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Abstract
We develop a method which assumes that marital preferences are characterized either by the
scalar-valued measure proposed by Liu and Lu, or by the matrix-valued generalized Liu–Lu
measure. The new method transforms an observed contingency table into a counterfactual
table while preserving its (generalized) Liu–Lu value. After exploring some analytical
properties of the new method, we illustrate its application by decomposing changes in the
prevalence of homogamy in the US between 1980 and 2010. We perform this
decomposition with two alternative transformation methods as well where both methods
capture preferences differently from Liu and Lu. Finally, we use survey evidence to support
our claim that out of the three considered methods, the new transformation method is the
most suitable for identifying the role of marital preferences at shaping marriage patterns.
These data are also in favor of measuring assortativity in preferences à la Liu and Lu.
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1. Introduction

Measuring the effect of changing marital preferences on the changing marital patterns
is in the center of interest of many demographers, economists, and sociologists. This
task is challenging because the observed equilibrium outcome in the marriage market
depends not only on marital preferences but also on the structural availability of
prospective partners with different traits as well as the interplay between preferences
and availability (Kalmijn 1998).1 Accordingly, social scientists aim at answering
questions such as: what would be the share of educationally homogamous couples

© Université catholique de Louvain 2021. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.

1For instance, if there are no marriages between women with a university diploma and men without a
high school degree in a hypothetical society, then it might signal that either one or both of the educational
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(the proportion of couples where the spouses have the same education level) in our
society today provided people nowadays had the same marital/mating preferences as
people used to have in the past? What would be the share of educationally
homogamous couples like in our society today if the education levels of young men
and women were the same as in an older generation?

The assortative mating literature offers various ways for addressing these questions
for cases when the assorted trait is a categorical variable and the marriage matching
equilibrium is represented by a contingency table. The examples include the
following: (i) controlling for marital preferences by the aggregate marriage matching
function derived by Choo and Siow (2006); (ii) applying the iterative proportional
fitting (IPF) algorithm developed by Stephan and Deming (1940) and generalized by
Sinkhorn (1967); (iii) keeping a similarity coefficient fixed, e.g., the correlation
between the couples’ trait [e.g., Kremer (1997), Fernandez et al. (2005)].

In this paper, we develop a method (new method hereafter) for constructing
counterfactuals.2 The purpose of this paper is to introduce the new method. We do that
by presenting its theoretical background, discussing its analytical properties and empirical
properties, illustrating its empirical application, and comparing it with some alternative
methods (see Table 1). Our work facilitates method selection for those researchers who
would like to study changing marriage patterns by analyzing contingency tables.

The new method builds on the work by Liu and Lu (2006). They propose a new
measure on the “degree of sorting”. The new method transforms an observable
contingency table into a contingency table under a counterfactual while preserving
the Liu–Lu measure of the table. For this reason, the new method is seemingly
similar to those ad hoc statistical approaches, where the value of a similarity
coefficient is preserved by the transformation.

However, our choice of the Liu–Lu measure and our choice of the new method are
well motivated. First, these choices are not independent of each other. If we knew that
the Liu–Lu measure is more appropriate to characterize marital preferences than its
alternatives, including the countless number of similarity coefficients, then we would
also know that the new method is better than its alternatives. Similarly, if we knew
that the new method is better than its alternatives, then we would also know that the
Liu–Lu measure is more adequate to characterize marital preferences than its
alternatives. Second, Liu and Lu (2006) present theoretical arguments in favor of
their measure. Specifically, they claim that their measure can adequately control for
changes in the trait distribution. For this reason, it is apt for separating variations in
the distribution of assorted traits from changes in marital preferences. Third, in this
paper, we present empirical evidence supporting the new method.

In the empirical part of this paper, we illustrate the application of the new method, while
we also apply some existing methods. There, we decompose changes in the American marital
patterns between 1980 and 2010 using census data. Our empirical findings are the following.
First, some simple transformation methods do not even yield counterfactuals that make sense
from the point of view of economics. Second, the well-known IPF algorithm and the Choo–
Siow (CS hereafter) marriage matching function do. Third, we find that the results of some of
our decompositions are sensitive to the choice of the method.

groups do not find the members of the other group attractive as partners. Alternatively, it can also be the
consequence of all men in this society being highly educated.

