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Abstract

Fluid motion established by an oscillatory pressure gradient superimposed on
a mean, in a tube of slowly varying section, is studied when the temperature
of the tube wall varies with axial distance. Particular attention is focussed on
the mean flow and steady streaming components of the oscillatory flow of higher
approximation. For the velocity components, the axial component takes the pride
of place, since this component is responsible for convection of nutrients to various
parts of the body of a mammal in systematic circulation. A salient point in
the paper concerns consequences of free convection currents at a constriction

1. Introduction

In a previous analysis, Bestman [1] studied the steady flow in a uniformly heated
tube of slowly varying section in the presence of a heat source/sink term, as
applicable to physiological situations. The temperature of the body, that is the
temperature in the interior, called the core temperature, is fairly well regulated,
normally varying from the mean by not more than 0.6°C Hence the wall of the
blood vessels which travel deep inside the body will not show much variation in
temperature, and the above analysis is applicable in such cases.

On the other hand, the surface temperature of the body rises and falls with
the temperature of the surroundings, within a certain limit. In such a case,
the wall temperature of blood vessels which start from the core to the surface
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180 A. R. Bestman [2]

will exhibit variation with axial distance. An example is the subclavian artery
which branches from the aorta and bifurcates further into the brachial artery that
subsequently travels to the near surface of the body. The present problem, which
considers a pulsating flow in a tube of varying section with axial temperature
variation, is therefore addressed to these classes of blood vessels.

Also, a heat source/sink term is incorporated in the analysis to accommodate
abnormalities of body temperature regulation in a pathological situation. For
example, the thermal regulation centre in the hypothelamus may adjust its set-
point temperature to higher values when there is fever. Some causes of fever are
bacterial diseases with subsequent decrease of white blood cells, brain tumors
and a cycle of heat production.

The subsequent analysis is divided into five sections.
In Section 2 the non-dimensional equations are presented, followed by a de-

termination of the leading approximations. In Section 3 the higher approximate
solutions due to the mean pressure gradient are deduced in the light of [1]. The
steady streaming solutions which appear at the higher approximations for the
oscillatory pressure gradient are discussed in Sections 4 and 5. In Section 6 the
results are discussed and quantitative appraisal of the steady state streaming are
presented for a locally constricted tube.

2. Governing equations and leading approximations

We consider viscous flow, with heat source/sink term Q in a heated long tube,
which in cylindrical polar coordinates (r',4>,z') is defined as

r> = a(z') = aos{ez'/ao) 0 < e < 1. (2.1)

Here ao is a characteristic radius. We assume that the pipe is subjected to an
axial pressure gradient at one end and z' = 0. Thus

-^(r',<f>,0,t')=C'Q + K'osinujt'. (2.2)

The boundary conditions for the problem are the no slip condition for velocity
and the equality of fluid and wall temperatures at the tube wall. Thus

u' = 0 = v' = w', T = TwTa{l + X'f{z')). (2.3)

We have defined (u1, v', w') as the velocity components in the (r1, <j>, z')-direction,
t' is time, w is frequency of oscillation and T is the fluid temperature. C'o and
KQ are the amplitudes of the pulsating pressure gradient and T<,it0)OO represent
the atmospheric, wall and ambient temperatures respectively. We shall take the
ambient temperature as that of the static blood in the left ventricle.
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[3] Flow in heated tube of varying section 181

Next we assume that the Boussinesq approximation is valid, so that if p des-
ignates fluid density, the equation of state of the Boussinesq fluid is

Poo~P = PocPiT - T^, (2.4)

where /? is the coefficient of volume expansion. Furthermore, let fj, designate the
fluid viscosity, k the thermal conductivity and cp the specific heat at constant
pressure. It is now expedient to introduce

t = ut', r = r'/a0, z = ez'/a0,

(u, v, w) = (u1, v', ew')/eU0, p = (p' - P

" T o - T o o ' ^ " '

A = T - T ' a = t

R = PccUoao/fi, G = Poo9(3al{Ta - Too)/etiU0,

P = fJ,Cp/k, a = pooual/fi. (2.5)

Here UQ is a typical axial velocity, R is the Reynolds number of the flow such
that eR — 0(1) (the low Reynolds number assumption), G is the free convection
parameter or Grashof number, P is the Prandtl number and axl2 is usually
referred to as the Womersley parameter. The gravitation g makes an angle x
with the radial axis of the tube.

