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Abstract

In designing a network to link n points in a square of area n, we might be guided
by the following two desiderata. First, the total network length should not be much
greater than the length of the shortest network connecting all points. Second, the average
route length (taken over source-destination pairs) should not be much greater than the
average straight-line distance. How small can we make these two excesses? Speaking
loosely, for a nondegenerate configuration, the total network length must be at least
of order n and the average straight-line distance must be at least of order n1/2, so it
seems implausible that a single network might exist in which the excess over the first
minimum is o(n) and the excess over the second minimum is o(n1/2). But in fact we
can do better: for an arbitrary configuration, we can construct a network where the first
excess is o(n) and the second excess is almost as small as O(log n). The construction is
conceptually simple and uses stochastic methods: over the minimum-length connected
network (Steiner tree) superimpose a sparse stationary and isotropic Poisson line process.
Together with a few additions (required for technical reasons), the mean values of the
excess for the resulting random network satisfy the above asymptotics; hence, a standard
application of the probabilistic method guarantees the existence of deterministic networks
as required (speaking constructively, such networks can be constructed using simple
rejection sampling). The key ingredient is a new result about the Poisson line process.
Consider two points a distance r apart, and delete from the line process all lines which
separate these two points. The resulting pattern of lines partitions the plane into cells;
the cell containing the two points has mean boundary length approximately equal to
2r + constant(log r). Turning to lower bounds, consider a sequence of networks in
[0,√n]2 satisfying a weak equidistribution assumption. We show that if the first excess
is O(n) then the second excess cannot be o(

√
log n).
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1. Introduction

We start with a counterintuitive observation and its motivation, which prompted us to probe
more deeply into the underlying question.
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Consider n points (‘cities’, say) in a square of area n. Using the terminology of computer
science, we are interested in both the worst-case setting where the points are located arbitrarily
in the square, and the average-case setting where the points are random, independent, and
uniformly distributed. Consider a connected network (a road network, say), made up of a
finite number of straight line segments, linking these n points and perhaps other junction
points. Recall that the minimum length connected network on a configuration of points xn =
{x1, . . . , xn} is the Steiner tree ST(xn).

It is well known and straightforward to prove that [9], [11] in both the worst case and
the average case the (mean) total network length len(ST(xn)) grows as order O(n). When
designing a network, it is reasonable to regard the total network length as a ‘cost’. A natural
corresponding ‘benefit’ would be the existence (in some average sense) of short routes between
points. Let �(xi, xj ) denote the route length (length of the shortest path) between points xi and
xj in a given network, and let |xi −xj | denote the Euclidean distance (so �(xi, xj ) ≥ |xi −xj |).
A good network should satisfy the following informal criterion.

Criterion. (The short routes property.) Averaging over pairs (i, j) chosen uniformly at random,
the route length �(xi, xj ) between points xi and xj is not much larger than the Euclidean distance
|xi − xj |.

A first take on a statistic to measure this property for a connected networkG(xn) is the ratio
statistic, based on averaging the ratios of network route lengths versus Euclidean distances.
Consider a network G(xn) to be the configuration of points xn = {x1, . . . , xn} together with a
collection of line segments which combine to connect every xi to every other xj .

Definition 1. (Ratio statistic.) Let average(i,j) denote the average over all distinct pairs (i, j).
Then

ratio(G(xn)) = average
(i,j)

�(xi, xj )

|xi − xj | − 1 ≥ 0.

Consider a network G(xn) based on n uniform random points xn ⊂ [0,√n]2, having (say)
twice the total length of the Steiner tree. Initially, we speculated that in this case the expectation
E[ratio(G(xn))] would at best converge to some strictly positive constant as n tends to ∞.
However, this intuition is wrong.

Counterintuitive observation. (See Section 5.3.) It is possible to construct networks over
well-dispersed configurations whose total lengths are greater than the corresponding Steiner tree
lengths by only an asymptotically negligible factor, but for which the ratio statistic converges
to 0 as the total network length converges to ∞.

These considerations were originally motivated by analysis of real-world networks. Con-
sider, for example, the ‘core’ part of the UK rail network; that part which links the 40 largest
cities. Given a statistic R designed to capture the ‘short routes’ property, we can then consider
how closely the observed value of R approaches optimality. Of course, the real network
has evolved according to a complex historical process heavily influenced by topography;
nevertheless, it is of interest to consider whether its value ofR is close to the minimum possible
value of R taken over all possible networks connecting the 40 cities, but of no greater total
length.

We are then led to ask what statistic R might best capture the imprecisely expressed ‘short
routes’ property, and our consideration of n cities in an idealised square [0,√n]2 is designed to
illuminate this question. The above counterintuitive observation can be interpreted as implying
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that the ratio statistic of Definition 1 is probably not a good choice of statistic, because we prove
this observation by constructing networks which are approximately optimal by this criterion and
yet are plainly rather different from many plausible real-world networks. What is a good choice
of statistic will be discussed in a companion paper, along with some real-world examples.

Informally, the counterintuitive observation suggests that we can construct networks for
configurations of n points which have total network length exceeding that of the Steiner tree by
just o(n), and such that the average excess of network distance over Euclidean distance is o(n1/2)

(bearing in mind that the average Euclidean distance for ‘evenly spread out’ configurations
should be O(n1/2)). In fact, much more is true: whatever the configuration of n points in
[0,√n]2 (hence, even in ‘worst case’ scenarios), we can construct such networks with average
excess of network distance over Euclidean distance barely more than O(log n). Thus, we can
work on an additive rather than a multiplicative scale.

Definition 2. (Excess average length for a network.) The excess route length for a network
G(xn) is

excess(G(xn)) = average
(i,j)

(�(xi, xj )− |xi − xj |).

Theorem 1. (Upper bound on the minimum excess network length.) For each n, let xn be an
arbitrary configuration of n points in a square of area n. The following asymptotics hold for
large n.

(a) Let wn tend to ∞. There exist networks G(xn) connecting up the points such that

(i) len(G(xn))− len(ST(xn)) = o(n);

(ii) excess(G(xn)) = o(wn log n).

(b) Let ε > 0. There exist networks G(xn) connecting up the points such that

(i) len(G(xn))− len(ST(xn)) ≤ εn;

(ii) excess(G(xn)) = O(log n).

