J. Austral. Math. Soc. (Series A) 38 (1985), 255-267

SATURATION ON LOCALLY COMPACT ABELIAN GROUPS

WALTER R. BLOOM and JOSEPH F. SUSSICH

(Received 2 March 1983; revised 12 September 1983)

Communicated by J. F. Price

Abstract

Let G be a locally compact abelian group, (μ_{ρ}) a net of bounded Radon measures on G. In this paper we consider conditions under which (μ_{ρ}) is saturated in $L^{p}(G)$ and apply these results to the Fejér and Picard approximation processes.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 41 A 40; secondary 43 A 15, 43 A 25.

Throughout G will denote a locally compact abelian group, Γ its character group. Haar measures λ , θ on G, Γ respectively will be chosen so that Plancherel's theorem holds. For each $p \in [1, \infty]$ we denote by $L^{p}(G)$ the usual Lebesgue space of pth-integrable functions with respect to the Haar measure λ . The characteristic function of the set E will be denoted by ξ_{E} . The symbols T, N, Z, R will be reserved for the circle group, the set of natural numbers, the group of integers and the real line respectively. We take Hewitt and Ross [7] as our standard reference for harmonic analysis on G; any unexplained notation will be found there.

Take (μ_{ρ}) to be a bounded net in $M_b(G)$, the space of bounded Radon measures on G. The family (μ_{ρ}) is said to be a bounded approximate unit on G if $\lim_{\rho} ||\mu_{\rho} * f - f||_1 = 0$ for each $f \in L^1(G)$. It is of fundamental interest in approximation theory to examine the rate of convergence of bounded approximate units. In many cases it happens that there is essentially a limit to the rate of convergence; for example if (μ_{ρ}) is a sequence of even probability measures on

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

the circle group T then the optimal rate of convergence is given by

$$\|\mu_n * f - f\|_{\infty} \leq C\beta_n^2,$$

where $\beta_n = (1 - \hat{\mu}_n(\gamma_1))^{1/2}$, γ_1 is the character of T given by $\gamma_1(x) = x$, and f has a derivative belonging to the Lipschitz class of order 1. This rate of convergence cannot in general be improved, as is indicated by the fact that even the infinitely differentiable function $t \to \cos t$ has rate of convergence given by (β_n^2) .

Saturation theory is concerned with determining this optimal rate of convergence, called the saturation order, and the space V of functions for which this rate is attained. In this case V is called the saturation class (or Favard space) for (μ_{α}) .

We are concerned with determining the saturation class for certain bounded approximate units in $L^2(G)$. We begin in Section 1 with some preliminary results in the theory of saturation. Section 2 will be concerned with results specific to saturation in $L^2(G)$, and in the third section we present some examples to support the theory.

1. General results in saturation theory

Let (μ_{ρ}) be a bounded approximate unit on G. The trivial class of (μ_{ρ}) is defined to be $T_p(\mu_{\rho}) = \{f \in L^p(G): \text{ there exists } \rho_0 \text{ such that } \mu_{\rho} * f = f \text{ for all } \rho \ge \rho_0\}$. Let (ϕ_{ρ}) be a net of positive real numbers (with the same index set as (μ_{ρ})) that converges to zero. We say that (μ_{ρ}) is *saturated* in $L^p(G)$ with order (ϕ_{ρ}) if the following are satisfied:

(i) for $f \in L^p(G)$, $\|\mu_{\rho} * f - f\|_p = o(\phi_p)$ if and only if $f \in T_p(\mu_p)$;

(ii) there exists $g \in L^{p}(G) \setminus T_{p}(\mu_{\rho})$ for which $\|\mu_{\rho} * g - g\|_{p} = O(\phi_{\rho})$. (By $\psi_{\rho} = o(\phi_{\rho})$ we mean $\liminf_{\rho} \phi_{\rho}^{-1} \psi_{\rho} = 0$, and by $\psi_{\rho} = O(\phi_{\rho})$, $\limsup_{\rho} \phi_{\rho}^{-1} \psi_{\rho} < \infty$.) If (μ_{ρ}) is saturated in $L^{p}(G)$ with order (ϕ_{ρ}) then its saturation class is

defined to be the non-empty set

$$S_p(\mu_{\rho}) = \left\{ f \in L^p(G) \colon \left\| \mu_{\rho} * f - f \right\|_p = O(\phi_{\rho}) \right\}.$$

Also if $E \subset L^{p}(G)$ we write $S_{E}(\mu_{o})$ for the space $S_{p}(\mu_{o}) \cap E$.

It is usual to take the trivial class to consist of only the constant functions in $L^{p}(G)$; see DeVore [4], 3.1.5, for example. Nishishiraho [8] allowed for a possibly larger trivial class by requiring $\mu_{\rho} * f = f$ for all ρ . We feel that our slightly more general definition is better suited to approximation processes.

If (μ_{ρ}) is saturated in $L^{p}(G)$ with two saturation orders, (ϕ_{ρ}) and (ϕ'_{ρ}) , then $\phi_{\rho} = O(\phi'_{\rho})$. For if $\phi_{\rho} \neq O(\phi'_{\rho})$ then $\phi'_{\rho} = o(\phi_{\rho})$ and so for $g \in S_{p}(\mu_{\rho})$, $\|\mu_{\rho} * g - g\|_{p} = O(\phi'_{\rho}) = o(\phi_{\rho})$ implies $g \in T_{p}(\mu_{\rho})$, which contradicts the definition of saturation class. Thus we speak of "the" saturation order of (μ_{ρ}) and observe that it defines a unique saturation class in $L^{p}(G)$. Write $\Gamma_T(\mu_{\rho}) = \{\gamma \in \Gamma: \text{ there exists } \rho_0 \text{ such that } \hat{\mu}_{\rho}(\gamma) = 1 \text{ for all } \rho \ge \rho_0 \}$ and, if (μ_{ρ}) is saturated in $L^p(G)$ with order (ϕ_{ρ}) , write

$$\Gamma_{\mathcal{S}}(\mu_{\rho}) = \left\{ \gamma \in \Gamma : \left| \hat{\mu}_{\rho}(\gamma) - 1 \right| = O(\phi_{\rho}) \right\}.$$

In general we can say little about the structure of these sets, except that in practice $\Gamma_S(\mu_{\rho}) = \Gamma$ and $\Gamma_T(\mu_{\rho}) = \{1\}$. (Here 1 denotes the identity character.) However we do have the following result:

THEOREM 1. Suppose that each μ_{ρ} is a probability measure. Then $\Gamma_{T}(\mu_{\rho})$ and $\Gamma_{S}(\mu_{\rho})$ are subgroups of Γ .

