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Abstract

The abundance of weedy rice (Oryza sativa L.) in the soil seedbank was estimated in 2011 in Italian
rice (Oryza sativa L.) fields with different histories of imidazolinone-resistant Clearfield® rice vari-
eties (CL), non-Clearfield® varieties (NCL), and planting methods. A model was used to predict
weedy rice seedbank dynamics over time under different control strategies. Soil samples were taken
from 50 rice fields cultivated with CL varieties consecutively for 0, 1, 2, or 3 yr, and weedy rice
seedbank data were used in a model considering eight scenarios: (A) rice monoculture with CL
and NCL varieties in alternate years; (B) 2 yr of CL, followed by 1 yr with NCL; (C) 3 yr of CL
followed by 1 yr of NCL; (D) rice monoculture with only CL; (E) rice monoculture with only
NCL; (F) 2 yr of CL followed by 1 yr of rotation with another crop (CR), and then by an additional
year with NCL; (G) 1 yr of CR followed by 2 yr of CL, and then by 1 yr of NCL; (H) 2 yr of CR
followed by 2 yr of CL. The weedy rice seedbank exceeded 1,000 seeds m−2 in the surveyed fields
with no significant differences between rice plantingmethods. Highest densities were found in fields
cultivated for 1 yr with CL varieties. Simulations indicated that where CL varieties were used in rice
monoculture, the susceptible weedy rice seedbank was gradually reduced, producing a depletion
after 17, 13, 11, and 9 yr in scenarios A, B, C, andD, respectively. Theweedy rice seedbank increased
in NCL monoculture (E) and declined significantly in crop rotation scenarios (F, G, H). The sim-
ulations indicated that the introduction of crop rotation is crucial for obtaining a relatively fast
reduction of weedy rice seedbank and delaying the evolution of herbicide-resistant populations.

Introduction

Weedy rice (Oryza sativa L.), also commonly referred to as “red rice” due to its red grain peri-
carp, is a noxious weed classified as a rice (Oryza sativa L.) companion weed worldwide
(Fogliatto et al. 2020; Nadir et al. 2017).Weedy rice infestation began its significant global spread
after the shift from rice transplanting to direct seeding, which was fueled by water scarcity and
the high labor costs associated with hand or mechanical weeding (Ferrero et al. 2020; Ziska et al.
2015). Weedy rice is characterized by a high genetic divergence that results in morphological
and phenological differences across populations with specific traits which contribute to their
weediness (Fogliatto et al. 2011, 2012; Grimm et al. 2020; Kanapeckas et al. 2018).

Several effective weed control tools are currently available for irrigated rice. However, some
weeds, such as weedy rice, are particularly recalcitrant and can escape control and produce seeds
(Davis et al. 2012; Kraehmer et al. 2016; Zhang et al. 2006). In rice, more than 70% to 80% of
seeds are easily shed before and during rice harvest, with shedding also facilitated by rain and
wind (Ferrero and Vidotto 1998; Nadir et al. 2017). A high weedy rice seed load forms a per-
sistent soil seedbank, resulting in increased weedy rice infestation across many years (Chen et al.
2017; Kraehmer et al. 2016). Weedy rice seeds are also added to the soil seedbank through con-
taminated commercial or saved seed (Ferrero et al. 2020; Fogliatto et al. 2012; Rao et al. 2017).

Weedy rice seed load in fields may exceed 1,000 seeds m−2 (Delouche et al. 2007; Marchezan
et al. 2003; Zhang et al. 2014). Normally, seeds remain on the soil surface after shattering until
the subsequent season (Fogliatto et al. 2020). Avoiding fall tillage may reduce the weedy rice soil
seedbank, as it creates more opportunities for predation (birds, rodents, arthropods) and
exposes seeds to harsh winter temperatures, resulting in loss of seed viability (Fogliatto et al.
2010, 2011; Rao et al. 2017; Zhang et al. 2019).

Weed seed burial into the soil profile can prolong seedbank viability, as temperature varia-
tions and water and gas exchanges are reduced beneath the surface (Chauhan 2012; Ghosh et al.
2017; Rao et al. 2017). An inverse relationship between weedy rice emergence rate and depth of
seed burial has been found: seeds lying on the soil surface showed an emergence rate of about
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51% as opposed to only about 13% at a depth of 10 cm (Vidotto and
Ferrero 2000). Crop rotation has proved to be one of the most
effective systems to reduce the evolution of a specialized, highly
competitive weed flora and to control overall infestation levels
(Ferrero et al. 2020; Kanatas 2020; Stein and Steinmann 2018).
Previous studies found a significant decline in the weedy rice seed-
bank with rice rotation with non-flooded crops and application of
an effective herbicide (Scherner et al. 2018; Ziska et al. 2015). Davis
et al. (2012) have suggested that fallow programs coupled with soy-
bean [Glycine max (L.) Merr.] rotation could provide 100% weedy
rice control. However, in many rice areas, such as in Italy, crop
rotation is seldom practiced because of poorly drained soils
(Fogliatto et al. 2011). A recent survey conducted in the Italian rice
area revealed that crop rotation was practiced only in 14% of the
surveyed farms (Ferrero et al. 2020).