This result is proved in Sections 2 and 3. The idea is to build a hierarchical network.
Details are given at the start of Section 3, but here is a sketch. At small scales, routes
use the underlying Steiner tree. At large scales, routes use a sparse collection of randomly
oriented lines (a realisation of a stationary and isotropic Poisson line process); this is the
key ingredient that permits an excess of at most o(wn log(n)) and O(log(n)) (Section 2),
respectively. We believe that only these two scales are needed, but to simplify matters (so
as to avoid nonelementary analysis of Steiner trees and geodesics in Poisson line networks)
we introduce an intermediate scale consisting of a widely-spaced grid. Thus, a route from
an originating city navigates through the Steiner tree to a grid line and then along the grid
line to a line of the Poisson line process, and then navigates in the reverse sense down to the
destination city. (For technical reasons, the discussion in Section 3 also introduces occasional
small rectangles to permit circumnavigation around Steiner tree ‘hotspots’.) The key ingredient
in the analysis is a calculation concerning the Poisson line process, which has separate interest
as a result in stochastic geometry (Theorem 4, below). Consider two points a distance r apart,
and delete all lines from the line process which separate these two points. The resulting pattern
of lines partitions the plane into cells; the cell containing the two points has mean boundary
length which, for large r , is asymptotic to 2r + constant(log r).
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Note that randomness arises only through use of the Poisson line process to supply a relatively
small number of long straight connections; the point pattern xn is arbitrary. The probabilistic
method may now be used to prove the existence of a nonrandom network satisfying the
asymptotics described in Theorem 1, based on applying Markov’s inequality to the expectations
E[len(G(xn))] − len(ST(xn)) = o(n), etc.

For lower bounds, it is necessary to impose some condition on the empirical distribution of
the points in xn, since if all the points concentrate on a line then the excess is 0! We need a
quantitative condition on equidistribution of points over a region, formalised via the following
truncated Vasershtein coupling scheme.

Definition 3. (Quantitative equidistribution condition.) Let xn for varying n form a sequence
of configurations in the plane, let µn be a probability measure on the plane, and let Ln > 0.
Say xn isLn-equidistributed as µn if there exists a coupling of random variables (Xn, Yn) such
that

(a) Xn has uniform distribution on the finite point set xn;

(b) Yn has distribution µn;

(c) E

[
min

(
1,

|Xn − Yn|
Ln

)]
→ 0 as n → ∞.

A sufficient condition for the following result is that xn is Ln-equidistributed as the uniform
distribution on the square of area n, for some Ln = o(

√
log n). The purpose of introducing

the nonuniform distribution µn in Definition 3 is to permit us to express Theorem 2, below, in
terms of weaker and more local conditions; for example, a consequence of Theorem 2(b) is
that we may replace the uniform reference distribution by any distribution µ on [0, 1]2 with a
continuous density component, rescaled to produce a distributionµn on [0, n1/2]2. In particular,
the geometry of [0, n1/2]2 plays no role in this result.

We choose to express Definition 3 in stochastic terms purely for convenience of exposition.
For example, arguments using the connection of total variation to coupling show that xn is
Ln-equidistributed as the uniform distribution on [0,√n]2 if the following nonstochastic con-
dition is satisfied: for some sequence of numbers λn → ∞ with λn/Ln → 0 and n/λ2

n being
integral,

1

n

∑
box

| #(xn ∩ box)− λ2
n| → 0,

with the sum being taken over n/λ2
n boxes partitioning [0,√n]2 into cells of side length λn.

Thus, a wide range of possible point patterns can be seen to be Ln-equidistributed in the above
sense.

Theorem 2. (Lower bound on the minimum excess network length.) Let xn be a configuration
of n points in a square [0,√n]2. Let Ln = o(

√
log n). Suppose that either

(a) xn is Ln-equidistributed as the uniform distribution on the square of area n; or (more
generally)

(b) for some fixed ρ and ε, there exists a subcollection yk(n) of k(n) points, all lying in a disk
Dn of area πρn, such that k(n) > πρnε, and such that yk(n) is Ln-equidistributed as the
uniform distribution on Dn.
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Let G(xn) be a network based on the full collection of n points. If len(G(xn))/n remains
bounded as n tends to ∞ then

excess(G(xn)) = �(
√

log n). (1)

(Here the � notation implies that lim infn→∞ excess(G(xn))/
√

log n > 0.)

Configurations xn produced by independent, uniform sampling from [0,√n]2 satisfy the
conditions of Theorem 2 (see Remark 2), but so will many other configurations exhibiting both
clustering and repulsion. The proof of Theorem 2 is given in Section 4, and exploits a tension
between the following two facts.

(a) An efficient route between xi and xj must run approximately parallel to the Euclidean
geodesic and, hence, will tend to make almost orthogonal intersections with random
segments perpendicular to this geodesic.

(b) On the other hand, the equidistribution condition means that two points xi and xj
randomly chosen from the subcollection must be nearly independent, uniform draws
from Dn, which permits the derivation of upper bounds on the probability of nearly
orthogonal intersections of the form given in fact (a).

Finally, we might hope to improve the result by imposing a more restrictive assumption
than the requirement that len(G(xn))/n remains bounded as n tends to ∞. This requirement
is weaker than either of our two alternative assumptions on len(G(xn)) − len(ST(xn)) in the
upper bound (since len(ST(xn)) = O(n)). However, we are unable to improve (1) under either
of the two stronger assumptions.

2. The Poisson line process network

Our upper bound on minimal excess(G(xn)) is based on a result from stochastic geometry
(Theorem 4, below) which is of independent interest.

Recall that a Poisson line process in the plane R
2 is constructed as a Poisson point process

whose points lie in the space which parametrises the set of lines in the plane. We will consider
only undirected lines, which will be parametrised by (r, θ) ∈ R × [0, π), where r is the signed
distance from the line to a reference point and θ is the angle the line makes with a reference axis.
A stationary and isotropic Poisson line process has intensity measure invariant under rotations
and translations of R

2: a stationary and isotropic Poisson line process � of unit intensity is
one for which the number of lines of � hitting a unit segment has expectation 1 (further facts
about Poisson line processes may be found in [10, Chapter 8]). We are interested in the cell
containing two fixed points which is formed by the lines of � that do not separate the two
points, because this can be used as the efficient long-distance part of a network route between
the two points (see Lemma 3, below). Theorem 4 establishes an asymptotic upper bound for
the length of the mean cell perimeter in case of wide separation between the two points; we
prepare for this by using a Buffon argument to derive an exact double-integral expression for
the mean cell perimeter length.