By virtue of (2.4) and (2.5), the non-dimensional equations of continuity,
momentum and energy could be written as

Id, . 1 dv dw
- —(ru + - — + -^-=0,
r or r d<p dz

du •>„/ du v du v2 du\
—+e2R [u— + - ^ T +w^~
dt \ dr r d<j> r dz)2edv

"at

0 _ / dv v dv uv dv\
£2R[u—+ --— + — + w—

\ dr r d<p r dz)
I dp (^ 1\ 2edu 3d

2v
= — - ^ + £ V 2 - - U + -2 — + e 3 —

r d<j> \ r) r2 d(j> dz2

( dw v dw dw\ dp „ , od
2w „_ .

eR ( u -—+ —— + w-5- =-e-f + V2w + e2—Y-e0GsmX\ dr r d(j> dz) dz dz2
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182 A. R. Bestman |4)

subject to the conditions

--£{r,<t>,O,t) = -(Co+Kosint), u = 0 = v = w, 6 = 1 + Xf(z) on r = s(z).
oz s

(2.7)
A supplementary equation which is found useful in analysis is obtained by elim-
inating the pressure gradients from equations (2.6b,c). That is

„ f 1 d f / dv v dv uv dv\~\
eR{ --£- \r(u—+ -— + — +w-z-

[r dr [ \ dr r d<t> r dz) J

1 d ( du v du v2 du\\
rd<f>\dr r d<f> r dz) J

d \ \ l d , > ldu] _ (89. ± lde \
dtj [r dr r d<p\ \dr r d<j> J

{ 2 - 8 )

such that

~ dr2 + rdr + r2 d<f>2'
Also we take

a = gi + q2T{t), r(t) = sin(ai + 6) (2.9)

The statement of the problem is now complete.
Since e is small, we seek asymptotic expansion for the velocity components

and temperature of the form

u = «o + e«i + ---etc., (2.10)

while for the pressure we write

p=( l /e )po + P l + . . . . (2.11)

Substituting (2.10) and (2.11) into equations (2.6)-(2.9), we find that for the
leading approximation

Id, , 1 dvo dwn
- — rti0) + - - ^ + - ^ = 0,
r dr r d<j> dz

_ 0 _ !
dr r d<t> '

a 0 J L °r r dcp J

0,0, t) = (Co + KQ sin t), UQ — 0 = VQ = WOJ ^o = 1 + ^f(z)

on r = s(z).
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[5] Flow in heated tube of varying section 183

First of all we observe that po = Po(z) only. Now putting

u0 = t40) (r, 0, z) + u£\r, 0, z, t) etc.,

we have

(0) a...(0)1 dvX" dmo _
dz

= 0

,(°) + G cos x
r50(Q)

dr
sin 0 H

ldB™ 1
7TT- C 0 S 4> \ ~ 0r 50

j

= 0 = on r = s(z),
(2.12)

where an accent or a subscript denotes differentiation with respect to z, and

1 5 "o _
r 50 5z

= 0,

r5r

4- G cos x

v'"° ' r 50 J
r 50 ( 1 ) 150 ( 1 )

p— sin 0 H -̂ — cos 050
= 0

a ( ° > * ) = ^osin«, u{o)=O = v^)=w^1)=e^1) on r = s{z). (2.13)
5/j

The method of solution of (2.12) has been discussed by Bestman [1]. The
results are

0)-|[r/s - (r/s)3] - —~GcosxQis4[l - (r/a)2]2 cos0

v° =
 OQ7<^'C 0 SX9I 5 4[^ ~ (r/s)2][l ~ 5(r/3)2]sin0. (2-14)

