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Abstract

The classical first and second Zagreb indices of a graph G are defined as M1(G) =
∑

v∈V(G) d(v)2 and
M2(G) =

∑
e=uv∈E(G) d(u)d(v), where d(v) is the degree of the vertex v of G. Recently, Furtula et al.

[‘On difference of Zagreb indices’, Discrete Appl. Math. 178 (2014), 83–88] studied the difference
of M1 and M2, and showed that this difference is closely related to the vertex-degree-based invariant
RM2(G) =

∑
e=uv∈E(G)[d(u) − 1][d(v) − 1], the reduced second Zagreb index. In this paper, we present

sharp bounds for the reduced second Zagreb index, given the matching number, independence number
and vertex connectivity, and we also completely determine the extremal graphs.
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1. Introduction

All graphs considered in this paper are finite undirected simple connected graphs. Let
G = (V(G), E(G)) be a graph with n = |V(G)| vertices and m = |E(G)| edges. Let dG(v)
be the degree of a vertex v in G. When the graph is clear from the context, we will
omit the subscript G from the notation. For graph theoretical terms that are not defined
here, we refer to [3].

For a given graph G, its first and second Zagreb indices are defined as follows:

M1(G) =
∑

v∈V(G)

d(v)2

and
M2(G) =

∑
e=uv∈E(G)

d(u)d(v). (1.1)
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The first Zagreb index can also be expressed as a sum over edges of G [6],

M1(G) =
∑

e=uv∈E(G)

[d(u) + d(v)]. (1.2)

In 1972, the quantities M1 and M2 were discovered in certain approximate
expressions for the total π-electron energy [12]. In 1975, these graph invariants
were proposed as measures of branching of the carbon atom skeleton [11]. The
name ‘Zagreb index’ (or, more accurately, ‘Zagreb group index’) seems to be first
used in the review article [1] and after that became standard. For a survey of
mathematical properties and chemical applications of the Zagreb indices, we refer
to [6, 8, 9, 16]. What we call here the ‘first Zagreb index’ was independently studied
in the mathematical literature under other names [2, 4, 5, 17].

Although the fact that the two Zagreb indices were introduced simultaneously
[11, 12] and analysed together, the relations between them were not considered until
relatively recently. Given the extensive research on the two Zagreb indices, it is
somewhat astonishing that these indices were not directly compared. In particular,
their difference M2 − M1 seems to have been studied only to a limited extent [10, 15].

Recently, Furtula et al. [7] considered this problem, and showed that the difference
of M1 and M2 is closely related to the vertex-degree-based invariant named the reduced
second Zagreb index, which is defined as

RM2(G) =
∑

e=uv∈E(G)

[d(u) − 1][d(v) − 1].

In mathematical chemistry, this invariant is often referred to as the ‘Wiener polarity
index’. A few basic properties of RM2 were determined [7]. If the graph G is a tree,
then RM2(G) is equal to the number of pairs of vertices at distance 3 [19].

In this paper, we present sharp bounds for the reduced second Zagreb indices with
given matching number, independence number and vertex connectivity, and we also
completely determine the extremal graphs.

2. Preliminaries

Let us first introduce some notation and terminology. We denote by Kn and Sn
the complete graph and the star graph on n vertices, respectively. For two graphs
G1 = (V1, E1) and G2 = (V2, E2), the union G1 ∪ G2 is defined to be G1 ∪ G2 =

(V1 ∪ V2, E1 ∪ E2). The join G1 ∨ G2 of G1 and G2 is obtained from G1 ∪ G2 by
connecting each vertex of G1 with each vertex of G2 by an edge. We write G − e
for the graph formed from G by deleting the edge e ∈ E(G) and G + e for the graph
obtained from G by adding the edge e, provided that e < E(G).

The addition of new edges in the graph increases some vertex degrees.

Lemma 2.1. Let G be a connected graph of order at least three.

(a) If G is not isomorphic to Kn, then RM2(G) < RM2(G + e) for any e ∈ E(G).
(b) If G has an edge e not being a cut edge, then RM2(G) > RM2(G − e).
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By Lemma 2.1, we can characterise the connected graphs with maximum RM2-
value. More precisely, we arrive at the following result.

