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MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES 

BY 

D. ZAGIER 

Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. Many — conjecturally all — elliptic curves E/Q have a 
"modular parametrization," i.e. for some N there is a map tp from the 
modular curve X0(N) to E such that the pull-back of a holomorphic differ­
ential on E is a modular form (newform) / of weight 2 and level N. We 
describe an algorithm for computing the degree of ip as a branched cov­
ering, discuss the relationship of this degree to the "congruence primes1' for 
/ (the primes modulo which there are congruences between / and other 
newforms), and give estimates for the size of this degree as a function 
of W. 

Let X be a modular curve, i.e. a curve of the form r \ $ U {cusps} where F C 
PSL2([R) is a Fuchsian group of the first kind acting on the complex upper half plane 
£), and suppose that we have a map cp from X to some elliptic curve E over C On E 
there is a unique (up to scalar multiplication) holomorphic differential form; its pull-
back under cp has the form 2TT/ / (T ) di where/: SQ —» C is a holomorphic cusp form 
of weight 2 on T. The situation of interest in number theory is when T = T0(N) C 
PSL2(Z), the curve E and the map cp are defined over Q, and / i s a Hecke eigenform 
with Fourier coefficients in Z. Then the theory of Eichler-Shimura implies that the 
Hasse-Weil zeta-function of E equals the L-function of/; conversely, the Taniyama-
Weil conjecture says that for any elliptic curve E over Q there exist cp and/related to 
E in this way, the integer N being the conductor of E. 

In this paper we will not discuss the Taniyama-Weil conjecture. Instead, we suppose 
that the "modular parametrization" cp is given and discuss the question of computing its 
topological degree as a branched covering map between Riemann surfaces. This ques­
tion is less trivial than appears at first sight because the Hurwitz formula gives no 
information about the degree (since the Euler characteristic of E is zero). There are 
many examples in the literature of elliptic curves over Q with a known modular 
parametrization (for example, all known elliptic curves with conductor ^200; see [1]), 
but in general the degree of 9 is not given in these papers (except in the trivial case when 
the map arises from an isomorphism E — T'\SQ U {cusps} for some T' between T and 
its normalizer, in which case deg (cp) = [ P : T]; these are the "involutory curves" of 
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[8]). We will describe a general algorithm for calculating deg (cp) and a specific formula 
for the case T = r0(A0, N prime, and give several examples. In particular, we compute 
the degree of cp (assuming its existence) for the particular elliptic curve y2 + y = x3 — 
Ix + 6 of conductor 5077, which is the curve of smallest known conductor with 
Mordell-Weil group (over Q) of rank ^ 3 . The degree of this particular cp (it turns out, 
prettily enough, to be 1984) is of interest because it figures in the effective lower 
bounds for class numbers of imaginary quadratic fields obtained from the work of 
Goldfeld [3] and Gross-Zagier [4] (cf. [9]). We also discuss connections between the 
primes dividing deg (cp), when cp is associated to an eigenform/of level N, and the 
"congruence primes" for/ in the sense of Doi and Hida (the primes modulo which there 
are congruences between/and other eigenforms of level N) and give upper and lower 
bounds for the maximal growth of deg (9) as a function of N. 

1. The modular parametrization <p. Suppose given a map cp as above. The elliptic 
curve E has the form C/A for some lattice A C C. Let z and T be the coordinates in 
C and !Q. Then the holomorphic differential form dz on C, being A-invariant, defines 
a form on E, and the pull-back cp*(dz) has the form 2TT/ / (T) di for some cusp form 
/ o f weight 2 on T, i.e. a holomorphic function/: $ —» C satisfying 

/ (T) = 0(lm (T)-1), f{—^) = (CT + d)2f(T) V(c J E r. 

