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Abstract

Rodriguez-Nava et al. present a proof-of-concept study evaluating the use of a secure large languagemodel (LLM) approved for healthcare data
for retrospective identification of a specific healthcare-associated infection (HAI)—central line-associated bloodstream infections—from real
patient data for the purposes of surveillance.1 This study illustrates a promising direction for how LLMs can, at a minimum, semi-automate or
streamline HAI surveillance activities.

(Received 12 January 2025; accepted 13 January 2025; electronically published 14 February 2025)

The authors tested a secure version of ChatGPT integrated within
their hospital’s electronic health record (EHR).1 Using only the last
two progress notes and blood culture results that triggered a possible
CLABSI alert in the infection controlmodule of the EHR, their initial
approach achieved a 57.5% agreement with the current partially
automatedmanual reviewprocess.Themethoddemonstratedhigher
sensitivity (80%) than specificity (35%),with substantial time savings
—just 5minutes, comparedwith the 75minutes reported formanual
review. Error analysis revealed that missing essential information in
progress notes fed into the LLM, such as absent culture results,
contributed to inaccuracies. When access to additional relevant data
was provided (e.g., provision of additional notes), agreement
improved to 82.5%, though at the expense of need for review to
identify the missing data. They note that additional computational
resources, such as higher capacity for data collection, could have
improved performance. The authors suggest that LLMs could serve
as a preliminary screening tool for CLABSI detection, streamlining
the typical surveillance process and minimizing the need for
extensive manual review. In essence, the LLMs could scan the
medical records for relevant datapoints and flag notes that contain
the key data elements that could thenbeusedby infection prevention
teams to confirm the positive blood culture met CLABSI criteria as
defined by the Centers for Disease Control and Prevention (CDC)
National Healthcare Safety Network (NHSN).

This study highlights two current opposing trends in healthcare
LLM use: (1) the increasing reliance on the out-of-the-box
generalizability and ease of use of LLMs for everyday tasks,
including surveillance activities, and (2) the growing complexity of
optimizing and standardizing LLM performance for high-stakes
clinical applications. The rapid evolution of LLM technology has
increased this tension. Tools like ChatGPT, increasingly accessible
for healthcare use, for example in the EPIC ChatGPT model2 and
the OpenAI Pilot in the national VA healthcare system,3 allow
clinicians to perform technically complex tasks like summarizing
and classifying data from the EHR without requiring formal
training. There is precedent for integrating technologies into
workflows without added liability or reimbursement concerns, such
as dictation software to speed documentation. However, significant
gaps remain between proof-of-concept studies and the development
of tools ready for broad deployment.

When considering a surveillance tool for broader deployment,
one must balance the potential risks of implementation (e.g.,
inaccuracies) against the need for easy-to-use tools that streamline
workflow. By focusing on retrospective CLABSI identification
(a retrospective surveillance task), the authors removed immediate
and direct patient safety risks and created a lower-stakes test case
for investigating LLMs applied to a standardized quality metric.
The tool essentially is a highly advanced search engine that
allows infection prevention programs to better sift through the
“noise” to get to the “signal.” However, to achieve the robustness in
quality necessary for scale beyond this pilot, their approach requires
further optimization. Current performance gaps between pilot andCorresponding author: Julie T. Wu; Email: JulieWu@stanford.edu

Cite this article:Wu JT, Langford BJ, Shenoy ES, Carey E, Branch-EllimanW. Chatting
new territory: large language models for infection surveillance from pilot to deployment.
Infect Control Hosp Epidemiol 2025. 46: 224–226, doi: 10.1017/ice.2025.20

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America.

Infection Control & Hospital Epidemiology (2025), 46, 224–226

doi:10.1017/ice.2025.20

https://doi.org/10.1017/ice.2025.20 Published online by Cambridge University Press

https://orcid.org/0000-0003-2388-1827
https://orcid.org/0000-0001-5467-6776
https://orcid.org/0000-0001-8086-1123
https://orcid.org/0000-0001-7963-6818
https://orcid.org/0000-0002-9658-5124
mailto:JulieWu@stanford.edu
https://doi.org/10.1017/ice.2025.20
https://doi.org/10.1017/ice.2025.20
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/ice.2025.20&domain=pdf
https://doi.org/10.1017/ice.2025.20


deployment can be categorized into three dimensions: (1)
automation complexity, (2) input data selection, (3) model
availability and diversity, and (4) standardization of user workflows.

The first key consideration is the complexity of automation: the
degree to which surveillance activities are already automated
significantly influences the feasibility of LLM integration. As noted
in Shenoy and Branch-Elliman,4 there are limited examples of fully
automated HAI surveillance. Most are partially automated, and
one NHSN-defined HAI, ventilator-associated events (VAE), is
mostly automated, relying primarily on structured EHR variables
with only one item (lung histopathology) requiring manual review,
making it an optimal target for a LLM-assisted automation to
extract the relevant pathology data from notes. Transitioning from
“mostly” to “partially” automated surveillance categories, the
complexity and data requirements for automation increases. In the
framework presented by Shenoy and Branch-Elliman, CLABSI is
considered “partially” automated.4