It is pertinent to note that the wall temperature variation does not affect the
basic axial flow variables.
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184 A. R. Bestman [6]

For the oscillatory components, we put

4 1 } = \{hOe« + hoc-"),

\ (2.15)

Thus

1 3 ,rfV.ldgodho Id ldgi
-T{rfo) + + = ° (r/) + = °r

(V2 - ia)h0 = 22L-, (V2 - iaPaho = i<l2,

(V2 — ) [^(rfc, - \°I] = -CcosX [^sin^ + i ^

a 7 fo = h=9i = ho = lo = 0 on r = s{z). (2.16)

Then

92 f JQ{PW\r)}i1 (2-17)
where $2 = —fa and Jm(x) is Bessel's function of the first kind of order m. Next,
we set

ffl = ^ 0 ) (r, z) sin «A (2.18)

with the result

r5rv u xa [ Jo{$s)] la

and

i - $qi - C f i S W (219»

~('A( O I) + i»i0)=0, (2.20a)

- < > - *
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[7] Flow in heated tube of varying section 185

Integrating equation (19) gives

xa \2 fJ0(f«)J w 4?

If we impose the no-slip condition on (2.21) we deduce the Reynolds equation
for the pressure

IS2 _ f£i(££) 1 PW" _ ss> | Z i M 1 PW' = o (2.22)

as first derived by Hall [3]. In virtue of the pressure boundary condition in (2.16),
(2.22) reduces to

Finally, integrating equation (2.20b) once, we have

and then solving this equation simultaneously with (2.20a), we can show that

_ P) [Ai

(2.24)

where A^ and B\ ' are arbitrary functions of z given by

(o) =
1

(o)
1

and the solution to the leading approximation is now complete.
We observe that the leading pressure gradient given by (2.23) differs from the

forcing pressure in (2.16). In the absence of free convection currents, the two
pressure gradients are the same (Bestman [2]).
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186 A. R. Bestman [8]

3. Higher approximation for the mean pressure gradient

If we continue the expansion started in (2.10) and (2.11), then the order O(e)
approximation is

Id, . 1 dv\ dw\
r dr ' r d<j> dz

dpi _ ~ _ ldpi
dr r d<l>'

v0 dw0 dw0 \ dpi , _ 2
+ w ) = + Vw

"1 + PR

dr r 3<j> r dz
1 9 / duQ v0 du0 VQ duo \ \
r d<p \ dr r dq> r dz J)

(3.1a,b,c,d,e)
subject to the conditions

U\ = 0 = v\ = W\ = ^i on r = s(z),

r, <f>,O,t) =0. (3.2a,b)

Once more we observe that pi = pi (2:, <) only. Again we seek solution in the
form

ui =u?)(r,4>,z) =u[1\r,<f>,z,t) etc.

For the present case of discourse, a = 0, KQ = 0 = 92 in (3.1) and (3.2)
and by virtue of solution (2.14), (3.1c, d) can be integrated in a straightforward
manner. The results are

^ ) ^ C 4 ( O ) [ l l 18(r/3)a + 9(r/s)4 - 2{r/sf)

- 6(r/s)3 + 4(r/s)5 - (r/s)7} cos<j>

/s) - 35(r/s)3 + 35(r/s)5 - 16(r/a)7] cos<̂

APAcoS(o)f z[4(r/s) - 5(r/s)2 + (r/5)4] cos<j> (3.3)
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[9] Flow in heated tube of varying section 187

and

w (0) = _ p (0) V ( 1 _ ( r / s ) 2 ]

±s(O)s*(l/s*)z [H _ 2(r/S)2 + {r/sY - ^(r/s

^ 3 ( r / s ) - 6 ( r / s ) 3 + 4 ( r / s ) 5 - (r/5)7]cos«A

a) - 3 5 ( r / s ) 3 + 3 5 ( r / s ) 5 - 16( r / s ) 7 ] cos<£,

- Gsinx {[1 + A/(z)]s2[l - {r/sf\ + ±<?lS
3 [̂  - {r/sf + i(r/s)4] }

(3.4)