Conversely, starting with any cusp form/of weight 2 on T and setting 

<P,(T) = f 2TTif(T')dT' ( T 6 $ ) 
TO 

(any T0 E £)), we have <p[ = 2 IT//and consequently 

) - 9I(T)J = 2TT/ [(CT + dy2f(^^) - / ( T ) ] - 0, d_ 
dj 

ai + b) 
< P i ! VCT + d 

so 

(1) 9i(7T) = cpi(T) + C(7) (7 e r ) 

for some constant C(7) E C. If the image of the map C : T -* C, which is clearly a 
homomorphism, is contained in a lattice A, then the map cp, : p̂ —> C induces a map 
cp:T\^) —» C/A and we get a modular parametrization of an elliptic curve. In the 

1 1 
particular case when T contains the element ( I, e.g. for T = T0(N), the cusp form 

/has a Fourier expansion/(T) = S,,^ a(n)e2lu,1T and (choosing T0 = °°) we find 

a(n) 
(2) <PI(T) - -2irif f(Tf)djf = S 2TT//JT 

Since this is a rapidly convergent series (Hecke's estimate gives \a(n)\ ^ 20Mn if 
| / ( T ) | ^ M/Im(T)), we can compute cpi(7T) and CPI(T) (any T E ^)) in (1) to any 
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desired degree of accuracy and hence determine C('y) numerically and, if C(Y) is 
contained in a lattice A, exactly. 

Given any cusp form/, the Peter sson norm off is defined by 

| | / | | 2 = f \f(T)\2dudv (T = II + IV). 

Assuming that/corresponds as above to a modular parametrization cp : X —> E = C/ A, 
we can relate this Petersson norm to deg (cp) as follows: 

IL/f = } f / ( T ^ T A / C Ô ^ 

= — f <p*(dz) A cp*(dz) 

= —:'deg(<p)- dzAdz 
SIT JE 

= -! - -deg((p)-Vol(£) , 
4TT2 

where Vol(£) is the area of a fundamental period parallelogram for the lattice A. Since 
this area is computable numerically (the period lattice can be calculated, using the 
Gauss arithmetic-geometric mean, from the Weierstrass equation of £) , we have 
reduced the problem of computing deg (cp) to that of calculating ||/||. 

2. Computation of the Petersson norm. Let / b e any cusp form of weight 2 on Y 
and cpi, C : Y —» C as in §1. In this section we show how to compute ||/| | in terms of 
the values of C(y) for generators 7 of T. Let 9̂  be a fundamental domain for the action 
of Y on £) which is a hyperbolic polygon (the vertices being interior or boundary points 
of £)) having a finite number of sides which are identified in pairs in Y\$. We label 
the vertices P} withy in an index set J = Z/rZ in such a way that Pj+ x is the successor 
of Pj in the natural orientation. Let ej denote the edge PjPj+i, ej* the edge with which 
it gets identified, and 7, E T the element that identifies them. Thus * : J -> J is an 
involution on J and the 7, are generators of Y satisfying 7,-* = 7J"1. Since the identi­
fication 7, : e,-—» e^ is orientation-reversing, we have 7y(/

>
7) = /*,•* +1 (cf- Figure 1). The 

map T:j \—> j * + 1 from J to itself breaks up J into finitely many orbits [j] = 
{j = Tej, Tj,. . . ,Te~xj} in such a way that two vertices Pf and Pf are identified in 
r\£> iffy and/ belong to the same orbit. We pick a base-point^ in each orbit and define 
a partial order on J by y<j ' if 7 and / belong to the same orbit andy' = Taj0, j ' = T^j0 

with 0 = ^ a < P < € = size of orbit. 