Theorem 3. (Mean perimeter length.) Let� be a stationary and isotropic Poisson line process
of unit intensity. Fix two points vi and vj which are a distance m apart. Delete the lines of �
which separate the two points vi and vj . The remaining line pattern partitions the plane: the
cell C(vi, vj ) containing the two fixed points has mean perimeter E[len ∂C(vi, vj )] = 2m+Jm,
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φ

r
η − r

x

θψ

s_ vjvi

Figure 1: Definition of η and φ. Note that φ is the sum of the two interior angles ψ and θ .

where Jm is given by the double integral

Jm = E[len ∂C(vi, vj )] − 2m = 1

2

∫∫
R2
(φ − sin φ) exp

(
−1

2
(η −m)

)
dx. (2)

Here η = η(x) is a sum of distances |vi − x| + |vj − x|, while φ = φ(x) is the exterior angle
at x of the triangle with vertices x, vi , and vj (see Figure 1).

Proof. This proof can be phrased in terms of measure-theoretic stochastic geometry, using
the language of Palm distributions and Campbell measure. Since we deal only with construc-
tions based on Poisson processes, we are able to adopt a less formal but more transparent
exposition, for the sake of a wider readership.

Let s be the line segment of length m with endpoints vi and vj . The idea of the proof is to
measure E[len ∂C(vi, vj )] by computing the expected number of hits on ∂C(vi, vj )made by an
independent, homogeneous, isotropic Poisson line process �̃, again of unit intensity. Each hit
corresponds to one of the points in the intersection point process X = {ι(�, �̃) : � ∈ �, �̃ ∈ �̃},
where

ι(�, �̃) =
{
x if � ∩ �̃ = {x},
undefined if � and �̃ are parallel.

Note that with probability 1 the intersection point ι(�, �̃) is defined for all � ∈ � and �̃ ∈ �̃.
Not all intersection points x ∈ X correspond to hits on ∂C(vi, vj ). The condition for

x = ι(�, �̃) ∈ X to represent a hit on ∂C(vi, vj ) is that � should not hit s (for otherwise it
cannot be involved in the construction of ∂C(vi, vj )) and that x is not separated from s by any
line from � \ {�}. Recall that the Slivynak theorem [10, Section 4.4, Example 4.3] implies
that � \ {�} conditional on � ∈ � is itself a homogeneous, isotropic, unit-rate Poisson line
process. Consequently, under the condition that � does not hit s, the conditional probability of
x = ι(�, �̃) ∈ X representing a hit on ∂C(vi, vj ) is equal to the probability p(x) of there being
no line in � which cuts both the segment from vi to x and the segment from vj to x.

A classic counting argument from stochastic geometry then reveals that

p(x) = exp(− 1
2 (|vi − x| + |vj − x| −m)) = exp(− 1

2 (η −m)).

Accordingly, if ν is the intensity of the point process X then we may compute the mean number
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of hits on ∂C(vi, vj ) as∫∫
R2
ν P[� 
⇑ s | x = ι(�, �̃) ∈ X] exp

(
−1

2
(η −m)

)
dx

= 2m+
∫∫

R2
ν P[� 
⇑ s, �̃ 
⇑ s | x = ι(�, �̃) ∈ X] exp

(
−1

2
(η −m)

)
dx.

Here ‘� 
⇑ s’ stands for ‘the line � does not hit s’—noting that the conditioning in this context
forces the Poisson line � to pass through x but does not fix its orientation—and on the right-hand
side the summand 2m corresponds to the fact that hits of �̃ on s count as automatic double hits
on ∂C(vi, vj ).

Condition on x = ι(�, �̃) ∈ X (which is to say, condition on there being Poisson lines � ∈ �
and �̃ ∈ �̃ both passing through x), and consider

(a) the angle ξ1 made by � with the line through vi and x;

(b) the angle ξ2 between � and �̃.

By isotropy of�, the random angle ξ1 is uniform(0, π ). Conditional on ξ1 and more generally
on�with an � ∈ � passing through x, the intersection of �̃with � is a Poisson point process on
� of unit intensity. Moreover, if the intersection points are marked with angles of intersection ξ2
then the mark ξ2 has mark density 1

2 sin ξ2 over ξ2 ∈ [0, π) (consider the length of the silhouette
of a portion of � viewed at angle ξ2). Hence, the conditional distribution of ξ2 for x = ι(�, �̃)

has density 1
2 sin ξ2 over ξ2 ∈ [0, π), and so we can compute (working with ξ2 modulo π )

P[� 
⇑ s, �̃ 
⇑ s | x = ι(�, �̃)] = 1

π

∫ φ

0

(∫ φ−ξ1

−ξ1

| sin ξ2|
2

dξ2

)
dξ1

= φ − sin(φ)

π
,

where φ = θ+ψ is the exterior angle at x of the triangle formed by x, vi , and vj (see Figure 1).
Finally, the intensity ν of X can be computed as π/2 by, for example, computing the mean

number of hits of the unit disk by �, then computing the average length of the intersection of
the disk with a line of � conditional on that line hitting the disk. Thus,

Jm = E[len(∂C(vi, vj ))] − 2m

= ν

∫∫
R2

P[� 
⇑ s, �̃ 
⇑ s | x = ι(�, �̃) ∈ X] exp

(
−1

2
(η −m)

)
dx

= 1

2

∫∫
R2
(φ − sin φ) exp

(
−1

2
(η −m)

)
dx,

as required.

We now state and prove the main result of this section: an O(logm) upper bound on the
mean perimeter excess length Jm.

Theorem 4. (Asymptotic upper bound on the mean perimeter length.) The mean perimeter
excess length Jm is subject to the following asymptotic upper bound:

Jm ≤ O(logm) as m → ∞.
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Proof. Without loss of generality, place the points vi and vj at (−m/2, 0) and (m/2, 0),
respectively. The double integral in (2) possesses mirror symmetry about each of the two axes,
so we can write

Jm = 2
∫∫

[0,∞)2
(φ − sin φ) exp

(
−1

2
(η −m)

)
dx

= 2
∫ π/2

0

∫ (m/2) sec θ

0
(φ − sin φ) exp

(
−1

2
(η −m)

)
r dr dθ

+ 2
∫ π

π/2

∫ ∞

0
(φ − sin φ) exp

(
−1

2
(η −m)

)
r dr dθ

(using polar coordinates (r, θ) about the second point vj located at (m/2, 0)). The integrand
in the second summand is dominated by π exp(−r/2)r , which is integrable over (r, θ) ∈
(0,∞)× (π/2, π). (In this region geometry shows that η−m > r(1 − cos θ) ≥ r .) Thus, we
can apply Lebesgue’s dominated convergence theorem to deduce that the second summand is
O(1) as m tends to ∞; hence, it may be neglected.