The introduction of imidazolinone (IMI)-resistant rice varieties
and the use of IMI herbicides—patented as the Clearfield® rice tech-
nology (CL)—have resulted in goodweedy rice control in rice POST
(Ferrero et al. 2020). The herbicide for IMI-resistant rice varieties in
Italy is imazamox; in other rice-growing areas of the world, imaze-
thapyr, imazapyr, and imazapic are also labeled for CL rice
(Sudianto et al. 2013). Acetolactate synthase (ALS)-inhibiting herbi-
cides are a group of broad-spectrum herbicides that are also effective
onweedy rice. Thismechanism of action in associationwith the lim-
ited rotation of rice with other crops exerts a strong pressure for
selection of ALS inhibitor–resistant weed populations (Durand-
Morat and Nalley 2019). Indeed, cases of resistance have been con-
firmed in weedy rice (Fogliatto et al. 2019; Singh et al. 2017) and
Echinochloa spp. (Dalazen et al. 2020; Serra et al. 2018; Vidotto
et al. 2020). To mitigate this risk, IMI-resistant varieties have been
introduced with restrictive stewardship guidelines, such as not
plantingCL rice in the same field for two consecutive years and prac-
ticing crop rotation (Lamichhane et al. 2017; Scarabel et al. 2012). A
recent survey conducted in Italy revealed that about 63% of respon-
dents used imazamox coupled with imazamox-resistant rice vari-
eties (Ferrero et al. 2020). In the same study, about 45% of the
respondents reported the occurrence of IMI-resistant weedy rice
(Ferrero et al. 2020).

Recently, rice varieties resistant to the acetyl-CoA carboxylase–
inhibiting herbicides (i.e., cycloxidim in Italy), patented as the
Provisia® technology, have been introduced to better control weedy
rice populations, in particular those that became resistant to the
ALS-inhibiting herbicides (Dauer et al. 2018). However, the occur-
rence of weeds resistant to these herbicides can be anticipated. This
study had two primary objectives: (1) to measure the weedy rice
seed density in the soil seedbanks of rice fields with different his-
tories of CL rice varieties and planting systems (drill seeding in dry
fields or broadcast seeding in flooded fields) and (2) to predict
weedy rice seedbank dynamics under different weed management
scenarios over time, using a modeling approach. In particular, we
determined the number of years required to obtain zero weedy rice
seeds in the soil seedbank under various weed management sys-
tems using CL rice. The model simulated the evolution of the
weedy rice seedbank in both the absence and presence of IMI-
resistant weedy rice populations.

Materials and Methods

Weedy Rice in the Soil Seedbank

The study was conducted during spring 2011 in rice production
areas of five Italian provinces (Alessandria, Biella, Novara,

Pavia, and Vercelli). The rice fields were chosen based on the num-
ber of years that CL rice varieties were planted consecutively (0, 1,
2, or 3 yr). The system of sowing rice for each field was also
recorded. More than 50 fields of at least 1 ha each were sampled.
Soil samples were collected in spring (April to May) after soil
preparation and before field flooding and rice seeding. In each
field, soil samples were taken from 15 different randomly selected
locations using an 11-cm-diameter soil corer to a depth of 20 cm.
Individual soil core samples from each zone were stored in plastic
bags and kept in a 5 C refrigerated room to prevent seed germina-
tion before sample processing. Weedy rice seeds were extracted
from each soil core independently, using equipment specifically
constructed for this purpose (Figure 1).Weedy rice seeds were sep-
arated from soil by a high-pressure water wash. The seeds were
then floated and separated from the water stream, first by a 2-
mm-mesh sieve, and then by a 1-mm-mesh sieve. Seeds were
counted in the laboratory. Seeds that were firm when pressed
between the fingers were considered filled, while those that were
soft or hollow were discarded. Each filled seed was de-hulled to
determine pericarp coloration; red- or brown-colored seeds were
classified as weedy rice seeds. The weedy rice seedbank density
was expressed as number of seeds per square meter at a
20-cm depth.

Statistical Analyses

The weedy rice soil seedbank data showed a nonnormal distribu-
tion according to the Shapiro-Wilk test; therefore, the statistical
analysis was based on nonparametric models. The fields were first
grouped according to: (1) rice plantingmethod (drill seeding in dry
fields, broadcast seeding in flooded fields) and (2) number of con-
secutive years of CL rice cultivar (0, 1, 2, or 3 yr). The Mann-
Whitney rank U-test, a nonparametric test that measures the
differences between two independent groups of nonnormally dis-
tributed data, was used to compare the planting classes (P≤ 0.05).
Classes of fields cultivated consecutively with different CL varieties
were compared using the Kruskal-Wallis test, a nonparametric test
that measures the differences among three or more independent
samples of nonnormally distributed data. After the Kruskal-
Wallis test, the medians were separated using the Mann-
Whitney U-test with a Bonferroni adjustment. Statistical analyses
were conducted using IBM SPSS Statistics v. 26 (IBM Corp.,
Armonk, NY, USA).