PROOF. Write $C_u(G)$ for the space of bounded uniformly continuous functions on G and, for each ρ , write

$$\mu_{\rho}(f) = \int_{G} f \, d\mu_{\rho},$$

so that μ_{ρ} can be regarded as a positive linear functional on $C_{\mu}(G)$.

If $\gamma_1, \gamma_2 \in \Gamma$ then

 $1 - \gamma_1 \gamma_2 = 1 - \operatorname{Re} \gamma_1 \operatorname{Re} \gamma_2 + \operatorname{Im} \gamma_1 \operatorname{Im} \gamma_2 - i(\operatorname{Re} \gamma_1 \operatorname{Im} \gamma_2 + \operatorname{Im} \gamma_1 \operatorname{Re} \gamma_2).$ Since

$$0 \leq 1 - \operatorname{Re} \gamma_1 \operatorname{Re} \gamma_2$$

= $(1 - \operatorname{Re} \gamma_1) \operatorname{Re} \gamma_2 + (1 - \operatorname{Re} \gamma_2) \leq (1 - \operatorname{Re} \gamma_1) + (1 - \operatorname{Re} \gamma_2)$

we deduce

$$0 \leq 1 - \mu_{\rho}(\operatorname{Re} \gamma_{1} \operatorname{Re} \gamma_{2}) \leq (1 - \mu_{\rho}(\operatorname{Re} \gamma_{1})) + (1 - \mu_{\rho}(\operatorname{Re} \gamma_{2})).$$

To estimate $\mu_{\rho}(\operatorname{Im} \gamma_1 \operatorname{Im} \gamma_2)$ we use the Cauchy-Schwarz inequality for positive linear functionals to obtain

$$\begin{aligned} \left| \mu_{\rho} (\operatorname{Im} \gamma_{1} \operatorname{Im} \gamma_{2}) \right| &\leq \left| \mu_{\rho} ((\operatorname{Im} \gamma_{1})^{2}) \right|^{1/2} \left| \mu_{\rho} ((\operatorname{Im} \gamma_{2})^{2}) \right|^{1/2} \\ &= \left| \mu_{\rho} (1 - (\operatorname{Re} \gamma_{1})^{2}) \right|^{1/2} \left| \mu_{\rho} (1 - (\operatorname{Re} \gamma_{2})^{2}) \right|^{1/2} \\ &\leq \left| 2 (1 - \mu_{\rho} (\operatorname{Re} \gamma_{1})) \right|^{1/2} \left| 2 (1 - \mu_{\rho} (\operatorname{Re} \gamma_{2})) \right|^{1/2} \end{aligned}$$

Also we note that

$$-(1 - \operatorname{Re} \gamma_1) \leqslant (1 - \operatorname{Re} \gamma_1) \operatorname{Im} \gamma_2 \leqslant 1 - \operatorname{Re} \gamma_1$$

implies

$$|\mu_{\rho}(\operatorname{Im} \gamma_{2}) - \mu_{\rho}(\operatorname{Re} \gamma_{1} \operatorname{Im} \gamma_{2})| \leq |1 - \mu_{\rho}(\operatorname{Re} \gamma_{1})|,$$

which implies

$$\begin{aligned} \left|\mu_{\rho}(\operatorname{Re}\gamma_{1}\operatorname{Im}\gamma_{2})\right| &\leq \left|1-\mu_{\rho}(\operatorname{Re}\gamma_{1})\right|+\left|\mu_{\rho}(\operatorname{Im}\gamma_{2})\right| \\ &\leq \left|1-\mu_{\rho}(\gamma_{1})\right|+\left|1-\mu_{\rho}(\gamma_{2})\right|, \end{aligned}$$

since $\mu_{\rho}(\operatorname{Re} \gamma_{1}) = \operatorname{Re} \mu_{\rho}(\gamma_{1})$ and $\mu_{\rho}(\operatorname{Im} \gamma_{2}) = \operatorname{Im} \mu_{\rho}(\gamma_{2})$. Similarly $|\mu_{\rho}(\operatorname{Re} \gamma_{2} \operatorname{Im} \gamma_{1})| \leq |1 - \mu_{\rho}(\gamma_{1})| + |1 - \mu_{\rho}(\gamma_{2})|.$

Then putting all these inequalities together we obtain

$$\begin{aligned} |1 - \mu_{\rho}(\gamma_{1}\gamma_{2})| &\leq 3 \Big(|1 - \mu_{\rho}(\gamma_{1})| + |1 - \mu_{\rho}(\gamma_{2})| \Big) \\ &+ 2 |1 - \mu_{\rho}(\gamma_{1})|^{1/2} |1 - \mu_{\rho}(\gamma_{2})|^{1/2} \end{aligned}$$

We also have

$$\mu_{\rho}(\gamma^{-1}) = \hat{\mu}_{\rho}(\gamma).$$

From this and the preceding inequality the result follows.

The space $\Gamma_T(\mu_{\rho})$ plays an important role in the saturation theory, as the following result shows.

THEOREM 2. Suppose that G is a compact abelian group. If (μ_{ρ}) is totally ordered and saturated then

$$T_p(\mu_{\rho}) = \left\{ f \in L^p(G) \colon \operatorname{supp}(\widehat{f}) \subset \Gamma_T(\mu_{\rho}) \right\}.$$

PROOF. Suppose $\mu_{\rho} * f = f$. Then $\hat{\mu}_{\rho} \hat{f} = \hat{f}$ (Hewitt and Ross [7], (31.5)) and so $\hat{f}(\gamma) \neq 0$ implies $\hat{\mu}_{\rho}(\gamma) = 1$; and hence if $f \in T_p(\mu_{\rho})$, $\{\gamma \in \Gamma: \hat{f}(\gamma) \neq 0\} \subset \Gamma_T(\mu_{\rho})$. Since Γ is discrete, this just says that $\operatorname{supp} \hat{f} \subset \Gamma_T(\mu_{\rho})$.