The function p\ can be obtained by lubrication theory as discussed by Best-
man [1]. In short to deduce the solution for UQ and VQ , we write

' (r, z) cos 2<j> + F2
(1) (r, z) cos 2<f>,

g\ (r, 2;) sin (j) + G\ (r, 2) si

in 20. (3.5)

Then

34(0)( 0 ) , _

2562G'sinx 1 T f 1. 3 , r, w / M 2 1 0 2 2
- ~CWW " ? 7.(0, UXS/Z + U + A/ (2 ) l5 SZ + 969?S

(3.6)

and f[°\ f[$, g[]l are given in [1] by (3.22), (3.24), (3.25) respectively, except
for an additional term in /} ' which is a multiple of Gsinx. The remaining
functions Ffj, G^l, which depend on the axial temperature variation, may be
obtained similarly. The additional term and these functions are given in the
appendix.

4. Steady state streaming for small a

Steady state streaming, which has attracted both mathematical and physi-
ological interest, arises as a result of pure oscillatory forcing pressure, and is
different from a steady solution that would be provoked by a time-independent
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188 A. R. Bestman [10)

pressure. The steady streaming that results from multiplication of exponentially
time-varying functions manifests itself when a = 1 and 6 = 0, and the results in
this and the following sections are for this special case.

The cause of this steady-state streaming is the non-linearity of the governing
equation. For example, if in the oscillatory components of (3.1) and (3.2) we
employ a subscript s to denote steady streaming components, we find that as
before for the order 6{e) approximation, the pressure p£^ = pi^(z). For the
temperature and velocity components we write

41] = /s
(0) (r, z) + / i 1 ' (r, z) cos <t> + /j2> (r, z) cos 20,

vi1] = 9^ (r, z) sin <j> + g™ ( r , z) s i n 2cf>.

The remaining equations of this approximation become
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[11] Flow in heated tube of varying section 189

and

1 a o

(4.5)

+ -*(

Here Re represents the real part of a complex variable. These quantities are to be
solved subject to homogeneous boundary conditions at the wall r = s(z) for the
velocity components and the temperature and the pressure condition p's (0) = 0.

Because of the transcendental nature of the right-hand side of equations (4.1)-
(4.5), we shall discuss the solution to these equations for small and large values
of a only. The oscillatory solutions could be tackled similarly.

When a is small, it is possible to obtain uniformly-valid approximate solutions
to equations (4.1)-(4.5). For example, substituting (2.17) and (2.21) in (4.1) and
(4.2) and taking the limit as a —> 0, we have

1 4(0)

= - i r PRK°'> V
+ \"fr dr

and

dr2 r dr
1

1 m
2ns

1536
K0GcosXQ2 • f ? (< r /2 ) 1 / 2 ( r 5 - s4r
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190 A. R. Bestman [12]

The solutions of these equations subject to homogeneous conditions at the tube
wall are

k ^ [ 1 1 " 1 8 ( r / s ) 2 + 9(r/s)4"2(r/5)6] + o(a)'
(4.6)

G ^ 7 W 2 ) 1 / 2 [ 5 ( / S ) - 6 ( r / S ) 5 + (t/S)7 + O(a)] (4.7)
1 , 2 _ 2

and

Substituting (4.8) in (4.3) and integrating we obtain

r • «6*"[4(r/s) - 6(r/S)3 + 4(r/S)5 - (r/S)2]

' «53'2[4(r/«) - 10(r/*)3 + | ( r / S ) 5 - 3(r/S)7].