Theorem 2.2. Among all connected graphs of order n, the complete graph Kn has
maximum RM2.

Proof. If G is not the complete graph, then we can repeatedly add edges into G until
we obtain G = Kn. By Lemma 2.1, RM2(G) ≤ RM2(Kn), with equality if and only if
G � Kn. �

A matching of a graph G is a set of edges with no shared end points. The
matching number β(G) of the graph G is the number of edges in a maximum matching.
Obviously, β(G) = 0 if and only if G is an empty graph (with no edges). For a
connected graph G with n ≥ 2 vertices, β(G) = 1 if and only if G = Sn or G = K3.
If β(G) = n/2, then the graph G has a perfect matching.

The following lemma, known as the Tutte–Berge formula, is an important tool to
characterise the matching number.

Lemma 2.3 [14, 18]. Suppose that G is a graph of order n with matching number β. Let
o(H) denote the number of odd components (that is, components of odd cardinality) of
a graph H. Then

n − 2β = max{o(G − X) − |X| : X ⊂ V(G)}.

We also need the following result.

Lemma 2.4. Let G be a connected graph of size m. Then

M2(G) − M1(G) = RM2(G) − m.

Proof. By (1.1) and (1.2), noting that the set E(G) has m elements,

M2(G) − M1(G) =
∑

e=uv∈E(G)

[d(u)d(v) − d(u) − d(v)]

=
∑

e=uv∈E(G)

[(d(u) − 1)(d(v) − 1) − 1]

= RM2(G) − m. �

3. Main results

In this section, we shall establish various bounds for RM2 in terms of other
graph parameters including the matching number, independence number and vertex
connectivity. First we present the following auxiliary result.
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Lemma 3.1 [13]. The four roots of the quartic ax4 + bx3 + cx2 + dx + e = 0 (a , 0) with
real coefficients are given by

x1 = −
b
4a
− Ψ(A, B,C) + Φ(A, B),

x2 = −
b
4a

+ Ψ(A, B,C) + Φ(A, B),

x3 = −
b

4a
+ Ψ′(A, B,C) − Φ(A, B),

x4 = −
b
4a
− Ψ′(A, B,C) − Φ(A, B),

where

Ψ(A, B,C) =
1
2

√
b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
+

C
8a3Φ(A, B)

,

Ψ′(A, B,C) =
1
2

√
b2

2a2 −
4c
3a
−

3√2A
3aB

−
B

3 3√2a
−

C
8a3Φ(A, B)

,

Φ(A, B) =
1
2

√
b2

4a2 −
2c
3a

+

3√2A
3aB

+
B

3 3√2a

and A = c2 − 3bd + 12ae, B =
3
√

D +
√
−4A3 + D2, C = −b3 + 4abc − 8a2d and D =

2c3 − 9bcd + 27ad2 + 27b2e − 72ace.

Theorem 3.2. Let G be a connected graph of order n ≥ 4 with matching number β,
2 ≤ β ≤ bn/2c. Let σ1, σ2, σ3 and σ4 be the four roots of the equation

8x4 + (n − 30)x3 − ( 3
2 n2 − 7n − 28)x2 + ( 3

2 n2 − 10n − 6)x + 2n = 0.

(1) If β = bn/2c, then RM2(G) ≤ 1
2 n(n − 1)(n − 2)2, with equality if and only if

G � Kn.
(2) If β ∈ (σ2, σ3) ∪ (σ4, bn/2c − 1), then RM2(G) ≤ 8β4 − 28β3 + (4n + 28) β2 −

(6n + 8) β + 2n, with equality if and only if G � K1 ∨ (K2β−1 ∪ Kn−2β).
(3) If β = σi (i = 2, 3, 4), then RM2(G) ≤ 8β4 − 28β3 + (4n + 28) β2 − (6n + 8) β +

2n = (2 − n) β3 + ( 3
2 n2 − 3n) β2 − ( 3

2 n2 − 4n + 2) β, with equality if and only if
G � Kβ ∨ Kn−β or G � K1 ∨ (K2β−1 ∪ Kn−2β).

