Extension of Frenet's Formulae to a Curve in Flat Space of *n* Dimensions.

By Dr R. F. MUIRHEAD.

(Read 12th December 1919. Received 5th January 1920.)

1. A curve in n dimensions may be taken as the limit to which a polygonal figure ABCDE... tends, when the sides AB, BC, CD, etc., all diminish towards the limit zero.

The curvature at A is $\lim_{AB \to 0} \frac{\sin A\widehat{B}C}{AB}$. The tortuosity at A is $\lim_{AB \to 0} \frac{\sin A\overline{B}C}{AB}$,

where $A \overline{BC} D$ denotes the dihedral angle between the planes ABC and BCD.

The p^{th} flexure at A is $\lim_{AB \to 0} \frac{\sin A \ \overline{BC \dots K} \ L}{AB}$,

where $A \ \overline{BC \dots K} L$ denotes the angle between the flat *p*-dimensional spaces $ABC \dots K$ and $BCD \dots KL$.

Thus the curvature is the first flexure,

the tortuosity is the second flexure,

and the higher flexures exist only when the curve is not confined to the three-dimensional space.

These flexures may be denoted by $\phi_1, \phi_2, \phi_3 \dots \phi_p$ respectively.

2. Using the notation $S_q(A_0, A_1, A_2...A_q)$ to denote the flat q-dimensional space in which the points $A_0, A_1, ... A_q$ are contained, then in the case of a polygonal n-dimensional figure $A_0 A_1 A_2 A_3 ... A_n$.

 And the limits toward which those spaces tend when the points $A_0, A_1 \dots A_p$ approach coincidence, are the osculating spaces at A of the curve of which the polygonal figure is the limit.

The principal normal to the curve at A is that which is perpendicular to the tangent, but lies in the osculating plane.

The binormal at A is that which is perpendicular to the osculating plane, and lies in the osculating S_3 .

The p^{th} normal is that which is perpendicular to the osculating S_p , and lies in the osculating S_{p+1} . Thus the straight line through A_0 , lying in $S_{p+1} (A_0 A_1 \dots A_{p+1})$ and perpendicular to $S_p(A_0 A_1 \dots A_p)$, may be called the p^{th} normal to the polygonal figure $A_0 A_1 A_2 \dots$ at the point A_0 , and this straight line has for its limit the p^{th} normal at A_0 of the curve which is the limit of the polygon.

To define the sense of the p^{th} normal at A_0 we may choose its positive direction to be that which makes an *acute* angle with the $(p-1)^{\text{th}}$ normal at A_1 (the tangent to be counted in this connection as the 0th normal) so that the 1st, or principal, normal will be directed towards the centre of curvature.

The angle between $A_0 A_1$ and $A_1 A_2$ we denote by θ_1 ; and, generally, by θ_p we denote the angle between the osculating S_p 's at A_0 and A_1 . Thus $\text{Lim}(\theta_p \div A_0 A_1) = \phi_p$.

Let $A_0 N_1$, $A_0 N_2 \dots A_0 N_p$... be the 1st, 2nd, ... pth ... normals to the polygon at A_0 .

Let $A_1 M_1$, $A_1 M_2$, ..., $A_1 M_p$... be the 1^{st} , 2^{nd} , ..., p^{th} ... normals to the polygon at A_1 , so that $A_1 M_p$ lies in $S_{p+1} (A_1 A_2 ... A_{p+2})$ and is perpendicular to $S_R (A_1 A_2 ... A_{p+1})$.

Let each of these normals be of unit length, and let

$$A_1 P_1 \equiv A_0 N_1, A_1 P_2 \equiv A_0 N_2,$$
 etc.,

where \equiv asserts equality in magnitude and sameness in direction.