In fact, we can also show that part of the first summand generates an O(1) term: the
dominated convergence theorem can be applied for any ε ∈ (0, π/2] to show that

2
∫ π/2

0

∫ (m/2) sec θ

ε

(φ − sin φ) exp

(
−1

2
(η −m)

)
r dr dθ = O(1),

since the integrand is dominated byπ exp(−(r/2)(1−cos θ))r over the region (r, θ) ∈ (0,∞)×
(ε, π/2) (in this region geometry shows that η−m > r(1 − cos θ) > r(1 − cos ε)). Thus, for
fixed ε ∈ (0, π/2) as m tends to ∞, we have the asymptotic expression

Jm = 2
∫ ε

0

∫ (m/2) sec θ

0
(φ − sin φ) exp

(
−1

2
(η −m)

)
r dr dθ +O(1),

where the implicit constant of the O(1) term depends on the choice of ε > 0.
Now in the region where 0 < θ < ε and 0 < r < (m/2) sec θ we know that φ < 2θ < 2ε,

and moreover φ − sin φ is an increasing function of φ. Therefore, there exists a constant Cε,
converging to 0 as ε tends to 0, such that in this region

φ − sin φ ≤ 2θ − sin(2θ) ≤ Cε

8

(2θ)3

6
≤ Cε

1 − cos θ

3
sin θ.

Hence (as m tends to ∞ for fixed ε > 0),

2
∫ ε

0

∫ (m/2) sec θ

0
(φ − sin φ) exp

(
−1

2
(η −m)

)
r dr dθ

≤ 2

3
Cε

∫ ε

0

∫ (m/2) sec θ

0
(1 − cos θ) sin θ exp

(
− r

2
(1 − cos θ)

)
r dr dθ

= 8

3
Cε

∫ ε

0

(∫ (m/4)(sec θ−1)

0
se−s ds

)
sin θ dθ

1 − cos θ

(
using s = r

2
(1 − cos θ)

)
≤ 8

3
Cε

∫ (m/4)(sec ε−1)

0

(∫ v

0
se−s ds

)
1

1 + 4v/m

dv

v

(
using v = m

4
(sec θ − 1)

)
≤ 8

3
Cε log

(
m

4
(sec ε − 1)

)
+O(1).
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Figure 2: Simulation of semi-perimeters for 1000 independent cells for the unit-rate Poisson line process,
with points located a distance 108 units apart. The figure is subject to vertical exaggeration: the y-axis
is scaled at 104 times the x-axis. The empirical mean excess semi-perimeter is 27.63 with standard error

±0.28, versus the predicted mean excess semi-perimeter, 27.5528 (using o(1)-asymptotics).

Remark 1. More careful analysis yields useful o(1)-asymptotics: in fact, it can be shown that,
as m tends to ∞,

Jm = 8
3 (logm+ γ + 5

3 )+ o(1),

where γ is the Euler–Mascheroni constant:

γ = lim
m→∞

(( m∑
1

1

r

)
− logm

)
.

These o(1)-asymptotics show very good agreement with simulation: see, for example, the
simulation reported in the legend of Figure 2.

3. A low-cost network with short routes

In this section we prove Theorem 1: for a given configuration xn ⊂ [0,√n]2, we construct
networks G(xn) for which both len(G(xn))− len(ST(xn)) and excess(G(xn)) are small. The
network is constructed by augmenting the Steiner tree network ST(xn) in a hierarchical manner.
The construction is stochastic: we construct a random augmentation for which the mean values
of these excess values obey the desired asymptotics and then apply the probabilistic method
to establish existence of the desired nonstochastic networks. Working from the largest scale
downwards, we construct the following.

1. A stationary and isotropic Poisson line process � of intensity η, where η will be small;
note that this can be constructed from a unit intensity process by scaling by a magnification
factor of 1/η. A simple computation [10, Section 8.4] shows that the mean total length
of the intersection of the resulting line pattern with [0,√n]2 equals πηn.

2. A medium-scale rectangular grid with cell side length sn ∼ (log n)1/3. The total length
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ST(xn) 

Π

sn

Figure 3: An illustration of the construction of a network to deliver an upper bound on the mean excess
route length. Points are indicated by small circles. In this figure there is just one hot-spot cell.

of this grid in [0,√n]2 is bounded above by

2

(
1 +

√
n

sn

)√
n = o(n).

3. The Steiner tree ST(xn).

4. A small number (at most n/2) of small hot-spot cells based on a small-scale rectangular
grid with cell side length tn ∼ 1/(log n)1/6. A cell in this grid is described as a hot-spot
cell if it contains two or more points. These hot-spot cells are used to bypass regions
where the Steiner tree might become complicated and expensive in terms of network
traversal. We add further small segments connecting each hot-spot cell perimeter to
points within the hot-spot cell. The total length of these additions can be bounded by

4
n

2
tn + n

tn

2
= o(n).

Thus, the mean excess length of this augmented network is o(n) + πηn. The construction
is illustrated in Figure 3. Note that we can choose sn and tn such that n1/2/sn and sn/tn are
integers, so that the small-scale lattice is a refinement of the medium-scale lattice, which itself
refines the square [0,√n]2.

3.1. Worst-case results for Steiner trees

We first record two elementary results on Steiner trees. The first result bounds the length of
a Steiner tree in terms of the square root of the number of points (for the planar case).

Lemma 1. Consider a configuration xk of k points in a square of side r: there exists a constant
C1 not depending on k or r such that

len(ST(xk)) ≤ C1
√
kr.

Proof. See [9, Section 2.2].

The second result provides a local bound on the length contributed by a larger Steiner tree
in a small square containing a fixed number of points.
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Lemma 2. Consider the Steiner tree ST(xn) for an arbitrary configuration xn in the plane.
LetG be the restriction of the network ST(xn) to a fixed open square of side length t . Suppose
that k points x1, . . . , xk of the configuration xn lie within the square. Then

len(G) ≤ t (4 + C1
√
k + 1).

Proof. Let y1, . . . , ym be the locations at which ST(xn) crosses into the interior of the
square. (Note that m = 0 is possible if {x1, . . . , xk} = xn: in this case choose y1 arbitrarily
from the perimeter of the square.) Then

len(G) ≤ len(ST({x1, . . . , xk, y1, . . . , ym})) by minimality of ST(xn)

≤ len(ST({x1, . . . , xk, y1}))+ 4t using square perimeter

≤ t (4 + C1
√
k + 1) using the previous lemma.

3.2. Route lengths in the medium-large network

The part of the construction involving the medium-scale grid and the Poisson line process is
useful in variant problems, so we separate out the following estimate involving these ingredients.