(4) If β ∈ [2, σ2] ∪ [σ3, σ4], then RM2(G) ≤ (2 − n) β3 + ( 3
2 n2 − 3n) β2 − ( 3

2 n2 − 4n +

2) β, with equality if and only if G � Kβ ∨ Kn−β.

Proof. Let G0 be a graph having maximum reduced second Zagreb index among all
connected graphs of order n with matching number β. By Lemma 2.3, there is a vertex
subset X0 ⊂ V(G0) such that

n − 2β = max{o(G0 − X) − |X| : X ⊂ V(G0)} = o(G0 − X0) − |X0|.

For convenience, let |X0| = s and o(G0 − X0) = t. Then n − 2β = t − s.

https://doi.org/10.1017/S0004972715000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000386


[5] Some results on the difference of the Zagreb indices of a graph 181

Suppose that s = 0. Then G0 − X0 = G0 and n − 2β = t ≤ 1. If t = 0 then β = n/2
and if t = 1 then β = (n − 1)/2. In both cases, by Lemma 2.1, G0 = Kn and RM2(G) =
1
2 n(n − 1)(n − 2)2.

Assume in the following that s ≥ 1 and consequently t ≥ 1. Let G1,G2, . . . ,Gt
be all the odd components of G0 − X0. If G0 − X0 has an even component, then,
by adding an edge in G0 between a vertex of an even component and a vertex
of an odd component of G0 − X0, we obtain a graph G′ for which n − 2β(G′) ≥
o(G′ − X0) − |X0| = o(G0 − X0) − |X0|. It follows that β(G′) = β and, by Lemma 2.1,
G′ has larger reduced second Zagreb index than G0, which is a contradiction. Thus,
G0 − X0 does not have an even component. Similarly, G1,G2, . . . ,Gt and the subgraph
induced by X0 are all complete and any vertex of G1,G2, . . . ,Gt is adjacent to every
vertex in X0. Let ni = |V(Gi)| for i = 1, 2, . . . , t. Then

G0 = Ks ∨ (Kn1 ∪ Kn2 ∪ · · · ∪ Knt ).

Assume that n1 ≤ n2 ≤ · · · ≤ nt. If 3 ≤ ni ≤ n j, let

G′0 = Ks ∨ (Kn1 ∪ Kn2 ∪ · · · ∪ Kni−2 ∪ · · · ∪ Kn j+2 ∪ · · · ∪ Knt ).

Define f (x) =
(

x
2

)
(x + s − 2)2 + sx(n − 2)(x + s − 2) as a function of x on the interval

[2,+∞) so that

RM2(G0) − RM2(G′0) = f (ni) + f (n j) − f (ni − 2) − f (n j + 2).

Denote F(x) = f (x) − f (x − 2) so that RM2(G0) − RM2(G′0) = F(ni) − F(n j + 2). Note
F(x) = 4x3 + (6s − 27)x2 + (2s2 − 32s + 4ns + 62)x − 7s2 + 40s + 2ns2 − 8ns − 48. By
taking the derivative,

F′(x) = 12x2 + 6(2s − 9)x + 2s2 − 32s + 4ns + 62

= 6
(√

2x −
9

2
√

2

)2
+ 4s(n + 3x − 8) + 2s2 +

5
4
> 0,

since x ≥ 2 and n ≥ 4. This implies that F(x) is a strictly increasing function on
[2,+∞). Thus, F(ni) < F(n j) < F(n j + 2) and RM2(G0) − RM2(G′0) < 0.

Therefore, RM2(G0) attains its maximum if and only if n1 = n2 = · · · = nt−1 = 1 and
nt = n − s − t + 1 = 2β − 2s + 1. It follows that

G0 = Ks ∨ (K2β−2s+1 ∪ Kn+s−2β−1)

and

RM2(G0) =

(
s
2

)
(n − 2)2 +

(
2β − 2s + 1

2

)
(2β − s − 1)2

+ s(2β − 2s + 1)(n − 2)(2β − s − 1)
+ s(n + s − 2β − 1)(s − 1)(n − 2)

= 2s4 + 3(n − 4β − 1)s3 +

(3
2

n2 − 8nβ − 5n + 26β2 + 5β + 4
)
s2

−

(3
2

n2 − 4n + 24β3 − 4β2 + 2β − 4nβ2 − 2nβ + 3
)
s

+ 8β4 − 4β3 − 2β2 + β.
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We can consider the last expression as a function Φ(s). The second derivative of Φ(s)
is

Φ′′(s) = 24s2 + 18(n − 4β − 1)s + 3n2 − 16nβ − 10n + 52β2 + 10β + 8.