(4.10)

Imposing the no-slip boundary condition results in the Reynolds equation for
the pressure

Integrating this, subject to Ps^(O) = 0, gives

^W] (4.11)

To effect solution of (4.4) involves substitution of known quantities in the
right-hand side of (4.4), taking the limit as a —* 0 where necessary, and integrat-
ing once. The resulting equation can now be solved simultaneously with (4.4).
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[13] Flow in heated tube of varying section 191

Equation (4.5) can be tackled similarly. The results are

3456
, 1 47,

X | - ) - 4 0 (

$ 1 4 1 , 1 5 7 9
(r/s) H (r/s) (r/s) H (r/s)"I + d o

) 40 4 8 80 J

(4.12)

and

(4.13)

In (4.12) we have left out terms of order O{a1l2) as opposed to previous compu-
tations. These terms may be computed without many complexities. However,
for the flow velocity we are primarily interested in the axial component, which
convects the nutrients of the blood to various parts of the body in systemic
circulation.

5. Steady state streaming for large a

For reasons advanced above, we shall only consider the solutions to the tem-
perature and axial velocity of equations (4.1) to (4.3) when a is large. Now it
is no longer possible to construct uniformly-valid solutions, as a result of the
presence of a boundary layer of thickness (cr/2)"1/2 and coordinate

(5.1)
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192 A. R. Bestman [14)

Thus, retaining small letters for the outer problem and adopting capital letters
for the inner problem, equations (4.1) to (4.3) split into the two groups:

and

dr2 +r dr ~Pa

dTJ0)

• ± Re{(l - i)

dr, [r,-(a/2y/2s]2

[77 - (a/2)1/2s] a;?

-K*R^-s'± Re{(l - Ole-*1-')" - e"2"

1 dH^ 1
[T? - W

52(0)
a3 / 2P3/2( l -aP) ' s2" ' s

P's

Re{(l - t)[(l - ^

,-mdHi0)

(5.3)

(5.4)
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[15] Flow in heated tube of varying section 193

where

and

P's = \v'a- (5-5)

The boundary and end conditions are

r'Oll )(0,2) = 0 = #JOll(0,z) = .FJo)(0Iz), Ps(0) = 0. (5.6)

The solutions to the outer and inner problems can be effected by standard
techniques. The outer solutions are straightforward and are given by

™(0) _ „(()) .,(1) _ , , ( l ) r (c 7\
la ~ as , Is — as ~ \°-<)

where as°'*' and b^0>1^ are arbitrary functions of z to be determined. For the
inner problem, on denning the exponential integral

Em(z) = f e'ztrn dt, (5.8)
./l

the solution of equations (5.2) and (5.3) may be put in the form

W = K0q2a
l'2P1'2Rs' • ^

(1 — i) \A^ — (e~(1-t)a p i — e 'U-w

r, - (a/2)1/2t

(5.9)
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194 A. R. Bestman [16]

- \e-(l-i)a
1/2Pl/aV

I
8a3/2p3/2 Y {n ( / ) ] /

e

(5.10)

(5-11)

8i

al/2pl/2

8

1

\
e

(5.12)

' and 5s ' are functions of z whose values follow from the homogeneous
boundary conditions (5.6).
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[17] Flow in heated tube of varying section 195

To obtain the value for P'a, we now substitute equation (5.11) into equation
(5.4). After integration, the result is

s4 <72[T/ - (a/2)V2s ]

X Re ((1 - i) [A ([r, - {a/2)1'2s) + —

1

Zz

+ O(a-1/3)J.

Imposing boundary condition (5.6) on (5.12) leads to the Reynolds equation

a + 4-Pg - 4K0R— • -j

• Re {(1 - i) [1 (-(./2)1/2. + ̂  + I ( -
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196 A. R. Bestman [18]

Integrating this equation subject to the end condition (5.6), we have

0 s4 (a/2)7/2

•Re

(5.13)
where

en{-a) =

Finally, matching the outer and inner solutions, we find that

(1) _ _ X 9 2 . _±_ R{( _
s ~ oP(l-aP) (a/2)KeU

b° - S ' ' a3/2p3/2(! _ a p ) S2 s |

The solutions are now complete, since p's could be obtained from equation (5.5)
and (5.13) by discarding terms which decay exponentially in equation (5.13).