Now let $A_1 P_1$ rotate through θ_1 in the plane $A_0 A_1 A_2$, in direction away from $A_1 A_2$ to the position $A_1 P_1'$. Then since the same rotation would bring $A_1 A_0$ into line with $A_1 A_2$, $A_1 P_1'$ will be perpendicular to $A_1 A_2$. Let it then rotate through θ_2 to $A_1 P_1''$, towards $A_1 P_2$ in the plane which is perpendicular to $A_1 A_2$ and which lies in $S_3(A_0 A_1 A_2 A_3)$. Then $A_1 P_1''$ is in the plane $A_1 A_2 A_3$ and is perpendicular to $A_1 A_2$. Hence $A_1 P_1''$ coincides with $A_1 M_1$.

Similarly, let $A_1 P_p$ rotate through θ_p about $S_{p-1} (A_1 A_2 \dots A_p)$, away from $A_1 M_{p-1}$ to a position $A_1 P_p'$ in $S_{p+1} (A_0 A_1 \dots A_{p+1})$. Since the same rotation would bring $S_p (A_0 A_1 \dots A_p)$ into coincidence with $S_p (A_1 A_2 \dots A_{p+1}), A_1 P_p$ being perpendicular to the former $S_p, A_1 P_p'$ will be perpendicular to the latter.

But $A_1 P_{p+1}$ is perpendicular to $S_{p+1} (A_0 A_1 A_2 \dots A_{p+1})$ and therefore to $S_p (A_1 A_2 \dots A_{p+1})$ as is also $A_1 M_p$, and all three of these lines lie in $S_{p+2} (A_0 A_1 \dots A_{p+2})$. Hence they lie in the same plane perpendicular to $S_p (A_1 A_2 \dots A_{p+1})$, $A_1 P_{p+1}$ being perpendicular to $A_1 P_p'$. Now a rotation of amount θ_{p+1} about $S_p (A_1 A_2 \dots A_{p+1})$ brings $S_{p+1} (A_0 A_1 \dots A_{p+1})$ into coincidence with $S_{p+1} (A_1 A_2 A_3 \dots A_{p+2})$.

Hence it will bring $A_1 P_p'$ which lies in the former S_{p+1} to a position $A_1 P_p''$ which will lie in the latter, and, being perpendicular to $S_p(A_1 A_2 \dots A_{p+1})$, must coincide with $A_1 M_p$.

Thus $A_1 P_p$ can be brought into coincidence with $A_1 M_p$ by two rotations, one of amount θ_p , away from $A_1 M_{p-1}$, and the other of amount θ_{p+1} , towards $A_1 P_{p+1}$.

Hence if we suppose the sides of the Polygonal figure to be small, so that we may reject quantities of the second order, we have $P_p P_p' = \theta_p$, its direction being that of $M_p A_1$, and $P_p' P_p'' = \theta_{p+1}$, its direction being that of $A_1 P_{p+1}$.

Thus taking l_0 , m_0 , n_0 , o_0 , p_0 ... to denote the direction cosines of $A_0 A_1$,

and taking l_1 , m_1 , n_1 , p_1 ... to denote the direction cosines of $A_0 N_1$ or $A_1 P_1$,

and taking l_p , m_p , n_p , p_p ... to denote the direction cosines of $A_0 N_p$ or $A_1 P_p$.

we have $\delta l_p = \text{projection of } P_p M_p \text{ on } 0 x$ = $-l_{n-1} \theta_n + l_{n+1} \theta_{n+1}$. Taking δs to denote $A_0 A_1$, we deduce

$$\frac{\delta l_p}{\delta s} = - l_{p-1} \frac{\theta_p}{\delta s} + l_{p+1} \frac{\theta_{p+1}}{\delta s}.$$

Going to the limit for $\delta s \rightarrow 0$, we get the formula

$$\frac{d l_p}{d s} = -l_{p-1} \phi_p + l_{p+1} \phi_{p+1} \,.$$

Similarly we find $\frac{dm_p}{ds} = -m_{p-1}\phi_p + m_{p+1}\phi_{p+1}$, etc.

These formulae include those of Frenet as particular cases, when the curve is confined to three dimensions, so that ϕ_3 and the higher flexures are all zero