Prediction of Weedy Rice Seed Dynamics in the Soil Seedbank
under Different Weed Management Strategies

To estimate the change in abundance of weedy rice in the rice field
soil seedbank under different weedmanagement scenarios, amath-
ematical model proposed by Spitters et al. (1989) was adopted. This
competition model is based on hyperbolic regression equations
and was proposed to describe maize (Zea mays L.) yield losses
in relation to weed density. The model was chosen as it is suitable
for predicting changes in weed seed populations in the soil (Spitters
et al. 1989). This model was modified to predict weedy rice seed-
bank dynamics over time by considering estimated growth param-
eters of rice and weedy rice for plants both in pure stand and in
competition. The model was applied by simulating separately
the absence of resistance (all weedy rice plants are IMI susceptible)
or presence of IMI-resistant weedy rice plants due to mutation and
outcrossing between CL rice and weedy rice. In the second case, a
mutation rate of 1 × 10−6 (Diggle and Neve 2001) was included
every year in the model to calculate the number of IMI-resistant

576 Andres et al.: Weedy rice seedbank dynamics

https://doi.org/10.1017/wsc.2021.51 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.51


weedy rice seeds; an outcrossing rate of 5 × 10−5 (Shivrain et al.
2007) due to gene flow from CL rice to weedy rice was added to
the mutation rate only in the years in which CL rice was planted.
Gene flow from IMI-resistant weedy rice to IMI-susceptible weedy
rice was not considered in the model.

The parameter values used as input in the model were deter-
mined from several sources: our studies, available literature, and per-
sonal experience. The model considered the following scenarios:
• Scenario A simulated rice monoculture with CL rice variety and
non-CL rice variety (NCL rice) in alternate years. In CL rice,
weedy rice control is based on the labeled IMI herbicide for
CL rice, which had an estimated average efficacy of 98.5% against
susceptible weedy rice (Bertucci et al. 2019; Burgos et al. 2008;
Bzour et al. 2018; Marchesan et al. 2011; Rainbolt et al. 2004;
Webster and Masson 2001), while a 0% efficacy against IMI-
resistant seedlings was assumed. For NCL rice, it was assumed
that the use of traditional practices, such as stale seedbed and
preplant herbicides, had an average efficacy against weedy rice
(regardless of whether it was susceptible or resistant to ALS
inhibitors) of 90% (Bertucci et al. 2019; Ferrero et al. 1999).

• Scenario B simulated a 3-yr cycle of rice monoculture with two
consecutive years of CL rice, followed by 1 yr with NCL rice.
Herbicides and efficacy when CL and NCL rice were planted
were the same as in scenario A.

• Scenario C simulated a 4-yr cycle of rice monoculture: three con-
secutive years of CL rice were followed by 1 yr of NCL rice.
Herbicides and efficacy when CL and NCL rice were used were
the same as in scenario A.

• Scenario D simulated rice monoculture with only CL rice.
Weedy rice control was based on POST use of an ALS inhibitor
registered for this technology, with the imazamox efficacy used
in scenario A.

• Scenario E simulated rice monoculture with only NCL rice and
the use of traditional practices for weedy rice control (average
efficacy 90%, as in scenario A).

• Scenario F simulated introduction of crop rotation on a 4-yr
cycle. Two consecutive years of CL rice were followed by 1 yr
of a different crop (crop rotation: CR), and then by an additional
year with NCL rice. For CL and NCL rice, the control strategy
and simulated efficacy values were the same as in scenario A.
Weedy rice control efficacy in CR was assumed to be 100%, both
toward susceptible and IMI-resistant weedy rice (Davis et al.
2012; Scherner et al. 2018).

• Scenario G was similar to the 4-yr cycle of scenario F, but with
different timing. A first year of CR was followed by 2 yr of CL
rice, and then by 1 yr of NCL rice. Average efficacy values of
weedy rice control methods were identical to those in scenario F.

• Scenario H simulated a 4-yr cropping cycle: 2 yr of CR were fol-
lowed by 2 yr of CL rice. The parameters of weedy rice control
were the same as in scenario F.

The parameters used in the model are listed in Table 1. The
parameter values used in the simulations are defined in the follow-
ing sections.

Initial Weedy Rice Seedbank (WRSi)
In this study we estimated that weedy rice soil seedbank ranged
between 0 and 4,421 seeds m−2 for the soil layer from 0- to 20-
cm deep. For the purpose of this simulation, the initial weedy rice
seedbank was assumed to be at the highest level actually found in
the field. Weedy rice seed emergence from 5 cm below the soil sur-
face is negligible (Vidotto et al. 2001). The initial quantity of 4,421
seeds m−2 was, therefore, divided into four 5-cm depth segments,
assuming that the seeds were evenly distributed across the 0- to 20-
cm soil layer. It was also assumed that rice was seeded in no-tillage
conditions, which means minimum seed movement down the soil
profile.

Weedy Rice Emergence (E)
The mean emergence weedy rice rate was assumed to be 23.3% of
the seeds present in the top 5-cm soil layer, as indicated by Vidotto
et al. (2001). The number of seedlings per square meter (Nseedlings)
was obtained by multiplying the weed seedbank (WRSi) and E
(Equation 1):

Nseedlings ¼ WRSi � E [1]

The weedy rice plants estimated to reach maturity (Nweeds) was
calculated by multiplying the seedling number (Nseedlings) by weed
control efficacy (K) (Equation 2). The parameter K was set accord-
ing to the adopted weed control program: K= 0.985 (Bertucci et al.
2019; Burgos et al. 2008; Bzour et al. 2018; Marchesan et al. 2011;
Rainbolt et al. 2004; Webster and Masson 2001) in the CL system,
K= 1 (Davis et al. 2012; Scherner et al. 2018) in CR, and K= 0.90
(Bertucci et al. 2019; Ferrero et al. 1999) in fields of traditional
weedy rice control.