THEOREM 1. With the above notations, we have the formula 

||/IP = - ^ S Im(C(77)C(^)). 
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FIG. 1 

In the situation when C(T) is contained in a lattice A, so that cpi induces a map cp 
from F\!Q to C/A, we choose an oriented basis œl5 oo2 of A (i.e. A = Zo^ + Z<o2, 
Im(o)io)2) > 0) and write C(^) = nx (7)0)1 + «2(7)o)2 with «1, «2 homomorphisms from 
T to Z; then Theorem 1 and the formula of §1 immediately give: 

COROLLARY. 

deg (<p) = - 2 [«i(7y)i2(7/) ~ «2(7y)«i(7/)]-

PROOF OF THEOREM 1. The beginning of the proof is suggested by a similar calcu­
lation for T = PSL2(Z) in [5]. From 2TT// = cp[ with <p, holomorphic we obtain 

\\ff = \ \ \ f^mdiAdi 

= ~tn\\ 4cP,(T)7ëÔûfT] 

= ~T~ 91 ( T ) / ( T ) t/f (Stokes ' theorem) 

2 f CP , (T)7 (7 )^ J_ 
4TT 
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Since ej* is the image of e} under 7,- with the orientation reversed, and/(T) di is 
7,-invariant, we have 

I (pi(T)/(T)dT = ~ <Pl(7yT)/(T)dT, 

SO 

ll/ll2 = ^ S J [9l(T) " CPl(7,T)] /(T)dT 

= ^ I C(x-) f f(T)dr 
8TT , J,. 

= - ^ S C(7,)[cp1(P;+1) - «p,(Py)]. 
16-ir , 

In other words, by applying Stokes' theorem twice we have reduced a surface integral 
to a finite sum. We now simplify the last expression by replacing,/ by j * in the first sum; 
since 7,-» = -y~ and C is a homomorphism we have 

I C(yj) cp,(/>,+ l) = - £ C(-&) <?,(/»,•.+ ,) = - S C(-y,-) <Pi("/;P,) 

= - S C(x) [C(7~) + <p,(/>y)], 

and hence — since ||/|p is real — 

87T2 V ; 7 

Finally, we break up this sum into orbits under T. Let [7*0] — {jo, Tj0,. . . , T*~]j0} be 
a typical orbit with Te j0 = j0 and note that 2/e[./0] C(7/) = 0 because n,E[yo] 7, fixes PJ0 

and hence is (the identity or) an element of finite order. Hence 

2 c(^)<pi(^-)= 2 c ( ^ ) [ c p , ( P 7 ) - 9.(^0)] 

= 2 C(^) 2 C(7/) 
MM] J'<i 

since P, = (IT,^ 7/)^0 . The theorem follows. 

3. Explicit formulas when F = r0(N), N prime. We now specialize the results of 
the last section to the group 

r = r0(Ao = {(" J e PSL2(Z)|C - o (mod AO} 

with N > 3 prime. Let 2£0 be the standard fundamental domain for PSL2(Z), i.e. the 
set of T = u + iv E !Q with \u\ ^ 5 , |T| ^ 1. As a fundamental domain for T we could 
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P =00 
N+l 

P =0 

FIG. 2 

take U*L0 OLJ'CFO, where the a,- are left coset representatives for T in PSL2(Z), e.g. 
^0 - 1 \ / l 0\ 

. for 0 ^ j ^ N - 1 and aN = I I. In fact we choose 3* to be the 

/0 - 1 \ 
image of this fundamental domain under wN = NV2y J ; this is also a fundamental 

TV 0 
N-l domain because wN normalizes I\ Explicitly, 9 = UJ=0 \/N (9^0 + j) U Wyv̂ o (cf. 

Figure 2). The domain 3F has N + 3 vertices (two of which are cusps), namely 

2j - 1 + /V3 - 1 + /V3 
Po = 0, P, - 27V (1 ^ 7 ^ ) , n + i = °°, / \ + 2 = 

2N 

Thus in the notation of §2 we have J = Z/(N + 3)Z. The involution * on J is given 
by 0* = N + 2 (= - 1 ) , N* = W + 1, and77* = - 1 (mod TV), 0 < 7 * < N for 
0 < 7 < N. The corresponding identifications 7, : e,- -^ e,-* are 

7o V-yV 1/ : ^ o - ^ ^ - i , 7* 
1 - 1 

0 1 : eN —> eN+] 

(3) 

y j = 
•UJ* + D/tf\ 

W 
j : e}:-> ej* for 0 <j < N. 

