subset of N. Then there are various se-
quences S for which

(1) T-l~
neS n

converges, but for which the "omitted sequence" N—S is, in an intuitive
sense, sparse, compared with N. For example, Apostol [1] (page 384)
quotes, without proof, the case where S is the set of all positive integers
whose decimal representation does not involve the digit zero (e.g. 7 e S but
101 #S); then (1) converges, with T < 90.

It is shown in this paper that Apostol's example is a special case of a
general theorem on a class of sequences S for which T converges. From this
it follows that certain integer sequences — in particular the sequence of
prime numbers — include, for each integer d, a term whose representation
to a given base contains any given digit at least d times. For example,
there exists a prime p whose decimal representation contains at least 100 zeros.
Although the existence proof for p is not constructive, an asymptotic bound
for p is obtained, using the prime number theorem of Hadamard and de la
Vall4e Poussin.

2. Harmonically convergent sequences

An increasing sequence of positive integers {nlt n2, • • •}, for which the
series of reciprocals

+
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converges, will be called "harmonically convergent". The sum of the series
(2) will then be called the "harmonic sum" of the sequence. A sequence for
which the sum of reciprocals (2) diverges will be called "harmonically diver-
gent".

A large class of harmonically convergent sequences is characterised
by the following theorem.

THEOREM 1. For integers b = 2, 3, 4, • • •, d = 1, 2, 3, ••• ,< = 0, 1,
2, • • •, b—1, let S(b, d, t) denote the increasing sequence of all positive integers
whose representation to base b involves the digit t at most (d—1) times. Then
S(b, d, t) is harmonically convergent, and its harmonic sum is {strictly) less
than

PROOF. For each positive integer r, denote by D(r) the set of bd consecu-
tive integers whose least member is bdr.

If r $ S(b, d, t), then D(r) contains no members of S(b, d, t).
If r e S(b, d, t), then D{r) contains at most (bd—1) members of S(b, d, t),

since one member of D (r) has the digit t in each of its last d positions. Let
C(r) denote the sum of the reciprocals of these at most (bd—1) integers.
Then, for r e S(b, d, t), C{r) is (strictly) less than (6d-l)(6<V)-1. In partic-
ular, if r0 is the least member of S(b, d, t), then

A ̂  (b*-l)(b%)-i-C(r0) > 0.
D*Hote also

Let Ta denote the sum of the reciprocals of the first q members of
S(b, d, t). Let 2^ denote summation only over values of r which belong to
S(b, d, t). Then, for all q > (ro+l)bd,

since the right side includes all terms of Tq, plus additional positive terms.
Therefore

Ta < {1+log (b*-l)}+{(b*-l)b-dTQ-A},
so that

Tt<bd(l+d log b-A).

Hence S(b, d, t) is harmonically convergent, and its harmonic sum T(b, d, t)
satisfies the inequality

T(b,d,t) <bd(l+dlogb).
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3. Harmonically divergent sequences

Let W = {nlt n2, • • •} denote any harmonically divergent sequence.
For j = 1, 2, 3, • • •, define the functions

( 3 ) - ' • ' • '

where nr is the largest member of W not exceeding /.
Since G(j) and #(/) are increasing functions, their inverses G~1(x)

and H~1(z) are defined for values of x which fall in the ranges of G and H
respectively. For values of x which do not, let x' denote the largest number,
not exceeding x, which lies in the range of G; then define G~x[x) = G"1(x').
Similarly define H.-1{x).

THEOREM 2. Let W be a harmonically divergent sequence. Let b 2; 2 and
d S: 1 be integers. Then for every choice of the integers V = 2, 3, • • •, b and
/ = 0, 1, 2, • • •, b' — l, there is a member n{ = n^b, d, t) of W whose represen-
tation to base b' contains the digit t at least d times, and such that

(5) n{ ̂  H~\T{b, d, t))

(6) i<G

PROOF. Let b, d, t be given. Then by Theorem 1, W is not contained in
the set S(b, d, t), so W includes an integer n whose representation to base
b contains the digit t at least d times. Again by Theorem 1, a partial sum (3)
which exceeds T(b, d, t) must contain such a number n, so (5) is proved,
for V = b. A similar proof applies to (6).

For V < b, (5) and (6) thus hold, if b' replaces b. Now if t and d are
given, T(b, d, t) increases as b increases, because an increase of b replaces
each integer in the "omitted sequence" by a greater integer. So (5) and (6)
hold as stated, since H~x and G-1 are increasing functions.