Nweeds ¼ Nseedlings � 1� Kð Þ [2]

Weedy rice biomass m−2 (Yweed) was calculated by applying the
model proposed by Spitters et al. (1989) (Equation 3):

Yweed ¼
Nweeds

Bw0 þ Bww � Nweeds þ Bwc � NPLc
[3]

WhereNweeds was the number of plants per sqare meter, Bw0 the
reciprocal of individual weedy rice biomass (plant g−1), Bww the
intraspecific weedy rice biomass production expressed in terms
of per-plant weight decrease with any plant added to the popula-
tion (m2 g−1), Bwc the interspecific competition of the crop on
the weed (m2 g−1), andNPLc the crop plant number per area (plants
m−2) as determined in our previous study conducted on different
Italian weedy rice populations (Andres et al. 2015). The number of
weedy rice seeds produced per square meter (Nprod_seed) was deter-
mined as (Equation 4):

Figure 1. Seed extractor used to remove weedy rice seeds from the soil samples.
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Nprod seed ¼ Yweed � REwSEEDw [4]

where the weedy rice reproductive effort (REw) value was set to
0.5, and the individual weedy rice seed weight (SEEDw) was set to
0.01935 g on the basis of our previous study (Andres et al. 2015).
REw and SEEDw were the average values of 10 Italian weedy rice
biotypes (5 awnless and 5 awned), which produced about 1,300
seeds plant−1 at an infestation level of 16 plants m−2 (Andres
et al. 2015).

The annual input of seed (as number of seeds m−2) was calcu-
lated by multiplying weedy rice seed production (Nprod_seed) by
seed burial (B) (Equation 5):

Annual input ¼ Nprod seed � B [5]

Seed burial (B) represents the proportion of seeds produced by
weedy rice that actually becomes part of the seedbank. It also con-
siders the weedy rice seeds that are removed from the fields during
rice harvesting. For this study, B was assumed to be 0.69 (Massoni
et al. 2013).

The annual output of weedy rice seed was determined by the
product of the initial seedbank (WRSi) and the sum of weedy rice
emergence (E) and mortality (M) (Equation 6).

Annual output ¼ E þMð Þ �WRSi [6]

Mean seedmortality (M) was set as 0.732 in accordance with the
findings of Marchezan et al. (2003), Noldin et al. (2006), Massoni
et al. (2013), and Zhang et al. (2014).

The balance of weedy rice seed production after every growing
season (ΔNseed) was calculated as (Equation 7):

DNseed ¼ Annual input� Annual output [7]

Results and Discussion

Weedy Rice in the Soil Seedbank

A high weedy rice seed density of more than 1,000 seeds m−2 was
found in the seedbank of the fields surveyed. The weedy rice in the
soil differed widely across sampled fields, ranging from 0 to 4,421
seeds m−2 (data not shown). An average of 2.1 and 2.2 weedy rice
seeds per soil sample (soil sample volume: 1,899.7 cm3), corre-
sponding to a seedbank density of about 199 seeds m−2 and 214
seeds m−2, were found in drill-seeded dry fields and in broad-
cast-seeded flooded fields, respectively (Table 2). The weedy rice
seedbank did not differ between drill-seeded flooded fields based
on the Mann-Whitney test (P-value= 0.1425) (Table 2).
However, in the weedy rice soil seedbank across years of consecu-
tive cultivation of CL varieties, significant differences were found
(Kruskal-Wallis test, P-value= 0.000) (Table 3). In particular, the
highest weedy rice seed density was obtained in fields planted with
CL rice for the first time, which contained about 3.7 seeds per soil
sample, equivalent to about 351 seeds m−2 (Table 3). We learned
that many farmers plant CL rice in fields with a high infestation of
weedy rice to control the weed. Thus, the soil seedbank would be
high after only one season of planting CL rice. A similar result was
found in a survey conducted on Italian rice fields in which the
interviewed farmers declared that they decided to cultivate CL vari-
eties in the fields with high weedy rice infestations because this
technique was specifically developed to control this weed
(Ferrero et al. 2020).

Table 1. Parameters used in the simulations of the dynamics of the weedy rice seedbank and their values.

Parameters Adopted values Units References

Initial weedy rice seedbank
(WRSi)
in the 0- to 5-cm layer

1,105.3 seeds m−2 This study (see Table 2)

Emergence (E) 23.3 % Vidotto et al. 2001
Seed burial (B) 69.0 % Massoni et al. 2013
Seed mortality (M) 73.2

(average of values
reported in the litera-
ture)

% Marchesan et al. 2003; Massoni et al. 2013; Noldin et al. 2006; Zhang et al.
2014

Weedy rice control (K) Clearfield® system: 98.5
Crop rotation: 100.0
Traditional practices: 90.0

% Bertucci et al. 2019; Burgos et al. 2008; Bzour et al. 2018; Davis et al. 2012;
Ferrero et al. 1999; Marchesan et al. 2011; Rainbolt et al. 2004;
Scherner et al. 2018; Webster and Masson 2001;

Crop plant number per area
(NPLc)

150.0 plants m−2 Andres et al. 2015

Reciprocal of individual
weedy rice biomass (Bw0)

1/63.8 plant g−1 Andres et al. 2015

Intraspecific weedy rice
biomass production (Bww)

1/878.4 m2 g−1 Andres et al. 2015

Interspecific weedy rice
biomass production (Bwc)

1/878.4 m2 g−1 Andres et al. 2015

Individual seed weight:
weedy rice (SEEDw)

0.01935 g seed−1 Andres et al. 2015

Individual seed weight: rice
variety (SEEDc)