6. Discussion

The modification to the mean flow, as a result of axial temperature variation
of the tube wall, has been noted. Quantitatively the discussion of the problem
for the cases:
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[19] Flow in heated tube of varying section 197

is not very different from that presented by Bestman [1] when the wall temper-
ature is uniform. Therefore the present discussion will be limited to the steady
streaming flow for which the wall temperature variation has no effect.

The problem of free convection heat transfer has far-reaching effects on the
flow in a tube of varying section. Indeed, the boundary condition for the velocity
at the wall, in non-dimensional form, as discussed by Manton [4], should be

w + eV = u = 0, v = 0 r = s(z). (6.1)

This is also the form adopted by Bestman [2] in the analysis of oscillatory flow
in a tube of varying section in absence of heat transfer. In this case the basic
perturbed pressure gradient corresponded with the forcing pressure gradient. All
higher pressure gradients are zero.

In the presence of heat transfer, which is the primary concern of this paper,
it is necessary to take u and w as zero at the tube wall. The perturbed pressure
gradients are now deduced by lubrication theory, so that even the basic order
pressure gradients are different from zero. If the amplitude of the oscillatory
forcing pressure gradient transcends over the mean pressure gradient (that is
KQ ^ Co) then the consequence of this at a local constriction (stenosis), such
that s' = 0 at the constriction, is to offset the trapping effect and consequent
thrombus formation discussed by Bestman [2].

A cursory excursion into the literature reveals the following characteristics of
blood in man:

Characteristics of blood numerical value

characteristic velocity in aorta 40 cm/sec
kinematic viscosity (v) 0.04 cm2/sec
typical aorta radius 0.04 cm
Prandtl number(P) 25

For simplicity we take e = 0.01 and 0 = l/T^ where T^ is taken as 38°C Thus
for a pleasant 20°C, the Grashof number G = 5.3.. . while for a hot 40°C it is
0.6... .

We shall consider numerical discussion for a locally constricted tube of the
form

s(*) = l - ( l / 2 ) e x p ( - * 2 ) . (6.2)

We take Ko = 1, <j> = 0 and with the origin (z = 0) at the constriction, the
value of s(0) (at the inlet assumed far away from the constriction) may be taken
as unity. The other parameters of the problem are varied to simulate different
physical situations. We shall limit our discussions to the case of small a. When
a is large, the situation remains very similar except that the temperature and
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198 A. R. Bestman [20]

III

0.10

0.8 10 r/s

FIGURE 1. Steady streaming axial velocity profile

, a i = 1.0, P = 25,(7 = 0.1
z

- 0 . 5 I
0.0 II
0.5 III

velocities involved are much smaller as evidenced by the analysis in Sections 3
and 4.

In Figure 1, the steady streaming axial velocity is plotted across the tube
upstream of the constriction, at the constriction, and downstream of the con-
struction, with P = 25 and R = 40, as may correspond to blood. If P = 7 and
R = 10, which may correspond to water, the various flow variables reduce by
approximately 5%. This reduction is quite small when compared to the product
ePR, which takes the value 0.7 for water and 10 for blood. Apart from a small
backflow near the centre of the tube downstream of the constriction, all fluid
flows in the desired direction. This could be contrasted with the case of zero
heat transfer (see [4]) in which the fluid flows in the right direction downstream
of the constriction, while upstream of the constriction it flows in the reverse di-
rection, the flow velocity being zero at the constriction. This is the phenomenon
of trapping, with possible thrombus formation at the constriction. Free convec-
tion heat transfer annihilates this thrombus formation, provided the mean flow
is small in comparison with the oscillatory flow, KQ~^> CQ.

The steady streaming velocity distribution for various values of the parameter
are depicted in Figure 2. Increase in the Reynolds number causes a correspond-
ing increase in velocity, while increase in the Prandtl number has negligible effect
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FIGURE 2. Steady streaming axial velocity profile
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on the velocity. Also, increase in the free convection parameter (G) and a cause
a more drastic increase in the velocity.