If V = b, the bounds (5) and (6) are "best possible", in the sense that
for any positive e, there is a harmonically divergent sequence for which

n, >H~l(T(b,d,t)-e)
and

b, d, t)-e).

It suffices to take a harmonically divergent sequence W which contains
only terms of S(b, d, t), until the partial sum of the series of reciprocals
exceeds T(b,d,t)—e.
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Combining (5) and (6) with the bound of Theorem 1 proves the

COROLLARY. With symbols as in Theorem 2,

(7) n^H-

(8) i^G-^

4. Applications

As one application of theorem 2, let a and c satisfy 0 < a < 1 and
c > 0. Then the sequence {rij}, where nt = [cja], and [x] denotes "greatest
integer ^ x", is harmonically divergent. For this sequence,

dx>J -
J l CX*

so by (8),

(9) »^{l+c(l-a)ft*(l+rfloi

Thus, for example, for every choice of V 5j 10 and 0 ±J t < b, there is an
integer « < 4 . 3 x l O u (approx.), such that the representation of [nnt]
to base V contains digit t at least 6 times.

Similar conclusions apply to the sequences {[clog/]} and {[c/log/]},
where j = 1, 2, 3, • • •.

Let P denote the sequence of prime numbers {plt p2, • • •}. Let Paf

denote the subsequence {Pa+hf : h = 0, 1, 2, • • •}, for given integers a and ft.
It is well known (e.g. [2]) that Pa/ is harmonically divergent, therefore
Theorem 2 applies to Paj8. To approximate to the bounds (7) and (8), let
a(n) = 1 when n e Pafi, a(n) = 0 otherwise; let A(n) = a(l)-\-a(2)-\
+«(»); then A (n) equals the number of primes in Pxfi which do not exceed
n. Then for Paff,

by Abel's transformation
2"-1

since A(j) is non-decreasing

2
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From the Prime Number Theorem, A(n) is given asymptotically by

(10) A (n) ~ • as n -> oo.
K ' w /Slog*

Here the symbol f(n) ~ g(n) means that

It will be convenient also to use the expressions "/(«) is asymptotically
less than gin)" or "g(n) is asymptotically greater than /(»)" to mean

limsup/(»)/g(») <L 1.
n-*oo

If this holds, then for any e > 0, /(») < (l+e)g(») for all n sufficiently
large; g(n) may thus also be termed an "asymptotic upper bound to /(»)",
as n -> oo.

Now from (10), for any s > 0,

(11) — ^ > - i H i - for all n > n(«).
M /Sl0g«

Therefore

where the constant B represents the error arising from those terms in
the summation to which inequality (11) does not apply; since the number of
such terms depends on e, but not on k, B does not depend on k.

Now if k = [Iog»/log2], then, for n sufficiently large,

H(n) ^ ff(2») > B + - ^ - 2 - i -
2/Jlog2,?-l

(l-£)log([logn/log2])

2/3 log 2
Let

L{n) = {log (log n/log 2)}/{2/S log 2}.

Then, from (12), for any e > 0,

lim sup £(«)/#(») ^ 1/(1 - e ) .
n-«oo

Consequently, H(n) is an asymptotically greater than L(n), as « -> oo.
Therefore, from (7), an asymptotic upper bound w for nit as rf -»• oo, is
given by
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(13) 2/8 log 2 • (b*(l+d log 6)) = log (log n/log 2).

Let P*^ denote the set of prime numbers obtained by selecting arbi-
trarily exactly one prime from each subset

{Pa+hfit P*+hfi+l> ' ' "> Pa+(h+l)fi-l}-

where h = 0, 1, 2, • • •. Then P*# is also harmonically divergent, and the
same asymptotic estimates, including (13), apply to P*$ as to Pafi.

Similar results apply also to primes in arithmetic progression. Let y and
z be relatively prime integers. Let Q denote the set of all primes p = z
(mod y). Then LeVeque [3] shows that the number of primes in Q which do
not exceed n is asymptotically

i rn

Hy)h
du

• as n -> oo,

where <f>{y) is Euler's function.
A similar discussion to that for Pafi then shows that Q is harmonically

divergent, and the asymptotic bounds (12) and (13) apply also to Q, with

As a numerical illustration of (13), set b = 10 and d = 100. Then for
any base ^ 1 0 , there exists a prime p whose representation contains a
given digit at least 100 times; and an upper bound n to p is asymptotically
estimated by

log10log10«= 1.4 xlO108.
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