0.0250 g seed−1 Mongiano et al. 2018; Zhang et al. 2006; Embrapa, personal communication,
2013

Reproductive effort weedy
rice (REw)

0.5 (seed biomass/above-
ground biomass)

Ratio Andres et al. 2015

Spontaneous ALS mutation
rate

1 × 10−6 Number Diggle and Neve 2001

Outcrossing rate from CL
rice to weedy rice

5 × 10−5 Number Shivrain et al. 2007
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In fields planted with CL rice for two or three consecutive years,
the average weedy rice seedbank was reduced roughly 50% and
thus was similar to that of fields with no history of IMI-resistant
rice cultivation (Table 2). Even though only a few farmers culti-
vated CL varieties for more than 2 yr, this result supported those
of other studies, wherein the weedy rice seedbank was not depleted
even after three consecutive years of IMI-resistant rice cultivation
(Burgos et al. 2008; Marchesan et al. 2011).

Prediction of Weedy Rice Dynamics in the Soil Seedbank
under Different Weed Management Strategies

Monoculture Rice (scenarios A–E)
IMI-susceptible weedy rice.The CL rice system is estimated to have
an average efficacy on weedy rice of 98.5% (Bertucci et al. 2019;
Burgos et al. 2008; Bzour et al. 2018; Marchesan et al. 2011;
Rainbolt et al. 2004; Webster and Masson 2001), while the efficacy
of traditional NCL strategies is considered to be about 90%
(Bertucci et al. 2019; Ferrero et al. 1999). Although these values
might not seem extremely different, the simulations clearly show
that the higher frequency of use of CL rice would result in larger
reduction of the weedy rice seedbank (Table 4).

In scenarios A and B, which meet the stewardship for use of the
CL rice system, the model estimates a fluctuation in the presence of
weedy rice in the soil seedbank (Figure 2). During a period of 10
consecutive years of rice monoculture, in the case of weedy rice
populations susceptible to imazamox, themodel predicted a reduc-
tion of the number of weedy rice seeds, even though the seedbank
was not fully depleted (weedy rice seed density after 10 yr: 19.5
seeds m−2 and <1 seed m−2 in A and B, respectively) (Figure 2).
These results demonstrated that even when less restrictive steward-
ship guidelines are adopted in Italy, allowing for the use of the CL
rice variety for up to two consecutive years, a substantial reduction
of the weedy rice seedbank can be achieved, even though they are

insufficient to guarantee eradication of the weed (Burgos et al.
2008). The low levels of weedy rice in the seedbank estimated
by the model were, in fact, sufficient to cause reinfestation, as sug-
gested by Marchesan et al. (2011). In scenarios A and B, complete
elimination of weedy rice seeds in the superficial soil layer (0 to 5
cm) would require 17 and 13 yr, respectively (Table 4; Figure 2).
Scenario C, which also simulates a rice monoculture with three
successive years of CL rice followed by a year of a conventional
NCL variety, predicted a strong reduction in the weedy rice soil
seedbank after a 10-yr period (a decline from 1,105.3 to <1.0 seeds
m−2). Marchesan et al. (2011) and Burgos et al. (2008) reported
similar trends. To achieve complete elimination of the weedy rice
seedbank, themodel predicts 11 yr of cultivation would be required
in this scenario (with 3 yr of CL and 1 yr of NCL) (Table 4;
Figure 2). Scenario D estimated the elimination of susceptible
weedy rice in the seedbank after 9 yr of monoculture rice
(Table 4). This scenario included the following conditions: con-
tinuous cultivation with only CL rice for all consecutive years at
a 98.5% level of weedy rice control, no introduction of weedy rice
seeds in commercial rice seeds, and essentially no provision for
development of weedy rice plants resistant to ALS-inhibiting her-
bicides. Scenario E, in which traditional practices are applied to
control weedy rice (e.g., stale seedbed, preseeding residual herbi-
cides), the simulation failed to show any significant reduction in
the IMI-susceptible weedy rice seedbank. This system reached
equilibrium at a density of about 9,180 seeds m−2 (Table 4).
This high seed density was predicted based on a quite low efficacy
level (90%), which can vary greatly between lower or higher values
according to the chosen control techniques and the initial seed-
bank density in the field.

IMI-resistant weedy rice.When the simulations assumed an initial
presence of resistance alleles in an unselected weed population
(spontaneousmutations of theALS gene) with a 1× 10−6 frequency
(Diggle and Neve 2001) and an outcrossing rate of a 5 × 10−5

between CL rice and weedy rice (Shivrain et al. 2007), the model
predicted a significant growth of a resistant weedy rice population
within 4 to 5 yr (Figure 3). In particular, in scenario D, this pop-
ulation can no longer be controlled with IMIs and will thus be
responsible for high rice yield losses. Even though the species is
mostly autogamous, repeated use of ALS inhibitors in the CL rice
system in the same fields may contribute to development of IMI-
resistant weedy rice, even at a small rate, as a result of outcrossing
between the CL rice and susceptible weedy rice (Dauer et al. 2018;
Goulart et al. 2012).

In Scenario A, in which CL rice was cultivated every other year,
the IMI-resistant weedy rice increase was delayed, as the biggest
increase in the number of seeds was observed after 6 yr, as opposed
to the other scenarios, in which a strong seed increase was already
predicted to occur between the fourth and fifth years (Figure 3). In
scenario E, when an initial resistance level is assumed, no further
increase of the resistant population is observed. The CL system is
not used in traditional practices, resulting in an absence of selec-
tion pressure, as the control strategies are equally effective against
plants susceptible and resistant to ALS-inhibiting herbicides
(Table 4).