Lemma 3. Let n1/2/sn be an integer. Consider the superposition of the rectangular grid with
cell side length sn and the Poisson line process of intensity η, intersected with the square
[0, n1/2]2. Let vi and vj be vertices of the grid. Then

E[route length vi to vj ] ≤ |vi − vj | + C2
1

η
log(η

√
2n)

for an absolute constant C2.

Proof. Let C(vi, vj ) be the cell of � containing vi and vj (having deleted lines from �

which separate vi from vj ). Let R(vi, vj ) be the rectangle bounded by vi and vj ; then, by
convexity, the route length from vi to vj is bounded above by

1
2 len ∂(R(vi, vj ) ∩ C(vi, vj )) ≤ 1

2 len ∂C(vi, vj ),

whose mean value can be computed by recognising that the Poisson line process is a rescaled
version of a homogeneous, isotropic, unit-rate Poisson line process. Hence, by scaling the
asymptotic upper bound of Theorem 4 we have

E

[
1

2
len ∂(R(vi, vj ) ∩ C(vi, vj ))

]
− |vi − vj | ≤ O

(
1

η
log(η|vi − vj |)

)
= O

(
1

η
log(η

√
2n)

)
.

3.3. Navigating the augmented network

We now explain how to move from points of xn up to a vertex of the medium-scale grid.
Given xi ∈ xn, if this is in one of the hot-spot cells then move to the perimeter of the hot-spot

cell and thence to a suitable point of departure on the perimeter, with route length at most 5
2 tn.

Now move along the Steiner tree within the relevant medium-scale grid box to the box perimeter;
however, bypass all hot-spot cells. There are (sn/tn)2 = ((log n)1/3(log n)1/6)2 = log n small
squares each of which involves a route length of either 2tn (if the small square is a hot-spot box
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which will be bypassed) or tn(4 + C1
√

2) (if not, by Lemma 2). Hence, the total trip to the
medium-scale grid box perimeter (including emergence from the initial hot spot, if required)
has length at most

5

2
tn + tn(4 + C1

√
2)× s2

n

t2n
∼ 5

2
tn + (4 + C1

√
2)× (log n)5/6 = o(log n).

Furthermore, the route length from perimeter to vertex of a medium-scale grid box is at most
1
2 sn ∼ 1

2 (log n)1/3 = o(log n). So, for each xi , there is a medium-scale grid vertex vi for
which the route length from xi to vi is o(log n). Combining with Lemma 3 and noting that the
medium-scale grid geometry forces |vi − vj | ≤ |xi − xj | + 2(sn/

√
2), we find that

E[route length from xi to xj ] − |xi − xj | ≤ √
2sn + o(log n)+ C2

1

η
log(η

√
2n).

Averaging over the points of xn, it follows that the dominant contribution comes from the cell
semi-perimeters, and indeed

E[excess(G(xn))] ≤ O

(
1

η
log(η

√
2n)

)
,

at a cost in terms of network length which exceeds len(ST(xn)) by a stochastic quantity of
mean πηn+ o(n).

The two different results of Theorem 1 follow by choosing η to behave in two different
ways:

(a) either η → 0 and ηwn → ∞; or

(b) η = ε > 0.

In either case we can apply the probabilistic method to exhibit existence of the required
deterministic networks for cases (a) and (b) of Theorem 1. For example, in case (a) it is
then the case that E[len(G(xn)) − len(ST(xn))] ≤ ncn and E[excess(G(xn))] ≤ cnwn log n
for some cn → 0. But then, for any fixed n, we can apply Markov’s inequality: P[len(G(xn))−
len(ST(xn)) > 3ncn] ≤ 1

3 and P[excess(G(xn)) > 3cnwn log n] ≤ 1
3 . Hence, there is positive

probability that the random network satisfies both len(G(xn)) − len(ST(xn)) ≤ 3ncn and
excess(G(xn)) ≤ 3cnwn log n; hence, such a network exists for each n.

We can view these applications of Markov’s inequality as indicating a simple rejection
sampling algorithm to be used to generate the required sequence of networks.

4. A lower bound on the average-excess route length

In this section we prove Theorem 2. The proof is divided into four parts. Firstly (Sub-
section 4.1), we show how to reduce the problem to an analogous case in which the excess is
computed for two random points drawn independently and uniformly from the whole disk Dn
of area πρn given in condition (b) of the theorem. Then (Subsection 4.2) we show that the
network geodesic must run almost parallel to the Euclidean geodesic if the excess is small. On
the other hand (Subsection 4.3), we can use the uniformity of the two random points to control
the extent to which network segments can run both close to and nearly parallel to the Euclidean
geodesic. Finally (Subsection 4.4), we use the opposing estimates of Subsections 4.2 and 4.3
to derive a proof of the theorem using the method of contradiction.
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4.1. Reduction to the case of a pair of uniformly random points

First we indicate how condition (a) of Theorem 2 implies condition (b). Under condition
(a), we can use the coupling between Xn and Yn to show that #{xn ∩Dn}/n → πρ: therefore,
for large n, the number of points in xn ∩ Dn is approximately πρn. On the other hand, the
same coupling can be used to bound the total variation distance between the two conditional
distributions L(Yn | Xn ∈ Dn) and L(Yn | Yn ∈ Dn) = uniform(Dn), and to show that this
bound tends to 0. We can then use rejection sampling techniques to couple L(Yn | Xn ∈ Dn)
and uniform(Dn) so that the truncated Vasershtein distance tends to 0 as n tends to ∞; as
the distance is a metric, we can combine this coupling with the (conditioned) coupling of
L(Xn | Xn ∈ Dn) and L(Yn | Xn ∈ Dn) to obtain a coupling which satisfies condition (b).

We now note that it is sufficient to consider the analogous result for a configuration xn of
n points in the disk Dn. For then we can apply the result to the lesser configuration yk(n) (for
k(n) as given in condition (b) of Theorem 2) and obtain

excess(G(yk(n))) = �(
√

log k(n)) = �(
√

logπρnε) = �(
√

log n),

while

excess(G(yk(n))) = n(n− 1)

k(n)(k(n)− 1)
excess(G(xn))

≤ 1

πρε(πρε − 1/n)
excess(G(xn)),

from which Theorem 2 follows.
We therefore consider xn ⊂ Dn being Ln-equidistributed as the uniform distribution onDn.

So, by definition, there is a coupling (X1, Y1) (here we omit dependence on n), where X1 has
uniform distribution on xn, Y1 has uniform distribution on Dn, and

�n = E

[
min

(
1,

|X1 − Y1|
Ln

)]
→ 0 as n → ∞.

