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Atomic force microscopy (AFM) is preferred in many applications due its ability to produce high 

resolution 3D images of almost any samples such as ceramic materials, metallic nanoparticles, flexible 

polymers, human cells etc. [3]. In order to utilise the unique properties of AFM data, it is important to 

conduct precise quantitative analysis. 

One of the unique features of AFM data is its high vertical resolution which is vital to derive meaningful 

conclusions from the atomic and molecular structure of the samples [1]. This makes it possible to precisely 

determine the shape, size, and number of grains and nanoparticles which are related to the properties of 

the nanometric structures [10, 14]. AFM data is usually processed prior to particle analysis. This procedure 

is often carried out manually for simplicity [8], but this makes it open to human bias and it has high 

processing time for a big number of particles. 

The conventional methods, such as the threshold and watershed algorithms embedded to the softwares 

(e.g. WSxM [6] and Gwyddion [9]), might not be accurate and robust enough for grains and nanoparticles 

studies [13]. Threshold algorithms requires setting a global height threshold to isolate particles on a well-

levelled background. Hence, particle height depends on the height threshold parameter, and it is not robust 

for non-constant background. 

The images with non-constant background need to be preprocessed before the quantitative analysis. If not 

done correctly, the preprocessing called ”levelling” might cause artefacts that might change the observed 

height of the grains, roughness values [15] and image size [12]. For example, the tilted image obtained 

via a method like the least-mean-squares fitting may not be entirely consistent with the real sample. The 

difference could be large, depending on the tilting angle [5]. A direct application of polynomial levelling 

may also be unsuccessful because the height of the raised background overlaps with the height of the 

lowered particles. This causes leaking of the background into the interested particles after thresholding 

[2]. Build-in software functions such as RMS Factor Threshold in SPIP image processing software to 

determine threshold depends on manually set parameters to get the optimal result. Hence, accurate 

levelling and threshold detection might be very time consuming in the case of large number of particles; 

and it is not uncommon to see poorly processed images in the literature [3]. 

Even though watershed algorithm based on the flow of water into basins gives better results in segmenting 

the grains, measuring grain heights after segmentation is not suitable as watershed may overflow the 

boundaries of grains. It is also not sensitive enough to detect the hierarchical structures, which are crucial 

in cases like multimeric proteins and hydrophobic surfaces [11]. 

Surface roughness parameters are also commonly used in the literature to quantitatively describe the 

granular surfaces. Even though there are many roughness parameters, root mean square roughness (RMS) 

is preferred in majority of the studies due its simplicity to calculate and interpret. However, RMS as a 

single number results in uncertainty in characterization of different surfaces. As demonstrated in [16], 

different surface topographies can give the same RMS. Additionally, RMS does not offer any spatial 

surface structure information and cannot make a difference between peaks and valleys which is crucial in 

granular surface analysis [7]. While the combination of existing roughness parameters are also proposed 

for characterization [4], it is necessary to develop robust methods that summarize statistical information 

about the peaks and valleys independent of the sampling area. 

In this study, the main topological tool that we are using is persistent homology, which tracks how 

topological features appear and disappear in a nested sequence of topological spaces [17-20]. There are 

two main strengths of our approach: 
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It represents surfaces based on their topology making it invariant to small changes in shapes and 

hence robust to noise; 

It determines a range of coarse to fine scales of topological changes, thereby, summarizing large 

and small scale objects. In our case, it enables us to demonstrate micro and nanostructures of the 

surface in the same statistical summary without a need of thresholding or smoothing algorithms. 

A wealth of geometric information can be extracted from a surface by the approach providing a more 

holistic analysis than the information from standard invariants such as surface roughness. 

The persistent homological framework enables us to analyze complex and high dimensional data in a 

consistent manner [21–23]. It is robust to perturbations, independent of dimensions and scale, and provides 

a compact representation of the outputs. It lets us construct informative summaries of the shape of data. It 

can be applied to analyze both 2D and 3D images. The output of the persistent homology can be 

summarized visually using a persistence diagram, which is a collection of points in the plane where each 

point (x, y) characterizes a topological feature (e.g., hills, pores, cavities, etc.) that appears at height x and 

disappears at height y. We say the feature has a persistence value (or life-span) of y − x. The features with 

low persistence can be considered as noise. 

Our method is demonstrated in two types of AFM images: (i) ZnO and Zn2O3 thin films grown by RF-

magnetron sputtering [25-26]; and (ii) Polycarbonate wafers textured through crystallization in an acetone 

solution [24]. 

In this study, we suggest to use a topological data analysis method called persistent homology to avoid 

above mentioned limitations and provide a robust quantitative rules for grain analysis from unprocessed 

AFM images. Our method determines number particles and average height by avoiding the artefacts of 

preprocessing. It is also an accurate way of determining the roughness of the surface. 
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