2The new method is implemented in Excel, Visual Basic, and R. It can be downloaded from http://dx.doi.
org/10.17632/x2ry7bcm95.1.
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Table 1. Comparing the new method with five deterministic methods

New method
Iterative proportional
fitting algorithm

Choo–Siow
model-based
method

Regression
coeff.-based
method

Pearson’s correlation
coeff.-based method

Covariance
coeff.-based
method

Theoretical background Statistical approach
Computational
algorithm Structural model

Statistical
approach Statistical approach

Statistical
approach

Analytical properties

Gender symmetry♣ Yes Yes Yes No Yes Yes

Transformed table Unique

Transformation preserves Liu–Lu matrix Odds ratio matrix Marital surplus
matrix

Matrix of
regression
coeff.s♦

Matrix of
correlation
coeff.s♦

Matrix of
covariance
coeff.s♦

Transformed table is
obtained by

Closed-form formula Algorithm Solving a system of
quadratic
equations

Transformation method Commutes with the
operation of
merging categories

Potential limitations/lack
of limitations

Seed table can
contain zeros

Zero in the seed
table can be a
problem

Number of singles of
each type should
be positive

(Continued )
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Table 1. (Continued.)

New method
Iterative proportional
fitting algorithm

Choo–Siow
model-based
method

Regression
coeff.-based
method

Pearson’s correlation
coeff.-based method

Covariance
coeff.-based
method

Theoretical background Statistical approach
Computational
algorithm Structural model

Statistical
approach Statistical approach

Statistical
approach

Empirical properties

US
1980–1990●

Preference component:
negative♥★

Positive Positive Transformed tables have negative entries

US
1990–2000●

Preference component:
positive♥

Positive Positive Transformed tables have negative entries

US
2000–2010●

Preference component:
positive♥★

Positive★ Zero Transformed tables have negative entries

US
1980–2010♠

Preference component:
positive★

Positive★ Positive★

Portugal
1981–2011●

Transformed table has a
neg. entry

Notes: ♣: invariance to interchanging wives’ data and husbands’ data. ♦: wives’ and husbands’ education level are dummy variables that take the value 1 for high level of education defined in all
possible ways. ♥: robust to considering a fourth educational category: either “some college”, or “less than primary” (in addition to the three categories in the main specification that are “less
than high school”, “high school completed”, “university degree”), and also to an alternative definition of young couples (men are aged 30–34 years vs. women are aged 30–34 years).
★: supported by survey evidence (Changing American Family survey conducted by the Pew Research Center in 2010). ●: decomposition of the change in the share of educationally homogamous
couples is performed with the single-period decomposition scheme in equation (11). ♠: decomposition is performed with the multi-period decomposition scheme in equation (12). Empty cells:
not analyzed in this paper.
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The contribution of this paper is threefold. First, a minor contribution is that we
generalize the Liu–Lu measure. Unlike the original scalar-valued Liu–Lu measure, the
generalized Liu–Lu measure is a matrix. While the original Liu–Lu measure is
defined for a dichotomous assorted trait, the generalized Liu–Lu measure is defined
even when the trait variable can take more than two possible values. For instance,
when we distinguish not only between low and high education levels, but more.

Second, and most importantly, we develop a novel transformation method and
investigate its properties. The new method is suitable to transform not only 2-by-2
contingency tables, but also larger tables. It facilitates comparing the Liu–Lu matrix
with other matrix-valued measures of assortativity in marital preferences. The
discussion of this point is presented in Appendix A in the online appendix (see:
https://doi.org/10.1017/dem.2021.1 ).3

Third, in addition to providing empirical support to the view that the choice of the
transformation method is not innocuous, we also present a supplementary analysis in
subsection 5.4. The aim of that analysis is to facilitate the choice of the method and also
the choice of statistics for characterizing marital preferences.

Although our supplementary analysis has some limitations, its idea of using survey
data for method selection is novel. Liu and Lu (2006) also illustrate that the mode of
measuring the degree of sorting is crucial: they obtain diverse dynamics with three
competing measures by using US census data from the period between 1940 and
2000. However, they offer exclusively theoretical arguments in favor of one of the
three measures, the Liu–Lu measure.