The map T:j \—> j * + 1 is described as follows: 

0 ^ 0 , iV+ l i i V f l ,AfXjV + 2 ^ l X i V , 

. r 1 - r ' - ^ a -jyl^j a < ;<AO, 
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where in the last formula the inverses are to be taken modulo N. Thus if N = 2 

(mod 3) the map T has two fixed points 0 and N + 1 (corresponding to the cusps) and 

(N + l ) / 3 orbits of length 3, while if N = \ (mod 3) there are four fixed points and 

(N — l ) / 3 orbits of length 3, the two non-cuspidal fixed points being the roots of 

j 2 - j + 1 = 0 (mod TV), 0 < j < N (corresponding to the elliptic fixed points of T). 

To apply Theorem 1, we need to compute C(-yj) for the various 7, in (3). The elements 

7o and 7^+1 are parabolic, so C(y0) = C(yN+ï) = 0 and the two orbits [0] and 

[N + 1] contribute nothing. From 7 . , = 7 ^ , 7^+1 = 7^ ' and 7i7^+27^ = 1 it follows 

that C(77) = 0 also for the three j in the orbit [1]. For 1 < j < N we have 7/(P,-) = 

PTj, so by definition C(7 ;) = <p\(PTj) ~ <P\(Pj)- I f / ( T ) has a Fourier development 

lLa(n)e2^im with a(n) E U and 91 is chosen as in (2), then we have 

ip^Pj) = A(j) + /*( . / ) with 

(2j - \)nir 
(4) A(j) 

B(j) 

1 

i 

a(h) 

a(n) 

-(irn\/3)/N 

-(irnV3)/N 

COS 

sin 

N 

(2j ~ 1)A17T 

N 

Then the contribution of an orbit [j] = {j, Tj, T2j } (1 < j < N) in Theorem 1 is 

1 

8TT 
]m(C(Pj)C(PTj) + C(Pj)C(PT2j) + C(PTj)C(PT2j)) 

8TT 
2 Im («piWçitfVy) + ^(PTJ)VI(PTIJ) + <Pi(/V;) <Pi(^)) 

1 

8TT2 

1 A(j) BU) 
1 A(Tj) B(Tj) 
1 A(T2j) B(T2j) 

We have proved: 

THEOREM 2. Letf{i) = 2 " = J a{n)e2*in\ a(n) E 1R, be a cusp form of weight 2 on 

r0(N), N > 3 prime. For j E Z/TVZ de/me rea/ numbers A(j), B(j) by (4). TTzew 

(5) IP — L 2 
8TT2 

1 AU) BU) 
1 A(77) B(Tj) 

1 A(r 2 y) £ ( r 2
7 ) yez/NZMo, 

(mod T) 

where T is the automorphism] h~> —j~x + 1 (mod N) of order 3 on Z / N Z \ { 0 , 1}. 

Note that the cyclic group (T) of order 3 can be augmented by an involution U : j \-^> 

1 - j to a group G = (T, U) of order 6 (isomorphic to the symmetric group on 3 letters) 

and that the determinant in (5) is invariant under U as well as T (because A(Uj) = 

A(j),B(Uj)= ~B(j) and UT = T2U). Hence we could also write the formula with 

"mod G" instead of "mod 7 " and 4TT2 instead of 8TT2. 

Now suppose the periods C(T) lie in a lattice A = Zcoj + Zo>2. Since fis real 

https://doi.org/10.4153/CMB-1985-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-044-8


1985] MODULAR PARAMETRIZATIONS 379 

(7 (~~T)
 = /(T))> t n e period lattice off is also real, so we can take A of the form 

(6) A = Zo)+ + Z/w_ or A - Zco+ + Z(^co+ + /o>_) 

with (o+, (o_ > 0. Then the numbers 

(7) a(j)=—A(j), Hj)=—B(j) O 'GZ/ t fZ) 
to+ co-

are integers, and we obtain (compare §1 and the Corollary to Theorem 1): 