Conversely, suppose supp $\hat{f} \subset \Gamma_T(\mu_\rho)$. Since $f \in L^p(G) \subset L^1(G)$ and Γ is discrete, the Riemann-Lebesgue lemma (Hewitt and Ross [7], (28.40)) gives that supp \hat{f} is countable; write supp $\hat{f} = \{\gamma_n\}_{n=1}^{\infty}$ (we suppose that supp \hat{f} is infinite, otherwise it is obvious that $f \in T_p(\mu_\rho)$). For each $n \in \mathbb{N}$ choose ρ_n increasing such that $\rho \ge \rho_n$ implies $\hat{\mu}_p(\gamma_n) = 1$. We may assume that (μ_{ρ_n}) is a subnet of (μ_ρ) , since if there exists ρ_0 such that $\rho_n \le \rho_0$ for all $n \in \mathbb{N}$ then we immediately deduce that $f \in T_p(\mu_\rho)$. Then choose a sequence (α_n) of positive real numbers such that $\sum_{n=1}^{\infty} \alpha_n \gamma_n$; clearly $g \in L^p(G)$. Then

$$\left\|\mu_{\rho_{k}} \ast g - g\right\|_{p} = \left\|\sum_{n=k+1}^{\infty} \alpha_{n} (\mu_{\rho_{k}} \ast \gamma_{n} - \gamma_{n})\right\|_{p} \leq \phi_{\rho_{k}}^{2} \left(\sup_{\rho} \left\|\mu_{\rho}\right\| + 1\right).$$

Hence

$$\begin{split} \liminf_{\rho} \phi_{\rho}^{-1} \|\mu_{\rho} * g - g\|_{\rho} &\leq \liminf_{k} \phi_{\rho_{k}}^{-1} \|\mu_{\rho_{k}} * g - g\|_{\rho} \\ &\leq \liminf_{k} \phi_{\rho_{k}} \left(\sup_{\rho} \|\mu_{\rho}\| + 1 \right) = 0. \end{split}$$

Since (μ_{ρ}) is saturated, we deduce that $g \in T_{\rho}(\mu_{\rho})$. That is, there exists ρ_0 such that $\mu_{\rho} * g = g$ for all $\rho \ge \rho_0$. Then $\hat{\mu}_{\rho} \hat{g} = \hat{g}$ for all $\rho \ge \rho_0$ and so $\hat{\mu}_{\rho} \hat{f} = \hat{f}$ for all $\rho \ge \rho_0$ (since supp $\hat{f} = \text{supp } \hat{g} = \{\gamma_n\}_{n=1}^{\infty}$); thus $f \in T_p(\mu_{\rho})$.

If (μ_{ρ}) is saturated in $L^{1}(G)$ with saturation order (ϕ_{ρ}) , then $f \in S_{1}(\mu_{\rho})$ implies supp $\hat{f} \subset \Gamma_{S}(\mu_{\rho})^{-}$. For if $f \in S_{1}(\mu_{\rho})$ and $\gamma \in \Gamma$ then $|\hat{\mu}_{\rho}(\gamma)\hat{f}(\gamma) - \hat{f}(\gamma)| \leq ||\mu_{\rho} * f - f||_{1} = O(\phi_{\rho})$ and so $\hat{f}(\gamma) \neq 0$ implies $|\hat{\mu}_{\rho}(\gamma) - 1| = O(\phi_{\rho})$; that is, $\gamma \in \Gamma_{S}(\mu_{\rho})$.

If $g \in T_1(\mu_\rho)$ then there exists ρ_0 such that $\mu_\rho * g = g$ for all $\rho \ge \rho_0$ and so

$$\big\{\gamma\in\Gamma:\hat{g}(\gamma)\neq0\big\}\subset\Gamma\setminus\bigcup_{\rho\geqslant\rho_0}\big\{\gamma\in\Gamma:\hat{\mu}_{\rho}(\gamma)\neq1\big\},$$

which is a closed set contained in $\Gamma_T(\mu_\rho)$. Hence supp $\hat{g} \subset \Gamma_T(\mu_\rho)$ (regardless of whether (μ_ρ) is saturated or not).

Finally note that even when G is a compact abelian group we do not in general have $S_p(\mu_p) = \{ f \in L^p(G) : \operatorname{supp} \hat{f} \subset \Gamma_S(\mu_p) \}$, as is illustrated by Example A below.

THEOREM 3. Let G be a compact abelian group and suppose that (μ_{ρ}) is totally ordered and saturated in $L^{p}(G)$ with saturation order (ϕ_{ρ}) . Then $\Gamma_{S}(\mu_{\rho}) \setminus \Gamma_{T}(\mu_{\rho})$ $\neq \emptyset$ and for each $\gamma \in \Gamma_{S}(\mu_{\rho}) \setminus \Gamma_{T}(\mu_{\rho})$ there exists ρ_{0} and positive constants c_{1} and c_{2} such that $c_{1} \leq \phi_{\rho}^{-1} |\hat{\mu}_{\rho}(\gamma) - 1| \leq c_{2}$ for all $\rho \geq \rho_{0}$. Conversely suppose $T_{p}(\mu_{\rho}) =$ $\{f \in L^{p}(G): \text{ supp } \hat{f} \subset \Gamma_{T}(\mu_{\rho})\}$, (ϕ_{ρ}) is a net of positive numbers converging to zero and the following conditions are satisfied:

(i) for each $\gamma \in \Gamma$, $|\hat{\mu}_{\rho}(\gamma) - 1| = o(\phi_{\rho})$ implies $\gamma \in \Gamma_{T}(\mu_{\rho})$;

(ii) there exists $\gamma \in \Gamma \setminus \Gamma_T(\mu_\rho)$ with $|\hat{\mu}_\rho(\gamma) - 1| = O(\phi_\rho)$.

Then (μ_p) is saturated in $L^p(G)$ with order (ϕ_p) .

PROOF. Suppose (μ_{ρ}) is saturated in $L^{\rho}(G)$ with saturation order (ϕ_{ρ}) . Choose $g \in S_{\rho}(\mu_{\rho}) \setminus T_{\rho}(\mu_{\rho})$. For $\gamma \in \Gamma$,

$$\left|\hat{\mu}_{\rho}(\gamma)\hat{g}(\gamma)-\hat{g}(\gamma)\right| \leq \left\|\mu_{\rho}\ast g-g\right\|_{1} \leq \left\|\mu_{\rho}\ast g-g\right\|_{p} = O(\phi_{\rho}),$$