The rest of the paper is structured as follows. Section 2 reviews the literature. Section 3
presents the Liu–Lu measure and its generalization. Section 4 introduces the
methodology we apply: it presents the decomposition scheme, and the new method.
Further, it discusses some analytical properties of the new method. Section 5 conducts
decompositions using US census data from four census waves between 1980 and
2010. It illustrates that the sign and the magnitude of the components can be
sensitive to the choice of the method. Section 5 ends with the supplementary analysis
exploiting survey data. Finally, section 6 concludes the paper.

2. Literature

First, we take a stock of some solutions for constructing counterfactuals put forward in
three strands of the assortative mating literature. Further, we position our paper with
respect to the literature. Then we discuss several points of contribution of the recent
paper by Eika et al. (2019) to the literature on measure selection, and we highlight
the connection between their research and ours.

2.1. Three strands of the literature

The assortative mating literature proposes three main approaches for constructing
counterfactuals. First, approaches for conducting counterfactual experiments are
typically dictated by structural models in those papers, where marital preferences are
explicitly modeled. Examples include the models in the seminal paper by Choo and

3In Appendix A, one of the matrix-valued measures considered is the matrix of odds-ratios. It forms the
basis of a scalar-valued aggregate measure, the Altham’s index [see Altham (1970)]. Other examples for
matrix-valued measures are the marital sorting matrix, the marital surplus matrix, and the Liu–Lu
matrix. The latter forms the basis of our index of changing marital preferences.

Journal of Demographic Economics 5

https://doi.org/10.1017/dem.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2021.1


Siow (2006), and Chiappori et al. (2017) developed in the transferable utility
framework, and the models by Dagsvik (2000) and Menzel (2015) in the non-
transferable utility framework.

Chen et al. (2019) show that these models, together with some other recent
contributions to the matching literature, share a common structure. The key elements
of the structure are a behaviorally coherent aggregate matching function, and a
system of nonlinear equations. The aggregate matching function relates to the
distribution of couples to the trait distributions of available men and women in the
population. Whereas the system of nonlinear equations determines the number of
singles of each type.

The model by Choo and Siow (2006) is probably the best known model in the
“matching function—nonlinear system of equations class”. Its aggregate matching
function is given by a simple closed form formula. More importantly, the
contingency tables under the counterfactuals are given by a system of quadratic
equations [see equation (20) in Choo and Siow (2006)], which is easy to solve. This
motivates us to use the Choo–Siow solution as a benchmark of the new method.

Second, the counterfactuals are often constructed by computational algorithms. The
most commonly used algorithm in the assortative mating literature is probably the
well-known iterative proportional fitting algorithm [e.g., Altham and Ferrie (2007),
Breen and Salazar (2005), Breen and Salazar (2011), Hu and Qian (2016)].4 Due to
the popularity of the IPF algorithm among demographers, economists, and
sociologists, we use it as another benchmark for the new method. As a strength of
the computational algorithms, we mention that these allow us to obtain solutions
outside the subset of solutions represented by closed form formulas.

Third, some studies apply statistical approaches. Papers in this strand of the literature
use various, often ad hoc similarity coefficients for controlling for marital preferences.
Examples for such coefficients include the regression coefficient obtained by regressing
the wives’ years of education on the husbands’ years of education [Greenwood et al.
(2014, 2015)]; the proportion of homogamous couples [Fernandez (2001), Fernandez
and Rogerson (2001)]; and the Pearson’s correlation coefficient between the couples’
traits [Kremer (1997), Fernandez et al. (2005)]. As the last example, we mention the
Liu–Lu measure that forms the basis of the new transformation method proposed in
this paper.

The distinctive feature of these papers is that their similarity coefficients fulfill
certain criteria dictated by heuristics. One criterion is symmetry. The symmetry of a
similarity coefficient in the marriage matching context means this. The coefficient
does not change if we interchange husbands’ data and wives’ data. The correlation
coefficient, the proportion of homogamous couples, the marital sorting parameters,
and the Liu–Lu measure are symmetric. Another criterion is the following. Statistics
characterizing marital preferences should be immune to ceteris paribus changes in
the trait distributions. Liu and Lu (2006) claim that their new measure fulfills this
criterion, while earlier statistical measures in the literature do not.