COROLLARY. With the above notations, the degree of the map cp :X0(N) = T0(N)\^> 
U {cusps} —» C/A induced by cpi w g/ve« fry 

deg (cp) - 2 
Z//VZ\{0, 1 

mod G 

1 «(7) Hj) 
i a(r/) W ) 
1 a(T2j) b(T2j) 

4. Examples. The situation of interest is when fis a (new) Hecke eigenform with 
coefficients a(n) E Z, a(l) = 1. Then the Eichler-Shimura theory [11, 12] implies that 
there is an elliptic curve E defined over Q such that E has good reduction at p and 
|£(lf>)| — p + 1 — a(p) for all primes pj^V; for any such E there is a map 
cp : X0(N) —> £ {Weilparametrization) such that the pull-back under cp of a holomorphic 
differential on E is a multiple off(j) di. In general E is not unique, since any isogenous 
elliptic curve has the same properties, but among all Weil parametrizations (£, cp) there 
is a maximal one, the strong Weil par ametrization, which dominates all the others. This 
curve has the property that its period lattice A is isomorphic to C(T). In fact, a 
conjecture of Manin, which has been verified for all the curves we will look at (cf. 
[12]), says that the minimal period lattice of the strong Weil curve coincides with C(T); 
here by "minimal period lattice" we mean the lattice of periods of the (Néron) canonical 
differential form dx/(2y + axx + a3) of a minimal model 

(8) v2 + axxy + a3y = x3 + a2x
2 + a4x + a6 {ax,. . . , a6 E Z) 

("minimal" means that the discriminant A of (8) is minimal in absolute value among 
all equations of the form (8) for E). This lattice can be found easily from the coefficients 
of (8): it has the first or second form in (6) according as A > 0 or A < 0, and the positive 
real numbers co± can be computed rapidly using Gauss' arithmetic-geometric mean. 
(Conversely, given A one calculates the classical invariants g2(A) and g3(A) by the 
well-known Fourier expansions and obtains E in the Weierstrass form y2 = 4x3 — 
gi* ~ 83-) Since the series (2) converges rapidly (we have \a(n)\ ^ d(n)nV2, where 
d(n) is the number of divisors of n, so a(n) = 0(nV2+e)), we can easily compute the 
rational integers a(y), b(j) in (7), and then the last corollary leads to the value of 
deg (cp). The results of this computation for the Weil curves of prime conductor 
N < 200 (from [1]) and for the curve 

(9) v2 + v - x3 - Ix + 6 
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TABLE 1. deg (cp) for Weil curves of small conductor 

N e 

11 -
17 -
19 -
37 + 
37 -
43 + 
53 + 
61 + 
67 -
73 -
79 + 
83 + 
89 -
89 + 
101 + 
109 -
113 -
131 + 
139 -
163 + 
179 -
197 + 