Claim 1. Φ′′(s) > 0.
To prove our claim, recall that 1 ≤ s ≤ β ≤ n/2. The discriminant of the quadratic

equation Φ′′(s) = 0 is

∆Φ′′ = 192β2 − (1056n − 1632) β + 36n2 + 312n − 444.

Now consider the function

Θ1(β) = 192β2 − (1056n − 1632) β + 36n2 + 312n − 444.

The discriminant of Θ1(β) = 0 is ∆Θ1 = 1087488n2 − 3686400n + 3004416. Let us
denote

Θ2(n) = 1087488n2 − 3686400n + 3004416.

Since the discriminant of Θ2(n) = 0 is ∆Θ2 = 1.358954496 × 1013 − 1.3069065388032
× 1013 > 0, the maximum positive root of the equation Θ2(n) = 0 is n∗ = (3686400 +√

∆Θ2 )/2174976. Note that ∆Θ1 = Θ2(n) > 0 when n > n∗. Therefore, the maximum
positive root of the equation Θ1(β) = 0 is

β∗ =
1056n − 1632 +

√
Θ2(n)

384
>

1056n +
√

147456n
384

> n >
⌊n
2

⌋
− 1.

Since β ∈ [2, bn/2c − 1], we find that ∆Φ′′ = Θ1(β) < 0, which completes the proof of
Claim 1.

By Claim 1, Φ(s) is a strictly convex function for 1 ≤ s ≤ β and the maximum value
of Φ(s) is attained when s = 1 or s = β. Note that

Φ(1) = 8β4 − 28β3 + (4n + 28) β2 − (6n + 8) β + 2n,

Φ(β) = (2 − n) β3 + ( 3
2 n2 − 3n) β2 − ( 3

2 n2 − 4n + 2) β.

After subtraction,

Ψ(β) = Φ(1) −Φ(β) = 8β4 + (n − 30)β3 − ( 3
2 n2 − 7n − 28)β2 + ( 3

2 n2 − 10n − 6)β + 2n.

If n > (6 + 2
√

5)/2, then n2 − 6n + 4 > 0 and Ψ(2) = −3(n2 − 6n + 4) < 0. Note that
Ψ(β) is continuous in the interval [2, bn/2c − 1]. Further, by Lemma 3.1, Ψ(β) < 0
for β ∈ [2, σ2] ∪ [σ3, σ4], while Ψ(β) > 0 for β ∈ (σ2, σ3) ∪ (σ4, bn/2c − 1). This
completes the proof. �

Using Theorem 3.2 and Lemma 2.4, we have the following corollary.

Corollary 3.3. Let G be a connected graph of order n ≥ 4 and size m with matching
number β, 2 ≤ β ≤ bn/2c. Let σ1, σ2, σ3 and σ4 be the four roots of the equation

8x4 + (n − 30)x3 − ( 3
2 n2 − 7n − 28)x2 + ( 3

2 n2 − 10n − 6)x + 2n = 0.
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(1) If β = bn/2c, then M2(G) − M1(G) ≤ 1
2 n(n − 1)(n − 2)2 − m, with equality if and

only if G � Kn.
(2) If β ∈ (σ2, σ3) ∪ (σ4, bn/2c − 1), then M2(G) − M1(G) ≤ 8β4 − 28β3 +

(4n + 28)β2 − (6n + 8)β + 2n −m, with equality if and only if G � K1 ∨ (K2β−1 ∪

Kn−2β).
(3) If β = σi (i = 2, 3, 4), then M2(G) − M1(G) ≤ 8β4 − 28β3 + (4n + 28) β2 −

(6n + 8) β + 2n − m = (2 − n) β3 + ( 3
2 n2 − 3n) β2 − ( 3

2 n2 − 4n + 2) β − m, with
equality if and only if G � Kβ ∨ Kn−β or G � K1 ∨ (K2β−1 ∪ Kn−2β).