It is important to note that our classification of the literature is based on the
exposition of the methods in the papers. However, the categorization based on the
methods themselves would be different. First, such a categorization would put some
papers in the second group and the third group into the same box. This is because
the assumption behind the application of the IPF algorithm is that marital preference

4Another example for a computational algorithm is given by Eika et al. (2019) (see subsection 2.2).
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at a societal level is characterized by a simple statistic. It is the so-called cross-product
ratio [or odds ratio defined below equation (16)]. The cross-product ratio corresponds
to a similarity coefficient in the third group of papers.

Second, even papers with structural models can apply the IPF algorithm, if this
computational method is consistent with their models. For instance, Dupuy and
Galichon (2014) use the IPF method to solve their structural matching model.

Third, one can recover a micro foundation for some seemingly ad hoc approaches in
the third group. An example is the harmonic marriage matching function. Although
this matching function was not derived from preferences, Chen et al. (2019)
rationalize it with a structural model.

Due to the vagueness of the categories, the following question arises. Is the
transformation method put forward in this paper really new? A related question is
whether the new method is better than its alternatives. The second question is
addressed in the empirical part of the paper in subsection 5.4 since the criteria we
choose are empirical in nature. Here, we address the former question.

First, the exposition of the new method is certainly new: we are not aware of any
other paper in the literature proposing a transformation method with Liu–Lu
measure invariance. Second, in this paper, we highlight the differences between the
new method and its alternatives.

2.2. Some recent contributions to the literature on measure selection

The recent paper by Eika et al. (2019) decomposes changes in household income
inequality in the US between 1962 and 2013. One factor considered by them is the
changing educational assortative mating. They contribute to the assortative mating
literature in several respects. In this section, we survey three of their contributions,
which are particularly relevant for this paper with a focus on methodology.

First, Eika et al. (2019) illustrate the same point as Liu and Lu (2006): different
measures of marital sorting can exhibit different dynamics. Eika et al. (2019) present
the time series of six different measures of marital sorting for five decades. They find
that some of the six measures hardly change after 1980 in the US, while some others
declined. However, they emphasize the result that all six measures have similar
dynamics over the entire period studied. Since this long period is in the focus of
their study, they do not perform a systematic comparison of the analytical properties
of all the six measures.

They investigate a seventh measure in detail: it is the regression coefficient used by
Greenwood et al. (2014). Eika et al. (2019) point out that the regression coefficient is an
asymmetric measure, i.e., its value and trend may depend on whether it is obtained by
regressing wives’ years of education on husbands’ years of education or the other way
around.

Eika et al. (2019) develop a stochastic matching procedure. It transforms a
contingency table into a stochastic table representing a counterfactual.5

5The transformation keeps some moments of the generated table close to their deterministic
counterparts characterizing the original table, while it also makes the marginal distributions of the
transformed table equal to their preset distributions. The transformed table is overdetermined typically
due to the high number of moment conditions. The stochastic matching procedure offers a solution for
this problem (see Appendix C in Eika et al. 2019).
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Let us see now, how our research is related to these contributions. We think that the
finding by Eika et al. (2019) on the diverse dynamics of some scalar-valued measures
after 1980 deserves special attention. Since this period breaks the empirical
equivalence among different measures, it facilitates measure selection. This we do in
subsection 5.4 based on empirical criteria derived from survey evidence.

The work by Eika et al. motivates us to narrow down our analysis to symmetric
measures. Finally, the scope of the empirical part of our paper is different from the
scope of the paper by Eika et al. (2019): our paper is limited to applying methods
producing deterministic transformed tables. Additional differences between our paper
and theirs include differences in the decomposition schemes applied, the age of
observed individuals, the number of education categories, the way of aggregating
matrix-valued measures (and thereby producing a scalar-valued composite indicator
of marital preferences). While each of these may influence the outcome of the
decompositions, almost none of them is crucial for theoretical considerations about
measure/method/model selection.

3. Characterizing marital preferences à la Liu and Lu

In this section, first we introduce a characterization of marital preferences in the society
based on the work by Liu and Lu (2006). According to this concept, marital preferences
are unchanged in a society if the measure on the degree of assortative mating developed
by Liu and Lu (2006) is constant. Then, in subsection 3.2, we propose a novel extension
of the Liu–Lu measure.

Readers interested only in the intuition behind this measure may skip subsection 3.2.
What subsection 3.2 adds is the mathematical formula we use in the empirical
decompositions.