Plant density estimation. Based on earlier research, it has been
established that a weedy rice density of about 3 to 4 plants m−2

can cause a yield loss of about 10% (Vidotto et al. 2001). All sce-
narios with the CL system in rice monoculture (A–C) highlighted
that weedy rice seed density decreased gradually throughout the

Table 2. Weedy rice seedbank density of surveyed rice fields (n= 50) averaged
between drill-seeded rice in dry fields and broadcast-seeded rice in flooded
fields.

Rice planting method
Number of soil
samples (fields)

Weedy rice seedbanka

seeds per
soil sample

seeds
m−2

Drill seeding in dry
field

285 (19) 2.1 NS 199.0
NS

Broadcast seeding in
flooded field

465 (31) 2.2 214.0

aMann-Whitney U-test of the effect of rice planting method on the weedy rice seed number in
Italian rice fields. NS: weedy rice seedbank means between the two rice planting methods
were not significantly different as determined by Mann-Whitney U-test (P= 0.1425).

Table 3. The effect of the number of Clearfield® (CL) rice sequences (0–3) on
weedy rice seed density in the soil seedbank of Italian rice fields surveyed
(n= 50).

Consecutive
years of CL rice
cultivation

Number of soil
samples (fields)

Weedy rice seedbanka

seeds per
soil sample seeds m−2

0 345 (23) 1.6 a 154.0 a
1 225 (15) 3.7 b 351.2 b
2 150 (10) 1.3 a 127.0 a
3 30 (2) 1.7 a 161.5 a

aWeedy rice seedbank values between the years sharing the same letter are not significantly
different as determined by the Kruskal-Wallis test (P= 0.000).
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years in the presence of IMI-susceptible populations. In particular,
scenario A required more years for weedy rice seed density reduc-
tion compared with the other scenarios that included CL and NCL
rice planting. In fact, at an initial weedy rice seed density of 1,105.3
plants m−2, it would take 11, 7, and 6 yr to reduce the seed density
to 3 plants m−2 (10% rice yield loss) under scenarios A, B, and C,
respectively (data not shown).

In the case of IMI-susceptible weedy rice, in scenario A, after an
11-yr cropping sequence, fewer than 2 weedy rice seeds m−2 were
found in the soil seedbank; such a number of potentially emerged
plants would have a small impact on crop yield (<4%). In scenario
B, a 7-yr cultivation cycle of 2 yr of CL varieties and 1 yr of NCL are
required to reach the point at which rice yield losses are kept to
10%. In scenario C, the simulation showed that a 6-yr cropping
sequence, with 3 yr of CL varieties and 1 yr of NCL, were required

to reduce the level of weedy rice infestation from 1,105.3 to 9.4
seeds m−2, which leaves just 2.2 weedy rice seedlings m−2 in the
rice field (Figure 2). At this rate, rice yield losses could reach
8%. Scenario D, with successive monoculture of CL rice, showed
that the weedy rice density in the soil seedbank was reduced to
5.4 seedsm−2 after 5 yr. This result equates to less than 2 newweedy
rice seedlingsm−2 emerging from the soil seedbank and causes a far
smaller impact on crop yield. Finally, in scenario E, which used tra-
ditional techniques to control weedy rice, there was no estimated
weedy rice reduction in the soil seedbank. On the contrary, the
seedling density grew following a sigmoidal curve, and density
equilibrium was achieved at about 2,150 seedlings m−2 (data not
shown). In this simulation, even in the first year of the cropping
sequence, more than 258 weedy rice seedlings m−2 are estimated

Table 4. Simulated weedy rice seedbank density after 10 yr of application of different management scenarios using Clearfield® (CL) rice (imidazolinone [IMI]-resistant
CL rice variety), non-Clearfield® (NCL) rice (IMI-susceptible rice variety), traditional practices (mechanical and chemical control, without CL system), and rotationwith a
crop different from rice (CR).

Weedy rice seedbank density (no. m−2)

After 10 yrc

IMI resistante

Scenarios
Weed management
(crop sequences)a Initialb IMI susceptibled Resistant seeds Susceptible seeds Years to reach the zero level seedf

Use of monoculture
A 1 CL rice/1 NCL rice 1,105.3 19.5 10,968.1 11.1 17
B 2 CL rice/1 NCL rice 1,105.3 <1.0 15,130.6 <1.0 13
C 3 CL rice/1 NCL rice 1,105.3 <1.0 15,490.8 0.0 11
D Continuous CL rice 1,105.3 0.0 15,521.7 0.0 9
E Traditional practices 1,105.3 9,182.0 <1.0 9,181.9 NRg

Use of crop rotation
F 2 CL rice/1 CR/1 NCL 1,105.3 <1.0 827.3 <1.0 7
G 1 CR/2 CL rice/1 NCL 1,105.3 <1.0 1.4 0.0 14
H 2 CR/2 CL 1,105.3 <1.0 <1.0 0.0 15

a1, 2, or 3 yr with CL rice variety followed by 1 yr traditional rice variety or crop rotation.
bInitial weedy rice seedbank assessed in the present study.
cTime of crop sequence.
dIMI-susceptible: estimation of weedy rice seed density in absence of resistance occurrence due to mutation or outcrossing.
eIMI-resistant: estimation of weedy rice seed density in case of occurrence of mutation and outcrossing.
fnumber years to reach zero weedy rice seeds in soil seedbank in in absence of resistance occurrence due to mutation or outcrossing.
gNR, zero level is never reached.