so that supp $\hat{g} \subset \Gamma_{S}(\mu_{\rho})$ (Γ is discrete). In view of Theorem 2, supp $\hat{g} \notin \Gamma_{T}(\mu_{\rho})$, so there exists $\gamma \in \Gamma_{S}(\mu_{\rho}) \setminus \Gamma_{T}(\mu_{\rho})$. Now $\Gamma \subset L^{p}(G)$ and, by Theorem 2, $\gamma \notin \Gamma_{T}(\mu_{\rho})$ implies $\gamma \notin T_{p}(\mu_{\rho})$; which says that $\liminf_{\rho} \phi_{\rho}^{-1} |\hat{\mu}_{\rho}(\gamma) - 1| > 0$. Hence there exist ρ_{1} and $c_{1} > 0$ such that $\phi_{\rho}^{-1} |\hat{\mu}_{\rho}(\gamma) - 1| \ge c_{1}$ for all $\rho \ge \rho_{1}$. Similarly, $\gamma \in \Gamma_{S}(\mu_{\rho})$ implies that $|\hat{\mu}_{\rho}(\gamma) - 1| = O(\phi_{\rho})$; that is, there exist ρ_{2} and $c_{2} > 0$ such that $\phi_{\rho}^{-1} |\hat{\mu}_{\rho}(\gamma) - 1| \le c_{2}$ for all $\rho \ge \rho_{2}$.

To prove the converse part of the theorem we note that if (ϕ_{ρ}) is a net of positive numbers converging to zero such that, for each $\gamma \in \Gamma$, $|\hat{\mu}_{\rho}(\gamma) - 1| = o(\phi_{\rho})$ implies $\gamma \in \Gamma_{T}(\mu_{\rho})$ then, for any $g \in L^{p}(G)$ such that $||\mu_{\rho} * g - g||_{p} = o(\phi_{\rho})$, it

is the case that supp $\hat{g} \subset \Gamma_T(\mu_\rho)$ (since $|\hat{\mu}_\rho(\gamma)\hat{g}(\gamma) - \hat{g}(\gamma)| \leq ||\mu_\rho * g - g||_p$ for all $\gamma \in \Gamma$) and so $g \in T_p(\mu_\rho)$. Also if $\gamma \in \Gamma \setminus \Gamma_T(\mu_\rho)$ with $|\hat{\mu}_\rho(\gamma) - 1| = O(\phi_\rho)$ then $\gamma \in S_p(\mu_\rho) \setminus T_p(\mu_\rho)$, and this finishes the proof.

Under the conditions of Theorem 3 we have the saturation order of (μ_{ρ}) given by $|\hat{\mu}_{\rho}(\gamma) - 1|$. This result should be compared with DeVore [4], Theorem 3.1.

2. Description of some saturation classes

Let (μ_t) be a bounded approximate unit on G, where the index set is $(0, \infty)$ with ordering $t \le t'$ if and only if $t \ge t'$. We say that (μ_t) is of saturation type (ϕ, ψ) on $L^p(G)$ if the following are satisfied:

(i) The mapping $(t, \gamma) \rightarrow \hat{\mu}_t(\gamma)$, from $(0, t_0] \times \Gamma$ into C, is continuous for some $t_0 \in (0, \infty)$.

(ii) There exists a continuous mapping $\phi: (0, \infty) \to (0, \infty)$ such that $\lim_{t \to 0^+} \phi(t) = 0$, and a continuous mapping $\psi: \Gamma \to \mathbb{C}$ that does not vanish in $\Gamma \setminus \{1\}$ satisfying $\lim_{t \to 0^+} \phi(t)^{-1}(\hat{\mu}_t(\gamma) - 1) = \psi(\gamma)$ for all $\gamma \in \Gamma$.

(iii) There is a bounded family $(\omega_t)_{t>0} \subset M_b(G)$ such that $\phi(t)^{-1}(\hat{\mu}_t - 1) = \psi \hat{\omega}_t$ for all $t \in (0, \infty)$.

(iv) $f \in L^{p}(G)$ and $||\mu_{i} * f - f||_{p} = o(\phi_{p})$ imply

 $f = \begin{cases} \text{constant} & \text{if } G \text{ is compact,} \\ 0 & \text{if } G \text{ is non-compact.} \end{cases}$

If $(\mu_t)_{t>0}$ is of saturation type (ϕ, ψ) on $L^p(G)$ then its saturation class (or Favard space) is the set

$$S_p(\mu_t) = \left\{ f \in L^p(G) : \|\mu_t * f - f\|_p = O(\phi(t)) \right\}.$$

Dreseler and Schempp [5] (see also Buchwalter [2]) have shown that

 $S_1(\mu_t) = \left\{ f \in L^1(G) : \psi \hat{f} \in M_h(G) \right\}$

and, for $p \in (1, 2]$,

$$S_p(\mu_t) = \{ f \in L^p(G) : \psi \hat{f} \in L^p(G)^{\hat{}} \};$$

in the above if E is a set of functions or measures then \hat{E} denotes the set of Fourier transforms of members of E.

In practice it is difficult to verify condition (iii) above, since it involves deciding whether a given net of functions on Γ is a net of Fourier transforms. It has been pointed out by the referee that the results of Dreseler and Schempp continue to hold with this condition replaced by

(iii)' There is a bounded family $(\omega_t)_{t>0}$ of multipliers on $L^p(G)$ such that $\phi(t)^{-1}(\hat{\mu}_t - 1) = \psi \hat{\omega}_t$ for all $t \in (0, \infty)$;

(see Dreseler and Schempp [6], Section 3). In the case p = 2, condition (iii)' just says that the family (ω_i) is a bounded set of functions in $L^{\infty}(G)$. Also Dreseler and Schempp implicitly assume that $\Gamma_S(\mu_i) = \Gamma$ and $\Gamma_T(\mu_i) = \{1\}$ or \emptyset .

In this section we consider the saturation problem for p = 2 without the restriction that the net (μ_{ρ}) be defined on $(0, \infty)$. We require two preliminary results.

THEOREM 4. Let (μ_{ρ}) be saturated in $L^{2}(G)$ with order (ϕ_{ρ}) . Suppose that the net $(\phi_{\rho}^{-1}(\hat{\mu}_{\rho} - 1))$ is equicontinuous and that $\phi_{\rho}^{-1}(\hat{\mu}_{\rho} - 1) \rightarrow \psi$ pointwise on $\Gamma_{S}(\mu_{\rho})$. Then ψ is continuous on $\Gamma_{S}(\mu_{\rho})$, the convergence is uniform on compact subsets of $\Gamma_{S}(\mu_{\rho})$, and $\Gamma_{S}(\mu_{\rho})$ is both open and closed in Γ .