5077 + 

<3l 

0 
1 
0 
0 
0 
0 

0 

0 

0 
1 
0 
0 
0 
0 

a2 

— 1 
-1 

0 

-1 

0 

-1 

-1 

-1 

0 
0 
0 
0 

a3 

0 

0 

0 

0 

0 

a4 

-10 
-1 
-9 
-1 
-23 

0 
0 

-2 
-12 

4 
-2 
1 
4 

-1 
-1 
-8 
3 
1 

-3 
-2 
-1 
-5 
-7 

a6 

-20 
-14 
-15 

0 
-50 

0 
0 
1 

-21 
-3 
0 
0 
5 
0 

-1 
-7 
-4 
0 

-4 
1 

-1 
4 
6 

A 

-ll5 

-174 

-193 

37 
373 

-43 
-53 
-61 
-67 
-732 

79 
-83 
-892 

-89 
101 

-109 

-1132 

-131 

-139 

-163 

-179 

197 
5077 

00 + 

1.26921 

1.54708 

1.35976 

2.99346 

1.08852 

5.46869 

4.68764 

6.13319 

1.27377 

2.36532 

2.97540 

3.37447 

2.84461 

5.55263 

2.29512 

1.41103 

2.01837 

4.17161 

1.73969 

5.51807 

2.26020 

2.83478 

2.07584 

OJ-

1.45882 

1.37287 

2.06355 

2.45139 

1.76761 

1.36318 

1.54059 

0.99721 

3.02997 

1.39639 

2.01316 

1.95716 

1.09245 

1.14968 

2.72356 

2.97140 

1.42891 

1.48259 

2.90067 

0.99371 

2.55455 

1.59772 

1.48055 

deg (cp) 

(1) 
(1) 
(1) 
(2) 
2 
(2) 
(2) 
(2) 
5 
3 

(2) 
(2) 
5 
(2) 
(2) 
4 
6 
(2) 
6 
6 
9 
10 

1984? 

of prime conductor 5077 mentioned in the Introduction have been tabulated in 
Table 1. This table gives the value of N7 the coefficients at in (8) and the corresponding 
discriminant A (which is always ± a power of N), the periods co± (which determine A 
by (6) according to sgn(A)), and the degree of the (strong) Weil parametrization cp. The 
number e = ± 1 is defined by 

(10) / lk) = eNj2f(j) (VT E £); 

it is +1 if and only if the map cp factors through the projection X*(N) = X0(N)/wN, 
and also determines the sign of the functional equation of the L-series off (and hence 
conjecturally the parity of the rank of E(Q)). For N prime and <200 there is at most 
one eigenform with rational coefficients having given N and e. The 12 degrees in 
parentheses in Table 1 are for the "involutory curves" of [8], where either e = — 1 and 
X0(N) —» E is an isomorphism or e = 1 and X*(N) —» E is an isomorphism. 

Finally, the last line of Table 1 is not proven since it has not yet been checked 
whether the curve E defined by (9) is a Weil curve.* However, we can compute the 
coefficients a (w) of the L-series of E and then compute A(j),B(j) and hence (since 
co± are known) a(j), b( j) to high accuracy; if— as of course turns out to be the case 

*See 'Note added in proof.' 
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— these are extremely close to rational integers, then we have strong confirmation of 
the Taniyama-Weil conjecture for E and a computation of the conjectural degree. 

5. Relation to congruence primes. In this section we will show that if / is a 
normalized new form with integral Fourier coefficients and cp : X0(N) —» E is the strong 
Weil curve corresponding to/, then the congruence primes for/are precisely the primes 
dividing deg (cp). That this might be so was suggested to me by G. van der Geer and 
confirmed numerically by comparing the table of §4 with Table 1.1 of [2]. (To achieve 
agreement, one must add 2 to the list of "possible €" in [2] whenever/E SfiToiN)) 
and S2 (r0(N)) is non-empty, where S\ denotes the space of forms satisfying (10), for 
the reason explained on p. 94 of [2].) The proof (of Theorem 3 below) was provided 
by K. Ribet, whom I would like to thank; the ideas involved are due to him and to Doi, 
Hida, Ohta, Mazur and others (cf. [10] and the references therein). 

To give a precise formulation, let S = S2(T0(N)) fl Z[[g]] denote the set of cusp 
forms of weight 2 on ro(AO with integral Fourier coefficients and, for/as above, L the 
sublattice (f)1 fl 5 ((f)1 = span of eigenforms other than/= orthogonal complement 
of/w.r.t . the Petersson metric). Let r be the positive integer defined by one of the 
following equivalent conditions: 

(i) r is the largest integer s.t. 3 g E L with/ = g (mod r); 
(ii) {{f,h)\h G S } = r - 1 ( / , / ) Z , where (,) denotes the Petersson scalar product; 
(iii) r is the exponent of the finite group S/(Zf + L). 

Thus p is a congruence prime iff p\r. We will show: 

THEOREM 3. Under the above assumptions, r = deg (cp). 