(4) If β ∈ [2, σ2] ∪ [σ3, σ4], then M2(G) − M1(G) ≤ (2 − n) β3 + ( 3
2 n2 − 3n) β2 −

( 3
2 n2 − 4n + 2) β − m, with equality if and only if G � Kβ ∨ Kn−β.

A vertex subset S of a graph G is said to be an independent set of G if the subgraph
induced by S is an empty graph; β = max{|S | : S is an independent set of G} is said to
be the independence number of G.

Theorem 3.4. Let G be a connected graph of order n ≥ 4 with independence number
β. Then

RM2(G) ≤ 1
2 n4 − 5

2 n3 − ( 3
2β

2 − 3
2β − 4)n2 + (β3 + 3β2 − 4β − 2)n − 2β3 + 2β,

with equality if and only if G � Kβ ∨ Kn−β.

Proof. Let Gmax be a graph chosen among all n-vertex connected graphs with
independence number β such that Gmax has the largest RM2. Let S be a maximal
independent set in Gmax with |S | = β. Since adding edges into a graph will increase
its RM2 by Lemma 2.1, each vertex x in S is adjacent to every vertex y in Gmax − S .
Furthermore, the subgraph induced by vertices in Gmax − S is a clique in Gmax. So,
Gmax � Kβ ∨ Kn−β.

An elementary calculation gives

RM2(G) =

(
n − β

2

)
(n − 2)2 + β(n − β)(n − β − 1)(n − 2)

=
1
2

n4 −
5
2

n3 −

(3
2
β2 −

3
2
β − 4

)
n2 + (β3 + 3β2 − 4β − 2)n − 2β3 + 2β. �

The following result is an immediate consequence of Theorem 3.4 and Lemma 2.4.

Corollary 3.5. Let G be a connected graph of order n ≥ 4 and size m with
independence number β. Then

M2(G) − M1(G) ≤ 1
2 n4 − 5

2 n3 − ( 3
2β

2 − 3
2β − 4)n2

+ (β3 + 3β2 − 4β − 2)n − 2β3 + 2β − m,

with equality if and only if G � Kβ ∨ Kn−β.

The vertex connectivity is the minimum number of vertices whose deletion from a
connected graph disconnects it.
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Theorem 3.6. Let G be a connected graph of order n ≥ 4 with vertex connectivity k.
Then

RM2(G) ≤ 1
2 n4 − 9

2 n3 + (k + 29
2 )n2 + (k2 − 6k − 39

2 )n − 3
2 k2 + 15

2 k + 9,

with equality if and only if G � Kk ∨ (K1 ∪ Kn−k−1).

Proof. We choose Gmax to be a graph such that Gmax has the largest RM2 within all
connected graphs of order n with vertex connectivity k. Let C be a vertex cut in
Gmax such that |C| = k and let Gmax − C = G1 ∪G2 ∪ · · · ∪Gt (t ≥ 2). By Lemma 2.1,
we must have t = 2, for otherwise we can add edges between any two components,
resulting in a new graph G′ with vertex connectivity k and a strictly larger RM2 than
that of Gmax, in contradiction to our choice of Gmax.

The same reasoning shows that both G1 and G2 are cliques of Gmax, that the
subgraph of Gmax induced by C is a clique and that any vertex in G1 ∪G2 is adjacent to
each vertex in C. Let ni denote the order of Gi. Thus, we have Gmax � Kk ∨ (Kn1 ∪ Kn2 ).

Assume without loss of generality that n2 ≥ n1. If n1 = 1, then the result follows
readily. Suppose now that n2 ≥ n1 ≥ 2. By the definition of RM2,

RM2(Gmax) =

(
n1

2

)
(n − n2 − 2)2 +

(
n2

2

)
(n − n1 − 2)2 +

(
k
2

)
(n − 2)2

+ n1k(n − n2 − 2)(n − 2) + n2k(n − n1 − 2)(n − 2)

= n2
1n2

2 −
1
2

[4n2 − (15 − 2k)n + 16 − 5k]n1n2 +
1
2

n(n − 1)(n − 2)2.