3.1. The Liu–Lu measure

In the Liu–Lu model, there are N women and N men of marriageable age. It is assumed
that no one will remain single: all of the N women and N men will marry a person of
the opposite sex eventually.6 Further, it is assumed that individuals are matched on a
one-dimensional trait. We can think of this trait as the education level. It is captured
by a dichotomous variable that can take two possible values, low (L) and high (H ).
Accordingly, couples can be of four types and the contingency table representing the
matching outcome is a 2-by-2 matrix:

K = NL,L NL,H

NH,L NH,H

[ ]
, (1)

where NL,L (NH,H) denotes the number of couples where both spouses are low (high)
educated. NL,H (NH,L) stands for the number of couples where the husband (wife) is
low educated, while the wife (husband) is high educated.

If the contingency table K is known, the trait distributions of both married men and
married women are known as well. Specifically, the number of husbands with high
education level is NH,⋅ =NH,L +NH,H. The number of wives with low (high) education

6This assumption is relaxed in our companion paper, Naszodi and Mendonca (2019a). There, we even
distinguish between voluntary singles and involuntary singles.
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level is N⋅,L =NL,L +NH,L (N⋅,H =NL,H +NH,H). The gender-specific educational
distributions are assumed to be non-degenerate: 0 <NH,⋅ <N, and 0 <N⋅,H <N.

The Liu–Lu measure is given by

LL(K) =
NH,H − Q−

min(NH,·, N·,H)− Q− , if NH,H ≥ Q,

NH,H − Q+

Q+−max(0, NH,· − N·,L)
, if NH,H < Q,

⎧⎪⎪⎨
⎪⎪⎩ (2)

where again N denotes the total number of couples, while Q =NH,⋅N⋅,H/N is the
expected number of H, H-type couples under random matching. Furthermore, Q− is
the biggest integer being smaller than or equal to Q, while Q+ is the smallest integer
being larger than or equal to Q.

The statistical interpretation of the Liu–Lu measure is this. It is the signed
normalized distance between the realized matching outcome K and a benchmark
outcome where individuals are randomly matched. If the number of H, H-type
couples equals to its (integer valued) expected value under random matching, i.e.,
NH,H =Q−, the Liu–Lu measure takes the value zero. If the number of H, H-type
couples is higher, then the Liu–Lu measure is positive. Otherwise, the Liu–Lu
measure is negative.

In the extreme case, when sorting maximizes the number of H, H-type couples, the
Liu–Lu measure takes its maximum value, 1. In the other extreme case, when sorting
minimizes the number of H, H-type couples, the Liu–Lu measure takes its minimum
value, minus 1. Finally, all feasible matching outcomes of any given trait distribution
is ranked uniquely by the number of H, H-type couples. This ranking principle
defines the distance.

Under the assumption NH,H≥Q, the Liu–Lu formula simplifies to

LLsim(K) = NH,H − Q−

min(NH,·, N·,H)− Q− . (3)

Equation (3) is the empirically relevant version of the Liu–Lu measure for positively
assorted traits, such as education level.

3.2. The generalized Liu–Lu measure

In the empirical part of the paper, we consider not only two, but three education
levels, i.e., low (L = no high school degree was obtained), medium (M = high
school was completed but no college or university degree was obtained), and high
(H = tertiary education was completed). Allowing the trait variable to take more
than two possible values requires to generalize the original scalar-valued Liu–Lu
measure.

We show the generalization under the assumption that the trait variable is ordered.
First, we discuss the case where the contingency table is a 3-by-3 table, such as

K =
NL,L NL,M NL,H

NM,L NM,M NM,H

NH,L NH,M NH,H

⎡
⎣

⎤
⎦. (4)

Then, we also provide the formula for any contingency table larger than 2 × 2.
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As a first step, we dichotomize the educational trait variable, i.e., transform it into a
binary variable. If the trait variable can take three possible values, the dichotomization
can be done in four different ways depending on whether the M-type husbands and the
M-type wives are considered to be low or high educated in the dichotomous world. We
note that the number of dichotomizations is not independent of our assumption that
the trait variable is ordered.7

The four dichotomizations result in four 2-by-2 contingency tables. Let us introduce
the notation KH,H for the 2-by-2 contingency table obtained by reclassifying all the
M-type husbands and wives in equation (4) to H-type. It gives