Figure 2. Simulated imidazolinone (IMI)-susceptible weedy rice seedbank dynamics
under different weed control scenarios (A–D) in rice monocultures. Simulations
assumed an initial seedbank density of 1,105 seeds m−2. CL, Clearfield® rice varieties;
NCL, non-Clearfield® varieties.

Figure 3. Simulated imidazolinone (IMI)-resistant weedy rice seedbank dynamics
under different weed control scenarios (A–D) in rice monocultures. Simulations
assumed an initial seedbank density of 1,105 seeds m−2 with an initial frequency of
resistant individuals of 1 × 10−6 and an outcrossing rate between Clearfield® (CL) rice
and weedy rice of 5 × 10−5 only in the years in which CL rice was planted. NCL, non-
Clearfield® varieties.
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to emerge. The model predicted a seedling density of IMI-resistant
weedy rice of about 3 plants m−2 after 5 yr of cultivation of CL and
non-CL rice every other year (scenario A), while the same level of
resistant weedy rice seedlings was attained after 3 yr in scenarios B,
C, and D.

Rice and Crop Rotation (Scenarios F–H)
IMI-susceptible weedy rice. The inclusion of CR confers a great
advantage to the CL rice system, because it not only eliminates
weedy rice seedlings but also reduces the risk of occurrence of
plants resistant to ALS-inhibiting herbicides (Singh et al. 2017;
Sudianto et al. 2013). In simulations with CR strategies, in which
100% weedy rice control was set (Davis et al. 2012; Scherner et al.
2018), soil seedbank density was strongly reduced, in particular in
the case of IMI-susceptible weedy rice (Table 4; Figure 4).
Simulations inclusive of CR strategies showed strong IMI-suscep-
tible weedy rice density reductions in the soil, reaching values after
3 yr from the start of the cropping sequence of about 5 seeds m−2 in
scenarios F and G and even lower (less than 1 seed m−2) in scenario
H (Figure 4). However, complete depletion of susceptible weedy
rice in the seedbank was not detected until about 7 yr of sequencing
had been performed in the simulation with the best result (scenario
F), while scenarios G and H necessitated about 14 and 15 yr,
respectively, to completely deplete the seedbank (Table 4).
Furthermore, the results highlighted that the crop sequence
options that started with 1 or 2 yr of CR before CL rice (scenarios
G and H) would best kill emerged seedlings and avoid replenish-
ment of the soil seedbank compared with scenario F (Figure 4).
This was particularly evident in the second and the third years
of scenario G, in which the seedbank density was reduced approx-
imately 10 times more than in scenario F. In scenario H, after the
simulation of two successive years of CR, weedy rice presence in the
soil seedbank was reduced from 1,105.3 to 1.3 seed m−2 in the
superficial soil layer. The estimated emergence rate (23.3%) used
in this simulation (Vidotto et al. 2001), calculated a seedling den-
sity of about 0.3 plants m−2 after 2 yr of rotation; such an infesta-
tion would result in yield loss below 1.5%. Additionally, the few
seeds left in the soil seedbank could be controlled in the next crop
sequences with 2 yr of CL rice. Under this scenario, the selection of
resistant individuals (assuming in this case that there is no out-
crossing between the CL cultivar and weedy rice) has low

probability of occurrence, as both susceptible and resistant weedy
rice populations are easily controlled in 2 out of 3 yr. A cautionary
note came from comparison of scenarios G and H. While 2 yr of
CR left 1.3 seed m−2 on the soil surface of the seedbank (scenario
H), 1 yr left 14.2 seed m−2 on the soil surface (scenario G). This
result is important in weedy rice seed dynamics, because it suggests
a new potential for seed infestation in the next rice-growing season.

IMI-resistant weedy rice. In the case of IMI-resistant weedy rice,
the number of weedy rice seeds using different CR sequences
increased later compared with scenarios in which rice was culti-
vated in monoculture (Figures 2 and 5). In particular, in the case
of rice monocropping, best results were obtained with scenario A,
in which 1 yr of CL rice was followed by 1 yr of NCL rice (weedy
rice began to increase in the seedbank after about 5 yr). Adopting
CR, the worst result was obtained with scenario F, in which the
weedy rice seed density started to increase significantly after about
10 yr. Starting the sequencing with 1 yr of CR (scenario G), the rise
of IMI-resistant weedy rice was strong only after 14 yr from the
beginning of the simulation (Figure 5). Scenario H, in which 2
yr of CR were alternated with 2 yr of CL rice, showed the best
results, as already observed for IMI-susceptible weedy rice. In this
case, an increase of resistant weedy rice was not observed
(Figure 5).

Limitations of the Weedy Rice Seedbank Simulation

Our simulations did not consider weedy rice seedlings emerging
from below 5 cm in the soil. These plants may, however, be capable
of emerging later in the growing season and escaping herbicide
activity, which will complicate the dynamics of emergence and sur-
vival of any particular weedy rice population (Olajumoke et al.
2016). It should be noted that our simulations assume that the
efficacy of each control method adopted is constant over the
years. In general, models dealing with seedbank dynamics are par-
ticularly sensitive to variations of efficacy-related parameters
(Bagavathiannan et al. 2020; Vidotto et al. 2001; Zhang et al.
2014). In particular, slight variations around high values of efficacy
(e.g., above 95%) may result in different patterns of seedbank

Figure 4. Simulated imidazolinone (IMI)-susceptible weedy rice seedbank dynamics
under different weed control scenarios (F–H) of rice in crop rotation. Simulations
assumed an initial seedbank density of 1,105 seeds m−2. CL, Clearfield® rice varieties;
NCL, non-Clearfield® varieties.