PROOF. Let $\gamma \in \Gamma_{S}(\mu_{\rho})$ and choose ρ_{0} such that $\phi_{\rho}^{-1}|\hat{\mu}_{\rho}(\gamma) - 1| \leq K$ for all $\rho \geq \rho_{0}$, where K is a constant. Using the equicontinuity of $(\phi_{\rho}^{-1}(\hat{\mu}_{\rho} - 1))$, choose an open neighbourhood Ω of γ such that $\phi_{\rho}^{-1}|\hat{\mu}_{\rho}(\gamma) - \hat{\mu}_{\rho}(\chi)| \leq 1$ for all ρ and for all $\chi \in \Omega$. Then $\phi_{\rho}^{-1}|\hat{\mu}_{\rho}(\chi) - 1| \leq K + 1$ for all $\rho \geq \rho_{0}$ and $\chi \in \Omega$, so that $\Omega \subset \Gamma_{S}(\mu_{\rho})$. This shows that $\Gamma_{S}(\mu_{\rho})$ is open.

Similarly let $\gamma \in \Gamma \setminus \Gamma_{S}(\mu_{\rho})$, so that given $n \in \mathbb{N}$ and ρ there exists $\rho_{n} \ge \rho$ with $\phi_{\rho_{n}}^{-1}|\hat{\mu}_{\rho_{n}}(\gamma) - 1| \ge n$. With Ω chosen as above we have $\phi_{\rho_{n}}^{-1}|\hat{\mu}_{\rho_{n}}(\chi) - 1| \ge n - 1$ for all $n \in \mathbb{N}$ and $\chi \in \Omega$. This shows that $\Omega \subset \Gamma \setminus \Gamma_{S}(\mu_{\rho})$, so that $\Gamma_{S}(\mu_{\rho})$ is closed.

The other assertions of the theorem are standard consequences of the assumption of equicontinuity.

THEOREM 5. Let (μ_{ρ}) satisfy the conditions of Theorem 4 and let $f \in S_2(\mu_{\rho})$. Then $\hat{f} = 0$ almost everywhere on $\Gamma \setminus \Gamma_S(\mu_{\rho})$.

PROOF. Suppose that there exists compact $\Lambda \subset \Gamma \setminus \Gamma_S(\mu_\rho)$ with $\|\xi_\Lambda \hat{f}\|_2 \neq 0$. For each $\gamma \in \Lambda$ choose an open neighbourhood $\Omega_{\gamma} \subset \Gamma \setminus \Gamma_S(\mu_\rho)$ such that $\phi_{\rho}^{-1}|\hat{\mu}_{\rho}(\gamma) - \hat{\mu}_{\rho}(\chi)| \leq 1$ for all ρ and for all $\chi \in \Omega_{\gamma}$, and then an open cover $\Omega_{\gamma_1}, \Omega_{\gamma_2}, \ldots, \Omega_{\gamma_m}$ of Λ . We see immediately that $\|\xi_{\Omega_{\gamma_i}}\hat{f}\|_2 \neq 0$ for some *i*. Arguing as in Theorem 4 we have that for any $n \in \mathbb{N}$ and ρ there exists $\rho_n \ge \rho$ such that $\phi_{\rho_n}^{-1}|\hat{\mu}_{\rho_n}(\gamma) - 1| \ge n - 1$ for all $\gamma \in \Omega_{\gamma_i}$, so that

$$(n-1)\left\|\boldsymbol{\xi}_{\boldsymbol{\Omega}_{\gamma_{i}}}\hat{f}\right\|_{2} \leq \boldsymbol{\phi}_{\boldsymbol{\rho}_{n}}^{-1}\left\|\boldsymbol{\mu}_{\boldsymbol{\rho}_{n}} \star f - f\right\|_{2},$$

and hence $f \notin S_2(\mu_{\rho})$.

We can now state our main result for this section.

THEOREM 6. Let (μ_{ρ}) satisfy the conditions of Theorem 4 and write $\Omega = \{\gamma \in \Gamma_{S}(\mu_{\rho}): |\psi(\gamma)| < 1\}$. Suppose that the net

$$\left(\sup\left\{\phi_{\rho}^{-1}\left(\hat{\mu}_{\rho}(\gamma)-1\right)\omega(\gamma)\colon\gamma\in\Gamma\right\}\right)$$

is eventually bounded, where ω is a bounded function satisfying

$$\omega = \begin{cases} \psi^{-1} & \text{on } \Gamma_{S}(\mu_{\rho}) \setminus \Omega, \\ 0 & \text{on } \Gamma \setminus \Gamma_{S}(\mu_{\rho}), \end{cases}$$

and $|\omega|$ is bounded away from zero on Ω . Then

$$S_2(\mu_{\rho}) = (\omega L^2(\Gamma))^{\cdot}.$$

If furthermore $\omega = \hat{\mu}$ for some $\mu \in M_h(G)$ then

$$S_2(\mu_{\rho}) = \mu * L^2(G).$$

PROOF. Suppose $f \in S_2(\mu_{\rho})$ so that, by Theorem 3, $\hat{f} = 0$ almost everywhere on $\Gamma \setminus \Gamma_{\mathcal{S}}(\mu_{\rho})$. Let $f_1 \in L^2(G)$ be such that $\hat{f}_1 = \xi_{\Gamma \setminus \Omega} \hat{f}$, and write

$$f_{\rho} = \phi_{\rho}^{-1} \big(\mu_{\rho} * f_1 - f_1 \big).$$

Then (f_{ρ}) is eventually bounded in $L^{2}(G)$, since

$$\begin{split} \left\| f_{\rho} \right\|_{2} &= \left\| \phi_{\rho}^{-1} (\mu_{\rho} * f_{1} - f_{1}) \right\|_{2} = \phi_{\rho}^{-1} \left\| (\hat{\mu}_{\rho} - 1) \hat{f}_{1} \right\|_{2} \\ &\leq \phi_{\rho}^{-1} \left\| (\hat{\mu}_{\rho} - 1) \hat{f} \right\|_{2} = O(1), \end{split}$$

and so has a weak*-convergent subnet, $f_{\rho_{\alpha}} \to g \in L^2(G)$ say. Using Parseval's identity (Hewitt and Ross [7], (31.19)) this gives that for each $h \in L^2(G)$,

(1)
$$\int_{\Gamma} \left(\hat{f}_{\rho_{\alpha}} - \hat{g} \right) \bar{\hat{h}} \to 0$$