Write (X2, Y2) for an independent copy of (X1, Y1). In the definition of excess it makes no
asymptotic difference if we allow j = i in average(i,j), so we may take

excess(G(xn)) = E[�(X1, X2)− |X1 −X2|].
Set

An = [|Y1 −X1| ≤ Ln] ∩ [|Y2 −X2| ≤ Ln], (3)

so that, by Markov’s inequality,
P[An] ≥ 1 − 2�n. (4)

Define �(Y1, Y2) by supposing that Yi is plumbed into the network using a connection by a
temporary line segment with endpoints Yi and Xi . A direct computation shows that, on the
event An,

�(Y1, Y2)− |Y1 − Y2| ≤ (�(X1, X2)+ |X1 − Y1| + |X2 − Y2|)
− (|X1 −X2| − |X1 − Y1| − |X2 − Y2|)

≤ �(X1, X2)− |X1 −X2| + 4Ln.

Consequently,

E[�(Y1, Y2)− |Y1 − Y2|; An] ≤ excess(G(xn))+ 4Ln. (5)

By hypothesis, Ln = o(
√

log n), and so the proof of Theorem 2 reduces to showing that the
left-hand side (the excess for two random points chosen uniformly in the disk) is �(

√
log n).
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4.2. Near-parallelism for the case of small excess

We now substantiate our previous remark that the network geodesic must run almost parallel
to the Euclidean geodesic if the excess is small.

It is convenient to situate the diskDn in the complex plane C so as to have a compact notation
for rotations. For t > 0, we define Zt and � by

ei� = Y2 − Y1

|Y2 − Y1| ,
Zt = Y1 + t × ei�. (6)

Let γ : [0, �(Y1, Y2)] → C be the unit-speed network geodesic running from Y1 to Y2 (using
the temporary plumbing to move from Y1 to X1 and then again from Y2 to X2). Then (bearing
in mind that |γ ′(t)| = 1)

�(Y1, Y2) =
∫ �(Y1,Y2)

0
|γ ′(s)| ds ≥

∫ |Y1−Y2|

0
|γ ′(τ (t))|τ ′(t) dt,

where τ(t) is the first time s at which 〈γ (s)− Y1, ei�〉 = t . (Note that our networks are formed
from finite collections of line segments. Hence, τ ′ will be defined and finite, save perhaps at a
finite number of times.) This and the following constructions are illustrated in Figure 4.

Defining θ(t) by sec θ(t) = τ ′(t), and using sec θ ≥ 1 + 1
2θ

2, we deduce that

�(Y1, Y2) ≥ |Y1 − Y2| + 1

2

∫ |Y1−Y2|

0
θ(t)2 dt. (7)

Zt

Dn

t

Y2

Y1

θ

δ2

δ1

δ3

Figure 4: An illustration of the construction of Y1, Y2, and Zt . The angles θ(t) and δ1, δ2, . . . are
computed using the angles of incidence of network segments on the perpendicular running through Zt ;
ϒt,χ is the minimum of absolute values of all such angles of points of intersection within

√
2tχ + χ2

of Zt .
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Furthermore, we can use Pythagoras and the geodesic property of the Euclidean line segments
to show the following. Let H(t) be the maximum |r| for which, for some s,

γ (s) = Zt + irei�.

If the excess for the network geodesic from Y1 to Y2 is bounded above by �(Y1, Y2)−|Y1−Y2| ≤
χ then H(t) ≤ √

2tχ + χ2.
Let ϒt,χ be the smallest |δ| such that some network segment intersects the perpendicular

{Zt + irei� : r ∈ R} at an angle of π/2 + δ and at a distance of at most
√

2tχ + χ2 from Zt
(thus, δ is the angle of incidence of this network segment on the perpendicular). If �(Y1, Y2)−
|Y1 − Y2| ≤ χ and |Y1 − Y2| ≥ κ

√
ρn, we can use (7) to deduce that

�(Y1, Y2)− |Y1 − Y2| ≥ 1

2

∫ κ
√
ρn

0
ϒ2
t,χ dt − 1

2

(
π2

4

)
(|X1 − Y1| + |X2 − Y2|).

(The second summand allows for the temporary plumbing in of connections X1Y1 and X2Y2,
for which the angle θ(t) ∈ (0, π/2) is not controlled by permanent network segments.) So,
introduce the event

Bκ,χ = [�(Y1, Y2)− |Y1 − Y2| ≤ χ, |Y1 − Y2| ≥ κ
√
ρn],

and from (3) recall that the eventAn = ⋂2
i=1[|Yi−Xi | ≤ Ln]. Taking expectations, we deduce

that

E[�(Y1, Y2)− |Y1 − Y2|; Bκ,χ ∩ An] ≥ 1

2

∫ κ
√
ρn

0
E[ϒ2

t,χ ; Bκ,χ ∩ An] dt − π2

4
Ln.

Using integration by parts to replace the expectation by a probability,

E[�(Y1, Y2)− |Y1 − Y2|; Bκ,χ ∩ An] + π2

4
Ln

≥
∫ κ

√
ρn

0

∫ ∞

0
P[[ϒt,χ > u] ∩ Bκ,χ ∩ An]u du dt

=
∫ κ

√
ρn

0

∫ ∞

0
(P[Bκ,χ ∩ An] − P[[ϒt,χ ≤ u] ∩ Bκ,χ ∩ An])u du dt

≥
∫ κ

√
ρn

0

∫ ∞

0
max(P[Bκ,χ ∩ An] − P[ϒt,χ ≤ u], 0)u du dt. (8)

Also note that, from the definitions of Bκ,χ and An, using (4), (5), and Markov’s inequality,

1 − P[Bκ,χ ∩ An] = 1 − P[An] + P[An \ Bκ,χ ]
≤ 2�n + P[|Y1 − Y2| < κ

√
ρn] + excess(G(xn))+ 4Ln

χ
. (9)

To make progress, we now need to find an upper bound for P[ϒt,χ ≤ u], and this is the subject
of the next section.
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4.3. Upper bounds using uniform random variables

Firstly, we compute an upper bound on the joint density of the quantities Zt and� from the
previous section, illustrated in Figure 5.

Lemma 4. Suppose that Y1 and Y2 are independent, uniformly distributed random points in a
disk Dn of radius

√
ρn and centre 0 in the complex plane C. With Zt and � defined as in (6),

the joint density of Zt and � is given over C × [0, 2π) by

1[z− teφ ∈ Dn] (t + s(z, φ))2

2π2ρ2n2 dz dφ, (10)

where eφ = eiφ is the unit vector making angle φ with a reference x-axis, and s(z, φ) is the
distance from z to the disk boundary ∂Dn in the direction φ (thus, in particular, z+ s(z, φ)eφ
is on the disk boundary).