After considering automation complexity, the second key
consideration is the selection of input data, as the conclusions
drawn by an LLM rely heavily on the quality and completeness of
the information it receives. Missing, incomplete, and inaccessible
data (or insufficient computational infrastructure leading to
artificial limits on accessible data) can significantly compromise
accuracy as demonstrated in this study, where such gaps were
identified as the primary source of errors. Scaling use beyond pilots
such as the one reported by Rodriguez-Nava et al will require
efficient methods to detect and address missing information. This
will require technology to support access to full patient records—
including scanned records and PDF documents—as well as
significant investment in computing infrastructure that is sub-
stantial enough to run models on larger datasets. The sheer volume
of data involved raises the question of whether an LLM alone is
sufficient for automating surveillance workflows. A retrieval-
augmented generation architecture could help identify and
retrieve relevant context for determining HAI occurrences.
Methods for capturing relevant information must also account
for diverse clinical scenarios, including the less frequent edge
cases likely underrepresented in this study’s limited 40-case
sample, all of which were collected within a 5-month period, and
account for the varying degree of missingness across facilities/
populations. Such methods for selecting input data will also need
to be optimized for robustness to avoid encouraging data
manipulation practices that favorably impact quality metrics.
Tackling these challenges to obtain reliable and comprehensive
input data is a necessary, foundational step for scalable clinical
LLM applications.

The third consideration is the selection of the specific model, as
it can significantly impact task performance. Even within the same
model, different versions may yield varied results, and updates can
sometimes degrade performance in ways that are not predictable or
knowable in advance. Moreover, ChatGPT, the model used in the
study, is proprietary and unavailable in many healthcare systems.
Open-source LLMs may serve as alternatives, but their
performance could fall short of ChatGPT, with potential task-
specific gaps unaddressed by current LLM quality metrics. To
address the issue of model diversity in the larger LLM community,
benchmark datasets, which have defined questions with defined
correct answers, have been used to compare different models and
set the standards for future model development. However, the
current medical benchmarks used to assess LLM quality often rely
on scripted, USMLE-style multiple-choice questions, where all
relevant information is pre-collected, cleaned, and explicitly

included, and there is one “correct” answer.5 In contrast, real-
world patient data are incomplete, delayed, and missing in
nonrandom ways, and there may be more than one correct answer
for a given scenario. This discrepancy accounts for a significant gap
in performance between tools that are tested on retrospective
datasets and those that are implemented for real-world use. As
the diversity of models and the pace of innovation in the LLM
space continue to grow, standardized guidelines and task-
specific benchmarks are needed for ensuring consistent quality
and reliable performance across different models. If these tools
are going to be widely adopted for the purpose of interfacility
comparisons and quality measurement, these task-specific
benchmarks will need to be developed and defined by the
NHSN. Creation of acceptable standards for accuracy cannot be
the primary responsibility of individual healthcare systems.

The fourth consideration is the need to standardize LLM use
among healthcare facility HAI surveillance programs to ensure
consistent and reliable outputs. As a support tool, LLM-generated
results would require verification. The specificity of 35% reported
in this study highlights this particular system’s limitations,
indicating that full automation is not yet feasible (and may never
be). Review by experts in HAI surveillance is necessary to eliminate
false positives. However, it is uncertain whether the 80% sensitivity
observed is sufficient to confidently exclude low-probability
CLABSI cases. Any tool designed to filter records for review must
ensure that unreviewed cases reliably represent true negatives.
Individual variability complicates this further, as infection
prevention specialists may have differing thresholds for acceptable
performance and variable awareness of potential shortcomings of
the system. Establishing clear standards for high-quality outputs
and clear workflows to interact with the LLM would help reduce
variability and improve the reliability of LLM applications and
increase the likelihood that such tools will be considered acceptable
and approved adjuncts to HAI surveillance NHSN.

Despite the above challenges, this study provides an important
example of how secure LLMs may be able to streamline
surveillance workflows with minimal task-specific customization.
In theory, LLMs can be used for three purposes to support
surveillance activities: first, to flag relevant information in notes for
subsequent manual review; second, to read the notes and assign a
preliminary classification; and third, to complete the surveillance
activity for direct reporting to the CDC. The authors have
demonstrated how this tool may be useful for flagging data
elements and notes that contain information germane to CLABSI
identification – however, it is unclear what level of accuracy is
needed in order to maintain the utility of the surveillance process.
Facilities will need to determine what level of accuracy and
sensitivity is necessary to inform their own internal efforts. If these
tools are ever to be used for more direct reporting to the CDC-
potentially without manual review step- federal guidance about
accuracy and validation standards will be needed.

In summary, selecting the right applications of the tools that
leverage their strengths (quickly reading and summarizing large
volumes of data) while minimizing their limitations and their
computing infrastructure resourcing needs is critical.
Retrospective surveillance activities are fundamentally a good
use of these tools. However, addressing key challenges,
including consideration of automation complexity, the
selection of appropriate input data, computing infrastructure,
maintaining consistent performance across the diversity of
available LLMs, and developing standardized workflows for
human verification, will be needed for transitioning from
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individual-level pilots to broader, scalable deployment in
clinical settings. Ultimately, the model is only as good as the
data it can “see”—and given the nature of clinical data, this will
be a perennial challenge as we integrate this new technology into
surveillance workflows.
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