Now

(2)
$$\int_{\Gamma} \left(\hat{f}_1 - \omega \hat{g} \right) \bar{\hat{h}} = \int_{\Gamma} \left(\hat{f}_{\rho_{\alpha}} - \hat{g} \right) \omega \bar{\hat{h}} + \int_{\Gamma} \hat{f}_1 \left(1 - \phi_{\rho_{\alpha}}^{-1} \left(\hat{\mu}_{\rho_{\alpha}} - 1 \right) \omega \right) \bar{\hat{h}}$$

and, if \hat{h} vanishes off a compact subset of Γ ,

$$\int_{\Gamma} \hat{f}_1 \left(1 - \phi_{\rho_{\alpha}}^{-1} (\hat{\mu}_{\rho_{\alpha}} - 1) \omega \right) \tilde{\hat{h}} \to 0,$$

since $\hat{f}_1 = 0$ almost everywhere on $(\Gamma \setminus \Gamma_S(\mu_\rho)) \cup \Omega$, $(\Gamma_S(\mu_\rho) \setminus \Omega) \cap \operatorname{supp}(\overline{h})$ is a compact subset of $\Gamma_S(\mu_\rho) \setminus \Omega$, and $\phi_{\rho_\alpha}^{-1}(\hat{\mu}_{\rho_\alpha} - 1)\omega \to 1$ uniformly on compact subsets of $\Gamma_S(\mu_\rho) \setminus \Omega$. Also, for the same *h*, the first integral on the right-hand side of (2) converges to zero using (1) since ω is bounded. Hence, for such *h*,

$$\int_{\Gamma} \left(\hat{f}_1 - \omega \hat{g} \right) \overline{\hat{h}} = 0$$

This implies that $\hat{f}_1 = \omega \hat{g}$ locally almost everywhere, which entails that they agree as elements of $L^2(\Gamma)$ (Hewitt and Ross [7], (12.2)). Then, using the assumption that $|\omega|$ is bounded away from zero on Ω ,

$$\hat{f} = \hat{f}_1 + (f - f_1) = \omega (g + \omega^{-1} (f - f_1)) \in \omega L^2(\Gamma).$$

To prove the reverse inclusion, consider $f = (\omega g)^{\dagger}$ for some $g \in L^2(\Gamma)$. Then

$$\begin{split} \phi_{\rho}^{-1} \| \mu_{\rho} * f - f \|_{2} &= \left\| \phi_{\rho}^{-1} (\hat{\mu}_{\rho} - 1) \omega g \right\|_{2} \\ &\leq \sup_{\gamma \in \Gamma} \left| \phi_{\rho}^{-1} (\hat{\mu}_{\rho} (\gamma) - 1) \omega (\gamma) \right| \| g \|_{2} \end{split}$$

which, by assumption, gives $f \in S_2(\mu_{\rho})$.

In the case that $\omega = \hat{\mu}$ for some $\mu \in M_b(G)$,

$$(\mu * L^2(G)) = \hat{\mu} L^2(G) = \omega L^2(\Gamma),$$

and this gives the final statement of the theorem.

3. Examples

We apply the results in the previous section to describe the saturation classes in $L^2(G)$ for some of the standard approximate units on the circle and real line.

A. Saturation of the Fejér approximate unit on the circle group

The Fejér kernel (F_n) on the circle group (see Hewitt and Ross [7], (31.7)(j)) is defined by

$$F_n = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \gamma_k, \qquad n \in \mathbb{N},$$

where γ_k is the character that takes x to x^k for all $x \in T$. Our sequence (μ_n) is then given by $d\mu_n = F_n dx$. Clearly $\Gamma_T(\mu_n) = \{\gamma_0\}$. The trivial class of (μ_n) in each of the spaces $L^p(T)$, $p \in [1, \infty]$, and in C(T) is the space of constant functions: $\mu_n * f = f$ implies $\hat{\mu}_n \hat{f} = \hat{f}$, which implies $\hat{f}(\gamma_k) = 0$ for $k \neq 0$ and so fis a constant. Thus Theorem 3 gives that (μ_n) is saturated in each of these spaces with order (n^{-1}) . $\Gamma_S(\mu_n) = \{\gamma_k : k \in \mathbb{Z}\}$, the entire dual of T.

The conditions of Theorem 6 are satisfied with $\Omega = \{\gamma_0\}$ and ω defined by $\omega(\gamma_k) = -|k|^{-1}$ for $k \neq 0$ and $\omega(\gamma_0) = 1$; for we have

$$n(\hat{\mu}_n(\gamma_k)-1)\omega(\gamma_k) = \begin{cases} 0 & \text{for } k=0, \\ n/(n+1) & \text{for } 0<|k| \le n, \\ n|k|^{-1} & \text{for } |k| > n. \end{cases}$$

Note also that $\omega \in L^2(\mathbb{Z})$ so that $\omega = \hat{\mu}$ for some $\mu \in L^2(\mathbb{T}) \subset M_b(G)$ and $S_2(\mu_n) = \mu * L^2(\mathbb{T})$. As $\mu \in L^2(\mathbb{T})$ it follows that $S_2(\mu_n) \subset C(\mathbb{T})$ (Hewitt and Ross [7], (20.19) (iii)).

With a little more effort we can show that

$$S_p(\mu_n) = \mu * L^p(\mathbf{T}), \ p \in (1, \infty], \ \text{and} \ S_1(\mu_n) = \mu * M_b(\mathbf{T}).$$

We observe that $L^p(\mathbf{T})$ is the dual of $L^{p'}(\mathbf{T})$, where $p \in (1, \infty]$ and $p^{-1} + p'^{-1} = 1$, and $M_b(\mathbf{T})$ is the dual of $C(\mathbf{T})$ (Hewitt and Ross [7], (12.18) and (14.4)). If $f \in S_p(\mu_n)$ then $(n||\mu_n * f - f||_p)$ is bounded and so $(n(\mu_n * f - f))$ has a weak*-convergent subnet, $n_\alpha(\mu_{n_\alpha} * f - f) \to h$ (where $h \in L^p(\mathbf{T})$ for $p \in (1, \infty]$ and $h \in M_b(\mathbf{T})$ for p = 1). In particular $n_\alpha(\hat{\mu}_{n_\alpha} - 1)\hat{f} \to \hat{h}$ pointwise, so that $\hat{f}(\gamma_k) = \hat{\mu}(\gamma_k)\hat{h}(\gamma_k)$ for $k \neq 0$; that is, $f - \mu * h$ is constant. Hence $S_p(\mu_n) \subset$ $\mu * L^p(\mathbf{T})$ for $p \in (1, \infty]$ and $S_1(\mu_n) \subset \mu * M_b(\mathbf{T})$.