PROOF. 1. The map cp induces a surjective map cp* from J = Jac(X0(N)) to 
Jac(£) = E and a dual map cp* = (cp*)v from E — £ v to J — 7 v (using the canonical 
identification of a Jacobian with its dual abelian variety); the map cp* is injective 

cp* cp* 
because E is a strong Weil curve, and the composition E —» y —» E is multiplication 
by n = deg (cp) on E. Let A = ker (cp*), a codimension 1 abelian subvariety of J (it 
is connected because E is a strong Weil curve). Then A and cp*(£) C J intersect in a 
finite group which is the kernel of the map a defined by 

cp* 
0-+E-^J->Ay-^0 

'n 

cp* 
0 « - £ < - J <-A <-0 

mn 
and it follows from this diagram that A D cp*(£) is isomorphic to the kernel of E —» 
E, i.e. to (Z/rcZ)2; in particular, its exponent is n. 

2. We have an isogeny (3 : E x A —> J given by P(b, a) = cp*(fr) — a and an induced 
splitting End(7) ® Q = End(E) ® Q 0 End(A) 0 Q. Let e E End(7 ) ® Q be 
the idempotent (e2 = e) corresponding to (1,0) under this splitting and m the denom­
inator of e (= smallest integer with m-e E End(7)). Then m — n. Indeed, n divides 
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m because m • e is m-\ on y*(E) and 0 on A, so that multiplication by m is trivial on 
<p*(£) H A, which we have just shown to have exponent n; conversely, since multi­
plication by n kills A D <p*(E) = ker((3), the map (-«,0) from E x A to itself factors 
through P, so n-e E End(7) and m\n. 

3. We have the Hecke algebra T = Z[T]9 T2,. . . ] C End(7 ). By a theorem of 
Mazur [6], this inclusion is an isomorphism for N prime. Hence we can also define m 
as the denominator of e in T. 

4. The algebra T acts on S, and a moment's thought shows that the number r defined 
above is simply the denominator in End(S) of the idempotent e E T 0 Q C 
End(S) 0 Q (e acts as the identity on/and as 0 on L). Since T C End(S), it follows 
that r\m. Define a pairing (, ) : S x T —> Z by setting (h,T) equal to the first Fourier 
coefficient of h\T. Then the determinant of (, ) (w.r.t. Z-bases of T and 5, which are 
both free Z-modules of rank = genus of X0(N)) is divisible by m/r, because m-e is 
a primitive element of T with h\m-e E m/r S for all h E 5. But this determinant must 
be ± 1, because otherwise there would be an element h E S and an integer d > 0 with 
d)fh but (h, T) = 0 (mod d) for all T E T , and this is impossible because (h, Tj) is the 
jth Fourier coefficient of h. Hence m = r. 

Note that the assumption N prime was used only in Step 3, so we have the divisibility 
r|deg (<p) in any case. In the other direction, with the results of [10] one can see that 
deg (9) always divides rNl for some /. 

6. Growth of deg (<p). In this section we discuss upper and lower bounds for the 
growth of the degree of the modular parametrization of Weil curves as a function of the 
level. 

To obtain lower bounds, we start with a modular form/(T) = S a(n)e2lxim associated 
to a Weil curve E of conductor N and twist by a prime p not dividing N, i.e. pass to 
the new form/*(T) = S (n/p)a(n)e2"unT. If A is the period lattice of/, then the periods 
of/* lie in A* = 1/8 A, where 8 = Vp if p = 1 (mod 4) and 8 = iVp if p = 
3 (mod 4). This follows easily from the representation / * ( T ) = 1/8 2^(mod/?) 