Let G′ = Kk ∨ (Kn1−1 ∪ Kn2+1). Then

RM2(G′) − RM2(Gmax) = n2
1 + n2

2 + 2n2
1n2 + 2n2 + 1 − 2n1n2

2 − 2n1 − 4n1n2

− 1
2 [4n2 − (15 − 2k)n + 16 − 5k](n1 − n2 − 1).

Now we consider the function

F(x, y) = x2 + y2 + 2x2y + 2y + 1 − 2xy2 − 2x − 4xy
− 1

2 [4n2 − (15 − 2k)n + 16 − 5k](x − y − 1),

where y ≥ x ≥ 2. After simplification,

F(x, y) − F(y, x) = (x − y)[−4n2 + (15 − 2k)n + 4xy + 5k − 20].

Set Φ(n) = −4n2 + (15 − 2k)n + 4xy + 5k − 20. The maximum positive root of the
equation Φ(n) = 0 is

nmax =
2k − 15 +

√
4k2 + 20k + 64xy − 95
−8

.

If n > nmax, then Φ(n) < 0 and F(x, y) > F(y, x). This implies that

F(x, y) > F(x + 1, y − 1) > F(x + 2, y − 2) > · · · > F(n − k − 2, 2). (3.1)
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By direct calculation,

F(n − k − 2, 2) = −2n3 + (k + 45
2 )n2 + (k2 − 10k − 167

2 )n + 5
2 k2 + 67

2 k + 105.

It is easy to see that F(n − k − 2, 2) > 0 when n > n+, where n+ is the maximum root
of the equation F(n − k − 2, 2) = 0. Thus, by (3.1), we have F(x, y) > 0. It follows that
RM2(G′) − RM2(Gmax) = F(n1, n2) > 0, in contradiction to our choice of Gmax.

Therefore, Gmax � Kk ∨ (K1 ∪ Kn−k−1). An elementary calculation gives

RM2(Kk ∨ (K1 ∪ Kn−k−1)) = 1
2 n4 − 9

2 n3 + (k + 29
2 )n2

+ (k2 − 6k − 39
2 )n − 3

2 k2 + 15
2 k + 9,

completing the proof. �

Combining Theorem 3.6 and Lemma 2.4, we can obtain the following result.

Corollary 3.7. Let G be a connected graph of order n ≥ 4 and size m with vertex
connectivity k. Then

M2(G) − M1(G) ≤ 1
2 n4 − 9

2 n3 + (k + 29
2 )n2 + (k2 − 6k − 39

2 )n − 3
2 k2 + 15

2 k + 9 − m,

with equality if and only if G � Kk ∨ (K1 ∪ Kn−k−1).

References
[1] A. T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, ‘Topological indices for structure–activity

correlations’, Top. Curr. Chem. 114 (1983), 21–55.
[2] F. K. Bell, ‘A note on the irregularity of graphs’, Linear Algebra Appl. 161 (1992), 45–54.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244 (Springer,

New York, 2008).
[4] D. de Caen, ‘An upper bound on the sum of squares of degrees in a graph’, Discrete Math. 85

(1998), 245–248.
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Croat. Chem. Acta 76 (2003), 113–124.

[17] U. N. Peled, R. Petreschi and A. Sterbini, ‘(n, e)-graphs with maximum sum of squares of degrees’,
J. Graph Theory 31 (1999), 283–295.

[18] W. T. Tutte, ‘The factorization of linear graphs’, J. Lond. Math. Soc. (2) 22 (1947), 107–111.
[19] D. Vukičević and T. Pisanski, ‘On the extremal values of the ratios of the number of paths’, Ars

Math. Contemp. 3 (2010), 215–235.

MINGQIANG AN, College of Science,
Tianjin University of Science and Technology, Tianjin 300457, PR China
e-mail: anmq@tust.edu.cn

LIMING XIONG, School of Mathematics and Statistics,
Beijing Institute of Technology, Beijing 100081, PR China
e-mail: lmxiong@bit.edu.cn

https://doi.org/10.1017/S0004972715000386 Published online by Cambridge University Press

mailto:anmq@tust.edu.cn
mailto:lmxiong@bit.edu.cn
https://doi.org/10.1017/S0004972715000386

	Introduction
	Preliminaries
	Main results
	References