The reverse inclusion is obvious once we show that $(n \| \mu_n * \mu - \mu \|_1)$ is bounded. DeVore [4], pages 9–11, shows that for an even measure $\nu \in M_b(\mathbf{T})$,

$$\|\boldsymbol{\nu}\| \leq \left(\sum_{k=0}^{\infty} (k+1) \left| \Delta^2 \hat{\boldsymbol{\nu}}(\boldsymbol{\gamma}_k) \right| \right) + \sup_{k} \left| \hat{\boldsymbol{\nu}}(\boldsymbol{\gamma}_k) \right|$$

where $\Delta^2 \hat{\nu}(\gamma_k) = \hat{\nu}(\gamma_k) - 2\hat{\nu}(\gamma_{k+1}) + \hat{\nu}(\gamma_{k+2})$. For n > 2,

$$\Delta^{2}(n(\hat{\mu}_{n}(\gamma_{k})-1)\hat{\mu}(\gamma_{k})) = \begin{cases} \frac{-n}{n+1}, & k=0, \\ 0, & 0 < k \le n-1, \\ \frac{-n}{(n+1)(n+2)}, & k=n, \\ \frac{2n}{k(k+1)(k+2)}, & k > n. \end{cases}$$

Hence

$$\|\mu_n * \mu - \mu\|_1 \leq 3 + 2n \sum_{k=n+1}^{\infty} \frac{1}{k(k+2)} \leq 5.$$

Thus $S_p(\mu_n) = \mu * L^p(\mathbf{T})$, $p \in (1, \infty]$, and $S_1(\mu_n) = \mu * M_b(\mathbf{T})$. Furthermore, since $\mu \in L^1(\mathbf{T})$, $S_{\infty}(\mu_n) = \mu * L^{\infty}(\mathbf{T}) \subset C(\mathbf{T})$ (the space of continuous functions on **T**) and so $S_{C(\mathbf{T})}(\mu_n) = \mu * L^{\infty}(\mathbf{T})$. One can compare this to the description of the Fejér saturation class given by DeVore [4], Theorem 3.4, which states that

$$S_{C(\mathbf{T})}(\mu_n) = \{ f \in C(\mathbf{T}) \colon \tilde{f} \in \operatorname{Lip} 1 \},\$$

where \tilde{f} denotes the function conjugate to f and Lip 1 the Lipschitz class with exponent 1. It follows from DeVore [4], Theorem 1.9 that these two descriptions of $S_{C(T)}(\mu_n)$ agree.

Finally we note that

$$S_1(\mu_n) = \mu * M_b(\mathbf{T}) \subset L^2(\mathbf{T})$$

is a proper subspace of $L^{1}(\mathbf{T})$ (refer to the comment immediately preceding Theorem 3 above).

B. Saturation on the Cantor group

Let \mathbf{D}_2 be the Cantor group, that is, the complete countable direct product $\prod_N \mathbf{Z}(2)$, where $\mathbf{Z}(2)$ is the cyclic group of order two (with its discrete topology). The dual $\hat{\mathbf{D}}_2$ is topologically isomorphic to $\mathbf{D}_2^* = \prod_N^* \mathbf{Z}(2)$. For $n \in \mathbf{N}$ let

$$G_n = \{(x_i) \in \mathbf{D}_2 : x_i = 0 \text{ for } i = 1, 2, \dots, n\}$$

and put

$$k_n = 2^n \xi_{G_n} = \sum \left\{ \gamma \colon \gamma \in A(\mathbf{D}_2^*, G_n) \right\}$$

 $(A(\mathbf{D}_2^*, G_n)$ denotes the annihilator of G_n in \mathbf{D}_2^* ; see Hewitt and Ross [7], (23.23).). Let (μ_n) be the bounded sequence of measures on \mathbf{D}_2 defined by $d\mu_n = k_n dx$. Since $\hat{\mu}_n(\gamma) = 1$ for each $\gamma \in A(\mathbf{D}_2^*, G_n)$, it is obvious that $\Gamma_T(\mu_n) = \mathbf{D}_2^*$.

For each $i \in \mathbb{N}$ let γ_i be the continuous character of \mathbb{D}_2 given by $\gamma_i(x) = (-1)^{x_i}$ $(x = (x_i) \in \mathbb{D}_2)$ and put $f = \sum_{n=1}^{\infty} 2^{-n} \gamma_n$. Clearly $f \in C(\mathbb{D}_2)$ and, for each $n \in \mathbb{N}$, $\mu_n * f - f = -\sum_{i=n+1}^{\infty} 2^{-i} \gamma_i \neq 0$, so that $f \notin T_p(\mu_n)$ for any $p \in [1, \infty]$. In particular note that $T_p(\mu_n)$ is not closed (since $k_m * f \in T_p(\mu_n)$ for each $m \in \mathbb{N}$ and $\|k_m * f - f\|_p \to 0$) and that (μ_n) is not saturated in $L^p(G)$ for any $p \in [1, \infty]$ (by Theorem 3).

C. Saturation of the Picard approximate unit in $L^2(\mathbf{R})$

We take the Haar measure on **R** (and on its dual, which is topologically isomorphic to **R**) to be $(2\pi)^{-1/2}$ times the Lebesgue measure. The Picard kernel (K_n) on **R**, which arises from the Laplace distribution, is defined by

$$K_n(x) = \left(\frac{\pi}{2}\right)^{1/2} n \exp(-n|x|), \qquad x \in \mathbf{R}.$$

Thus $\hat{K}_n(x) = n^2/(n^2 + x^2)$ for all $x \in \mathbf{R}$; see Berg and Forst [1], 5.2. Our sequence of measures (μ_n) is given by $d\mu_n = K_n dx$ so that

$$n^{2}(\hat{\mu}_{n}(x)-1) = \frac{-x^{2}}{1+x^{2}/n^{2}} \to -x^{2}$$
 for each $x \in \mathbf{R}$.