{k/p)f(i + kip). The level of/* is Np2, as is easily checked. Its Petersson norm can 
be computed by Rankin's method, which gives the formula 

ll/ll2 = T5-[PSL2(Z):r0W]-Res,=2 2 ^ ^ 
4 8 7 T „=i ns 

for any cusp form / of weight 2 and level N. Replacing / by / * changes the index of 
ro(AO by a factor p(p + 1) and deletes the Euler p-factor of the Rankin L-series 
2 \a(n)\2n~s. Hence 

/ ^ a(pr)2\-\ 
II/*II7II/II2 = P ( P + I ) ( 2 - ^ r • 

r = 0 P 7 

The sum can be evaluated easily using a(pr) = (a r+1 — p r + 1 ) / (a — (3) with a + 
P = a(/?), a(3 = /?, and we find that 

ll/*IP = ll/IP ' ^(P - D(P + 1 - a(p))(p + 1 4- fl(p)). 
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(Note that p + 1 - a(p) is the number of points of E over the field of p elements and 
that (p + 1 - a(p))(p + 1 + a(p)) is the number of points over the field of p2 

elements.) Since the volume of A* is \/p times the volume of A, we find from the 
formula of § 1 that the degree of the map 

<p*:X0(Np2)-+E* = C/A* 

induced by /* is given by 

(11) deg (cp*) = (p - \){p + 1 - a(p))(p + 1 + a(p)) deg (cp). 

Now usually the curve £* will be the strong Weil curve associated t o /* , but this 
need not always happen. For instance, if N = 11 then the periods of/* will lie 
in a sublattice A' of A* of index 5 and so the map cp* factors through a map 
cp' :X0(l\p

2) —» E' = C/A' of degree 1/5 deg (9*), which is an integer because of 
the congruence a(p) = p + 1 (mod 5). (This phenomenon was pointed out to me by 
G. Stevens.) However, the fact that £* has a model over Z of discriminant Dp6, where 
D is the discriminant of a minimal model of E, implies that A* is the minimal period 
lattice for E*, so if there is a non-trivial isogeny £'—>£* of curves defined over Q 
then the image of the minimal period lattice for E' cannot be contained in a multiple 
kA* (k > 1), i.e. the isogeny is cyclic. Now the theorem of Mazur [7] on the 
non-existence of cyclic isogenics over Q of degree > 163 implies that the degree of the 
strong Weil parametrization differs from (11) by a factor of at most 163, at least if we 
assume the truth of Manin's conjecture mentioned in §4. (I am indebted to B. Gross 
for pointing out this argument.) This proves: 

THEOREM 4 (modulo Manin's conjecture). There exist strong Weil curves of conduc­
tor N —» °° for which the degree of the Weil parametrization is >cNm. 

In the other direction, by integrating | / ( T ) | 2 over the explicit fundamental domain 
of §3 and using the estimate \a(n)\ < d(n)vn one obtains the estimate 

(12) ll/ll2 < — )—= N (log3N + 0(log2 A0) (N->™,N prime) 
8TT V 3 

for the Petersson norm. The volume of the minimal period lattice of E is | A|~1/6 times 
a factor which is bounded away from zero and infinity if the/invariant of E is bounded 
(if \j\ —» 00, this must be multiplied by \j |_l/6/log17 |). Hence the formula of §1 
implies that deg (cp) = 0(N]+€\ A|1/6) for Weil curves of prime conductor and bounded 
/invariant. In particular, if A is prime, so that N = | A|, we get: 

THEOREM 5 (assuming the Weil-Taniyama and Manin conjectures). An elliptic curve 
over Q of prime discriminant N and bounded]-invariant has a modular parametrization 
<p:X0(N) -> E of degree 0(Nm log3TV). 

I do not know whether there exist elliptic curves of this sort with arbitrarily large N. 
This question boils down roughly to the question of representing a prime as the sum of 
a square and a cube of the same order of magnitude and may be amenable to an attack 
by sieve theory. 
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NOTE ADDED IN PROOF: It has now been verified by Mestre, using an idea of Serre, 
that y2 + y = x3 — Ix + 6 is a Weil curve of conductor 5077, and Manin's conjecture 
has been proved for this curve by Raynaud (it also follows from our calculations, which 
show that C: T —» A is surjective). Hence the question mark in the last line of Table 
1 can be removed. 
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