Proof. Express the joint density for Y1 and Y2 as a product of a uniform density overDn for
Y1 and polar coordinates (r, φ) about Y1 for Y2:

1[y1 ∈ Dn] dy1

πρn
1[y1 + reiφ ∈ Dn] r dr dφ

πρn
.

Obtain the result by integrating out the r variable and transforming the y1 variable to z by
z = y1 + teiφ .

Corollary 1. The density for Zt and � (mod π) is

f (z, φ) =
(

1[z− teφ ∈ Dn] (t + s(z, φ))2

2
+ 1[z+ teφ ∈ Dn] (t + s(z, π + φ))2

2

)
× 1[0 ≤ φ < π ] dz dφ

π2ρ2n2 , (11)

Y2

Y1

Dn

t
Zt

s(Zt,Φ)

Figure 5: An illustration of the construction in Lemma 4.
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with an upper bound

f (z, φ) ≤ 4 × 1[0 ≤ φ < π ] dz dφ

π2ρn
. (12)

Proof. Equation (11) follows immediately from adding the two expressions from (10) for
φ (mod π). The upper bound follows by noting that the maximum will occur

1. when z− teφ runs along a diameter as t varies;

2. furthermore when one of z± teφ lies on the disk boundary; and

3. furthermore when z = 0 is located at the centre of the disk (so t = s(z,±φ) = √
ρn).

Now consider the line segment St,χ centred at Zt , with endpoints given by the pair

±i
√

2tχ + χ2ei�,

and consider the rose-of-directions empirical measure of angles made by intersections of
network edges with this segment:

Rt,χ (A) = #{network intersections on St,χ with angle of incidence lying in A}
(here angles are measured modulo π , and A ⊆ [0, π)). We may apply a Buffon-type argument
to bound E[Rt,χ (A)] using inequality (12). Consider the contribution to the expectation from a
fixed line segment of the network of length �: the result of disintegrating the integral expression
for this according to the value ofφ is an integral of f (z, φ)with respect to z over a region formed
by intersecting the disk with a parallelogram of base side length � and height 2

√
2tχ + χ2 sin α

(here the angle α depends implicitly on φ and z). Of course the integral vanishes if φ 
∈ A.
Thus, inequality (12) yields a bound

E[Rt,χ (A)] ≤ 4

π2ρn

∫
G(xn)

∫
A

2
√

2tχ + χ2 sin α dα dz.

For constant χ , the event [ϒt,χ ≤ u] is the event [Rt,χ (π/2 − u, π/2 + u) ≥ 1], and so

P[ϒt,χ ≤ u] ≤ E

[
Rt,χ

(
π

2
− u,

π

2
+ u

)]
≤ 16

π2ρ

len(G(xn))

n

√
2tχ + χ2u. (13)

4.4. Calculations

We have assembled the ingredients for the proof of Theorem 2, and so now we can perform
the calculations to obtain a quantitative lower bound.

We proceed by contradiction. Suppose that excess(G(xn)) = o(
√

log n). Inspecting (9) we
see that we can choose χ = χn = o(

√
log n) and some small κ > 0 such that, for all sufficiently

large n,
P[Bκ,χ ∩ An] ≥ 2−1/3.

So, we can combine (5) and (8) (and the fact that π2/4 < 3) to obtain

excess(G(xn))+ 7Ln ≥
∫ κ

√
ρn

0

∫ ∞

0
max(2−1/3 − P[ϒt,χ ≤ u], 0)u du dt.

By (13) and the hypothesis of Theorem 2, there exists a constant B such that

P[ϒt,χ ≤ u] ≤
√
B

12

√
2tχ + χ2u.
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Applying the formula
∫ ∞

0 max(0, α − βu)u du = α3/6β2 we see that

excess(G(xn))+ 7Ln ≥ 1

B

∫ κ
√
ρn

0

1

2tχ + χ2 dt = log(κ
√
ρn+ χ/2)− log(χ/2)

2χB
. (14)

Recall that this holds under the assumption that χn = o(
√

log n) and that κ > 0 is constant.
We are given that Ln = o(

√
log n), and we have supposed, for the purposes of contradiction,

that excess(G(xn)) = o(
√

log n). But then (14) takes the form

o(
√

log n) ≥ �(log n)

o(
√

log n)
,

which is impossible. We deduce that we must have excess(G(xn)) = �(
√

log n).

5. Closing remarks and supplements

5.1. Spatial network design

Within the realm of spatial network design, the closest work we know is that of Gastner
and Newman [1], who considered the similar notion of a distribution network for transporting
material from one central vertex to all other vertices. They gave a simulation study (their Figure
2) of a certain algorithm on random points, and made the following comment.

Thus, it appears to be possible to grow networks that cost only a little more than the
[minimum-length] network, but which have far less circuitous routes.

Our Theorem 1 provides a strong formalisation of this idea.
An algorithm for minimizing excess for a given length is described in [8], where results for

a 39 point configuration are shown. But neither this nor [1] has led to the study of n tending
to ∞ asymptotics.

5.2. Fractal structure of the Steiner tree on random points

A longstanding topic of interest in statistical physics is that of the continuum limits of various
discrete two-dimensional self-avoiding walks arising in probability models, for example,

• uniform self-avoiding walks on the lattice;

• paths within uniform spanning trees in the lattice;

• paths within minimum spanning trees in the lattice.

This study has recently been complemented by spectacular successes of rigorous theory [5]. It
is conjectured that routes in Steiner trees on random points have similar fractal properties [7]:
route length between points a distance n apart should grow as nγ for some γ > 1. However,
as our construction shows, such results have little relevance to spatial network design.

5.3. The counterintuitive observation

The counterintuitive observation following Definition 1 follows quickly from the work of
Theorem 1. Suppose that the configuration xn is well dispersed, in the weak sense that, for
some γ ∈ (0, 1), we find the number of point pairs within nγ/2 of each other is o(

(
n
2

)
nγ−1)

(certainly this is the case for most patterns generated by uniform random sampling from
[0,√n]2). Consider a network G(xn) produced by augmenting the Steiner tree according
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to the construction in the proof of Theorem 1. Using the properties of this construction, the
following can be shown:

E[ratio(G(xn))] = E

[
average
(i,j)

�(xi, xj )

|xi − xj | − 1

]
≤ (constant)o(nγ−1)+ (1 − o(nγ−1))

(
O(log

√
2n)

nγ/2

)
≤ O

(
max

(
1

n1−γ ,
log n

nγ/2

))
.