Clearly $T_2(\mu_n) = \{0\}.$

Also (μ_n) is saturated in $L^2(\mathbb{R})$ with order (n^{-2}) . Indeed let ψ be the function on \mathbb{R} given by $\psi(x) = -x^2$. If $f \in L^2(\mathbb{R})$ and $(n^2 || \mu_n * f - f ||_2)$ is bounded then we can argue as in the first part of the proof of Theorem 6 to deduce that $\psi \hat{f} \in L^2(\mathbb{R})$. Since $|n^2(\hat{\mu}_n - 1)| \leq |\psi|$ for all $n \in \mathbb{N}$, Lebesgue's dominated convergence theorem (Hewitt and Ross [7], (14.23)) and Plancherel's theorem give

$$n^{2} \|\mu_{n} * f - f\|_{2} = \|n^{2}(\hat{\mu}_{n} - 1)\hat{f}\|_{2} \to \|\psi\hat{f}\|_{2}.$$

Thus $\liminf_n n^2 \|\mu_n * f - f\|_2 = 0$ implies $\|\psi \hat{f}\|_2 = 0$; which implies $\hat{f} = 0$, and so f = 0. That is, $f \in T_2(\mu_n)$. Also if $g \in L^2(\mathbb{R})$ is such that \hat{g} vanishes outside some compact set then $\psi \hat{g} \in L^2(\mathbb{R})$ and $n^2 \|\mu_n * g - g\|_2 = \|n^2(\hat{\mu}_n - 1)\hat{g}\|_2 \le \|\psi \hat{g}\|_2$, so that there are non-trivial functions in $S_2(\mu_n)$. Hence (μ_n) is saturated in $L^2(\mathbb{R})$.

Now $\Gamma_T(\mu_n) = \{0\}$ and $\Gamma_S(\mu_n) = \mathbb{R}$. The conditions of Theorem 6 are satisfied with $\Omega = (-1, 1)$ and

$$\omega(x) = \begin{cases} -1 & \text{for } x \in (-1, 1), \\ -x^{-2} & \text{elsewhere on } \mathbf{R}. \end{cases}$$

Referring to Butzer and Nessel [3], Proposition 6.3.10, we see that there exists $\mu \in L^1(\mathbf{R})$ such that $\hat{\mu} = \omega$. Thus Theorem 6 gives $S_2(\mu_n) = \mu * L^2(\mathbf{R})$. In particular $S_2(\mu_n) \subset C_0(\mathbf{R})$ (the space of continuous functions on \mathbf{R} vanishing at ∞), since μ is also an element of $L^2(\mathbf{R})$ (Hewitt and Ross [7], (20.19) (iii)).

Alternative characterizations of the saturation class of the Picard approximate identity are given in Butzer and Nessel [3], Proposition 12.4.2, for the space $L^{p}(\mathbf{R}), p \in [1, 2]$.

D. Saturation of the Fejér approximate unit in $L^2(\mathbf{R})$

The Fejér kernel (F_{ρ}) on **R** is defined for $\rho > 0$ by

$$F_{\rho}(x) = \frac{1}{\sqrt{2\pi}} \rho \left(\frac{\sin \frac{1}{2} \rho x}{\frac{1}{2} \rho x} \right)^2, \qquad x \in \mathbf{R},$$

with Fourier transform

$$\hat{F}_{\rho}(x) = \left(1 - \frac{|x|}{\rho}\right) \xi_{[-\rho,\rho]}(x), \quad x \in \mathbf{R},$$

(Hewitt and Ross [7], (31.7) (h)). Our net of measures (μ_{ρ}) is given by $d\mu_{\rho} = F_{\rho} dx$. Clearly $T_2(\mu_{\rho}) = \{0\}$. Also it is easily seen that (μ_{ρ}) is saturated in $L^2(\mathbb{R})$ with saturation order (ρ^{-1}) . For if $f \in L^2(\mathbb{R})$ then

$$\begin{split} \rho \|\mu_{\rho} * f - f\|_{2} &= \rho \|(\hat{\mu}_{\rho} - 1)\hat{f}\|_{2} \\ &= \left[\frac{1}{\sqrt{2\pi}} \left(\int_{-\rho}^{\rho} |x|^{2} |\hat{f}(x)|^{2} dx + \int_{-\infty}^{-\rho} \rho^{2} |\hat{f}(x)|^{2} dx + \int_{\rho}^{\infty} \rho^{2} |\hat{f}(x)|^{2} dx \right)\right]^{1/2}. \end{split}$$

Hence $\liminf_{\rho} \rho \|\mu_{\rho} * f - f\|_{2}$ implies f = 0; and if \hat{f} vanishes outside a compact set, $f \in S_{2}(\mu_{\rho})$. Also $\Gamma_{T}(\mu_{\rho}) = \{0\}$ and $\Gamma_{S}(\mu_{\rho}) = \mathbb{R}$. The conditions of Theorem 6 are satisfied with $\psi(x) = -|x|, \Omega = (-1, 1)$ and

$$\omega(x) = \begin{cases} -1 & \text{for } x \in (-1, 1), \\ -|x|^{-1} & \text{elsewhere on } \mathbf{R}. \end{cases}$$

Locally compact abelian groups

Referring to Butzer and Nessel [3], Proposition 6.3.10, we see that there exists $\mu \in L^1(\mathbf{R})$ such that $\hat{\mu} = \omega$. Thus, by Theorem 6, we deduce that

$$S_2(\mu_o) = \mu * L^2(\mathbf{R})$$

(and hence $S_2(\mu_{\rho}) \subset C_0(\mathbf{R})$). Butzer and Nessel [3], 12.4.1, give alternative characterizations for the saturation class in $L^p(\mathbf{R})$, $p \in [1, 2]$.

Acknowledgement

The authors thank the referee for several helpful suggestions.

References

- Christian Berg and Gunnar Forst, Potential theory on locally compact abelian groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 87, Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [2] Henri Buchwalter, 'Saturation sur un groupe abélien localement compact', C. R. Acad. Sci. Paris 250 (1960), 808-810.
- [3] Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Volume 1, One-dimensional theory (Birkhäuser, Basel, Stuttgart, 1971).
- [4] Ronald A. DeVore, The approximation of continuous functions by positive linear operators (Lecture Notes in Mathematics, 293, Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- [5] Bernd Dreseler and Walter Schempp, 'Saturation on locally compact abelian groups', Manuscripta Math. 7 (1972), 141-174.
- [6] Bernd Dreseler and Walter Schempp, 'Approximation on double coset spaces' in Approximation Theory (Papers, VIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975), pp. 69-81, Banach Center Publ., 4, PWN, Warsaw, 1979.
- [7] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volumes I, II (Die Grundlehren der Mathematischen Wissenschaften, Bände 115, 152. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, 1970.)
- [8] Toshihiko Nishishiraho, 'Saturation of positive linear operators', Tohoku Math. J. 28 (1976), 239-243.

School of Mathematical and Physical Sciences Murdoch University Perth, Western Australia 6150 Australia

[13]