It was also observed that the temperature at z = —0.5 is negative, whereas it
is positive (but virtually equal in magnitude) when z = 0.5. At the throat the
temperature is zero. When R and P increase, the temperature increases while
increase in G and a has negligible effect on the temperature. When the source
and sink interchange their role, for example G = —5, 92 = —1, the velocity is
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unaltered while the temperature distribution is reflected symmetrically about
the r/s-axis.

It is a sobering thought that for several years physicians have used a hot water
bottle in areas of suspected thrombus formation. The quantitative reason has
been revealed by this analysis.

Finally we compare the steady streaming solution of Section 4 with the basic
approximation arising from the mean pressure as given in (2.14). While the
temperature and axial velocity in (2.14) are free from any roll, the buoyancy
contribution in the steady streaming temperature and axial velocity gives rise
to a double longitudinal roll system with the centre line as the axis of the roll.
However this double roll system manifests itself in the radial and azimuthal
velocity components of the mean forcing pressure. For the steady streaming
radial and azimuthal velocity components, the free convection contribution is
in two parts; a double roll system and four separate roll systems, one in each
quadrant in the vertical plane.
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Appendix

256
Addition term +

C(°)238(0)

• GsinX JA/,33 [i(r/S) - i(r/*)3] [1 + Xf(z)]s2sz(r/s)

sf - 35(r/s)4 + 35(r/5)6 - 16(r/S)8]

) 4 _ 3 5 ( r / S ) 6 + 1 6 ( r / s ) 8 ] - § ; < ™
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( / ) 2 )

^[140 + 105(r/S)2 - 245(r/S)
6] - ±[1 + 8(r/S)2 - 9(r/s)8]}

/ . {^[105 + 70(r/S)2 - 175(r/S)
4]

- l[150 + 105(r/5)
2 - 245(r/5)

6] + |[1 + 8(r/5)2 - 9(r/s)8] J

| l ( r / s ) 2 ln(r / S ) + 1[1 + 5(r/5)2 - 6(r/5)
4]

i ^ o [ 2 9 1 " 4 8 5( r /5)2+9 4(r /5)5] - i i s [ 6 ~ 9 ( r / 5 ) 2 + 3 ( r / s ) 6 ]

+ I l5[205-287(r/5)2+82(r/S)7] |

szfzz {i(r/S)2ln(r/5) + 1[1 - (r/5)
2]+

- 1(17 - 34(r/s)2 + 17(r/s)4] + ^ [ 5 1 - 85(r/s)2 + 34(r/S)4](

+ (r/5)2 + (r/s)6] - ^ [ 2 5 - 35(r/S)2 + 10(r/S)7]}

| l ( r / s ) 2 l n ( r / 5 ) + I[l - (r/5)
2]

[

lg[10 - 15(r/a)2 + 5(r/S)6] - ^ [ 4 0 - 56(r/5)
2 + 16(r/s)7]}
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(r/S)4

- 177(r/s)3 + 125(r/s)5 - 35(r/s)7 + 8(r/s)9]

RGcos2 X^Qi88fz \ o(r/s)3ln(r/s) + — [r/s — {r/s)3]

[r/« - 3(r/S)3 + 2(r/

[r/sf] - ^ [ 2 ( r / « ) - 3(r/S)3 + (r/5)7]

OQ 1

2io [r/« - 3(r/S)3 + 2(r/*)4] + 3J5 [138(r/«) - 230(r/*)3 + 92(r/a)]

W 2 ( /
- 427(r/«)3 + 122(r/88)8] J

/*2 {^[(r/«) - 2(r/s)3 + (r/s)
8100

-J-[42(r/5) - 63(r/s)3 + 21(r/S)7] - ±-[{r/s) - 3(r/S)3 + 2(r/s)4]
14

287

1890
[3(r/S)-5(r/5)

3+2(r/s)6]J.
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