Figure 5. Simulated imidazolinone (IMI)-resistant weedy rice seedbank dynamics
under different weed control scenarios (F–H) for rice in crop rotation. Simulations
assumed an initial seedbank density of 1,105 seeds m−2 with an initial frequency of
resistant individuals of 1 × 10−6 and an outcrossing rate between Clearfield® (CL) rice
and weedy rice of 5 × 10−5 only in the years in which CL rice was planted. NCL, non-
Clearfield® varieties.
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evolution (Zhang et al. 2014). Inclusion of stochasticity, rather
than using fixed values, might overcome such problems.
However, in this study, rather than exact predictions, simulations
were mainly used for ranking the different control strategies,
thereby providing insights that might help farmers to make deci-
sions. Moreover, the efficacy of the control methods against differ-
ent weedy rice populations can vary because of the high variability
of the species, which makes some biotypes more adaptable to dif-
ferent environments and more competitive with the crop and less
sensitive to control tools such as to herbicides (Fogliatto et al. 2020,
2021; MohdHanafiah et al. 2020; Ziska et al. 2015). Frequent use of
ALS-inhibiting herbicides in CL rice varieties can contribute to
selection of resistant weedy rice populations (Bzour et al. 2018;
Ruzmi et al. 2020; Scarabel et al. 2012; Sudianto et al. 2013).
This selection pressure may lead to a higher number of IMI-resist-
ant weedy rice plants as a consequence of outcrossing between the
CL rice varieties and susceptible weedy rice or from repeated use of
these herbicides on biotypes with a natural tolerance (Busconi et al.
2012; Bzour et al. 2018; Shivrain et al. 2009).

Implications for Weedy Rice Management

Rice monoculture simulations or crop rotation sequence effects on
weedy rice seedbank density have practical implications for man-
agement of weedy rice in the soil seedbank (Zhang et al. 2014). The
scenarios that estimate a lower incidence of weedy rice in the soil
seedbank might result in higher rice yields. In contrast, the use of
traditional techniques to control IMI-susceptible weedy rice might
maintain high levels of weedy rice in the soil seedbank and nega-
tively interfere with rice production.

Some weedy rice management scenarios did strongly affect
weed presence, which in turn likely improved rice yield when crop
rotation sequences were adopted. The sharp decrease in the weedy
rice seedling numbers occurred only when crop rotation was
inserted in the simulations. The estimates showed that, after adop-
tion of crop rotation, a time period of 2 or 3 yr can be sufficient to
contain rice yield losses to less than 10%. Observed changes in
weedy rice seedbank abundance due to different strategies caused
decreased seedling numbers in only those cases that included crop
rotation. As noted earlier, the potential evolution and spread of
weed herbicide resistance, in this case in weedy rice, might be
avoided or delayed, but this will only occur with crop rotation
(Scarabel et al. 2012; Zhang et al. 2014). In fact, our simulations
showed that adoption of crop rotation for 2 yr before the use of
CL rice varieties reduced weedy rice abundance. Previous studies
have already confirmed linkages in the weedy rice soil seedbank
density to crop systems and crop rotations (Burgos et al. 2008;
Davis et al. 2012; Gao et al. 2020).

A previous simulation of weedy rice seedbank dynamics linked
to different population densities in Chinese rice fields also high-
lighted that crop rotation is a key factor for weedy rice manage-
ment and seedbank suppression (Dauer et al. 2018; Zhang et al.
2014). A study fromBrazil underlined the importance of crop rota-
tion to delay and reduce the occurrence of IMI-resistant weedy rice
in CL rice (Kalsing et al. 2019). The study showed that IMI-resist-
ant weedy rice was detected within 3 seasons following the culti-
vation of CL rice, while in the United States this occurred after
5 yr (Kalsing et al. 2019; Ziska et al. 2015). The later occurrence
of resistant populations in the United States was explained by
the widespread adoption of crop rotation (Kalsing et al. 2019).

These findings confirm the risk of applying a weed manage-
ment strategy based on a single tool (as in the case of CL rice),

as its success is strictly related to the accuracy and efficacy of her-
bicide application, which in turn can be achieved only through the
knowledge of the biological behavior and dynamics of weed growth
in the field. As suggested by the CL stewardship guidelines, crop
rotation should be applied in alternation with CL rice varieties,
and great attention should be paid to those weeds escaping herbi-
cide application, which should be removed to prevent gene flow
from rice to weedy rice and to reduce seedbank input (Kalsing
et al. 2019; Zhang et al. 2006).

From the results of the simulations, it appears that rotation with
a different crop can be crucial for obtaining a satisfactory reduction
of the weedy rice seedbank while hampering the selection of pop-
ulations resistant to ALS-inhibiting herbicides. Further studies are
needed to validate the used model for weedy rice seedbank
dynamic prediction with data from different management condi-
tions, including the alternation of IMI-resistant (CL) and gramini-
cide-resistant (Provisia®) rice varieties.
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