5.4. Derandomisation

Theorem 1 is a purely deterministic assertion, though our proof used randomisation (supplied
by the Poisson line process). It seems intuitively plausible that we could give a purely
deterministic proof, say by replacing the Poisson line process with a suitable sparse set of
deterministically positioned lines having a dense set of orientations.

5.5. Quantifying equidistribution

The classical equidistribution property, which states that the empirical distribution of

{n−1/2xni , 1 ≤ i ≤ n}
converges weakly to the uniform distribution on [0, 1]2, is equivalent (by a straightforward
argument) to the property that xn isLn-equidistributed as the uniform distribution on the square
of area n, for some Ln = o(n1/2). Replacing one sequence of Ln by another slower-growing
sequence makes equidistribution a stronger assumption, and so our assumption in Theorem 2(a)
(equidistribution for some Ln = o(log1/2 n)) is stronger than the classical equidistribution
property. Indeed Theorem 2 fails under the classical equidistribution property, as the following
example shows.

Example 1. Let Ln = nγ for some γ ∈ ( 3
8 ,

1
2 ). There exist networks G(xn) which are

Ln-equidistributed as the uniform distribution on the square of area n, for which len(G(xn)) =
o(n) whilst excess(G(xn)) → 0.

For example, partition [0, n1/2]2 into subsquares of side lengthLn/ log n, construct the com-
plete graph on all centres of such subsquares, allocate the n points evenly amongst subsquares
and position them arbitrarily close to the centres.

As is apparent from the nonstochastic condition implyingLn-equidistribution, there is a wide
variety of configurations satisfying Ln-equidistribution. Here we consider the particular case
of independent uniform sampling, and show that this generates an Ln-equidistributed sequence
of configurations.

Remark 2. Sample the configuration xn independently and uniformly from [0,√n]2. Let
Ln tend to ∞, perhaps arbitrarily slowly. Then the probability that the configuration xn is
Ln-equidistributed with the uniform distribution converges to 1. This follows by dividing
[0,√n]2 into cells of side length asymptotic toLn/

√
2, by conditioning on xn, and by ‘blurring’

the points of xn by replacing each pointx ∈ xn by an independent draw taken uniformly from the
cell containing x. Then a uniform random draw Ỹn of one of the blurred points can be coupled
to lie within Ln of a uniform random draw Xn from the finite configuration xn. A simple
argument using the binomial distribution then shows that the total variation distance between
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Ỹn and uniform([0,√n]2) tends to 0; it follows thatXn can be coupled to a uniform([0,√n]2)

random variable Yn so that

E

[
min

(
1,

|Xn − Yn|
Ln

) ∣∣∣∣ xn
]

→ 0,

where the convergence takes place in probability.

5.6. Poisson line process networks

Remark 1 indicates that more can be said about the mean semi-perimeter

1
2 E[len(∂C(vi, vj ))],

and this will be returned to in later work. For example, consider the network formed entirely
from a Poisson line pattern. If the pattern is conditioned to contain points vi and vj then the
perimeter ∂C(vi, vj ) will be close to providing a genuine network geodesic.

Note that questions about C(vi, vj ) bear a family resemblance to the D. G. Kendall conjecture
about the asymptotic shape of large cells in a Poisson line pattern (see D. G. Kendall’s foreword
to [10]). However, C(vi, vj ) is the result of a very explicit conditioning and, hence, explicit
and rather complete answers can be obtained by direct methods, in contrast to the striking work
on resolving the conjecture about large cells [2], [3], [4], [6].

5.7. An open question

In the random points model we can pose a more precise question. Over choices of network
G subject to the constraint

E[len(G(xn))− len(ST(xn))] = o(n),

or the constraint
E[len(G(xn))] = O(n),

what is the minimum value of E[excess(G(xn))]? Our results pin down this minimum value,
in the latter case to the range [�(√log n),O(log n)] and in the former case to the range
[�(√log n), o(wn log n)]. But it remains an open question what should be the exact order
of magnitude.

Acknowledgement

The research of the first author was supported by N.S.F. Grant DMS-0203062.

References

[1] Gastner, M. T. and Newman, M. E. J. (2006). Shape and efficiency in spatial distribution networks. J. Statist.
Mech. Theory Experiment 2006, P01015.

[2] Hug, D., Reitzner, M. and Schneider, R. (2004). The limit shape of the zero cell in a stationary Poisson
hyperplane tessellation. Ann. Prob. 32, 1140–1167.

[3] Kovalenko, I. N. (1997). A proof of a conjecture of David Kendall on the shape of random polygons of large
area. Kibernet. Sistem. Anal. 1997, 187 (in Russian). English translation: Cybernet. Systems Anal. 33, 461–467.

[4] Kovalenko, I. N. (1999). A simplified proof of a conjecture of D. G. Kendall concerning shapes of random
polygons. J. Appl. Math. Stoch. Anal. 12, 301–310.

[5] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random
walks and uniform spanning trees. Ann. Prob. 32, 939–995.

[6] Miles, R. E. (1995). A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of
certain large random polygons. Adv. Appl. Prob. 27, 397–417.

https://doi.org/10.1239/aap/1208358883 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358883


Short-length routes in low-cost networks SGSA • 21

[7] Read, N. (2005). Minimum spanning trees and random resistor networks in d dimensions. Phys. Rev. E 72,
036114.

[8] Schweitzer, F., Ebeling, W., Rose, H. and Weiss, O. (1998). Optimization of road networks using evolutionary
strategies. Evolutionary Comput. 5, 419–438.

[9] Steele, J. M. (1997). Probability Theory and Combinatorial Optimization (CBMS-NSF Regional Conf. Ser.
Appl. Math. 69). Society for Industrial and Applied Mathematics, Philadelphia, PA.

[10] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John
Wiley, Chichester.

[11] Yukich, J. E. (1998). Probability Theory of Classical Euclidean Optimization Problems (Lecture Notes Math.
1675). Springer, Berlin.

https://doi.org/10.1239/aap/1208358883 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358883

	1 Introduction
	2 The Poisson line process network
	3 A low-cost network with short routes
	3.1 Worst-case results for Steiner trees
	3.2 Route lengths in the medium-large network
	3.3 Navigating the augmented network

	4 A lower bound on the average-excess route length
	4.1 Reduction to the case of a pair of uniformly random points
	4.2 Near-parallelism for the case of small excess
	4.3 Upper bounds using uniform random variables
	4.4 Calculations

	5 Closing remarks and supplements
	5.1 Spatial network design
	5.2 Fractal structure of the Steiner tree on random points
	5.3 The counterintuitive observation
	5.4 Derandomisation
	5.5 Quantifying equidistribution
	5.6 Poisson line process networks
	5.7 An open question

	Acknowledgement
	References