KH,H = NL,L NL,M + NL,H

NM,L + NH,L NM,M + NM,H + NH,M + NH,H

[ ]
. (5)

Analogously, we use the notation KH,L for the 2-by-2 contingency table obtained by
reclassifying the M-type husbands to H-type and the M-type wives to L-type:

KH,L = NL,L + NL,M NL,H

NM,L + NM,M + NH,L + NH,M NM,H + NH,H

[ ]
, (6)

The notation KL,H stands for the 2-by-2 contingency table obtained by reclassifying
the M-type husbands to L-type and the M-type wives to H-type:

KL,H = NL,L + NM,L NL,M + NL,H + NM,M + NM,H

NH,L NH,M + NH,H

[ ]
. (7)

Finally, the notation KL,L is used for the 2-by-2 contingency table obtained by
reclassifying all the M-type husbands and wives to L-type:

KL,L = NL,L + NL,M + NM,L + NM,M NL,H + NM,H

NH,L + NH,M NH,H

[ ]
. (8)

In the second step, we calculate the original Liu–Lu measure of KH,H, KH,L, KL,H, and
KH,H to obtain the following matrix:

LLgen(K) = LL(KH,H) LL(KH,L)
LL(KL,H) LL(KL,L)

[ ]
. (9)

7In the case of unordered variables, some further dichotomizations would also be needed, including the
one where L-type and H-type individuals are put in the same class, whileM-type individuals are kept in the
other class.
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Equation (9) defines the generalized Liu–Lu measure when the contingency table is a
3-by-3 table. We refer to it as the Liu–Lu matrix characterizing marital preferences.

Finally, we define the Liu–Lu matrix for the general case, where K is an n ×m table.
Its (i, j)th element is

LLgeni,j = LL(ViKW
T
j ), (10)

where Vk is the 2 × n matrix Vk =
[ 1 . . . 1
0 . . . 0

︷�����︸︸�����︷k

0 . . . 0
1 . . . 1

︷�����︸︸�����︷n–k ]
and WT

p is the m × 2

matrix Wp =
[ 1 . . . 1
0 . . . 0

︷�����︸︸�����︷p

0 . . . 0
1 . . . 1

︷�����︸︸�����︷m−p ]
with k∈ {1, …, n− 1}, and p∈ {1, …, m− 1}.

So, this is how we generalize equation (9). Such a generalization is relevant when the
assorted trait is a polytomous variable with more than three possible values. For
instance, when education level is measured on a refined scale with four or five
categories.

The next section shows how the Liu–Lu measure and the Liu–Lu matrix can be used
for constructing counterfactuals essential for decompositions.

4. Methodology

This section describes the methodology that will be used for the empirical
counterfactual decomposition analysis in section 5. First, we present the
decomposition scheme. Then we introduce the new transformation method. Finally,
we visit some of its properties.

4.1. Decomposition scheme

For the empirical decompositions, we apply the decomposition scheme promoted by
Biewen (2012).8 It works as follows with two factors P and A observed at time t0 and
t1; and a function f(A, P) mapping the space spanned by the two factors into R:

f (At1 , Pt1 )− f (At0 , Pt0 ) = [f (At0 , Pt1 )− f (At0 , Pt0 )]
︷��������������︸︸��������������︷due to DPt1

+ [f (At1 , Pt0 )− f (At0 , Pt0 )]
︷��������������︸︸��������������︷due to DAt1

+
+ [f (At1 , Pt1 )− f (At1 , Pt0 )− f (At0 , Pt1 )+ f (At0 , Pt0 )]︸�������������������������������︷︷�������������������������������︸

interaction term capturing the joint effect of DPt1 and DAt1

.

(11)

8Unlike the popular DiNardo et al. (1996) decomposition scheme, the Biewen decomposition scheme is
designed to isolate not only the ceteris paribus effects of certain factors, but also their interaction(s). As it is
shown by Biewen (2012), the DiNardo et al. (1996) scheme attributes the interaction term(s) to either of the
factors arbitrarily.

Journal of Demographic Economics 11

https://doi.org/10.1017/dem.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2021.1


Provided that we have observations from multiple years, e.g., t0 < t1 < t2 < t3, the
decomposition scheme of equation (11) gives

f (At3 , Pt3 )− f (At0 , Pt0 ) = f (At3 , Pt3 )− f (At2 , Pt2 )+ f (At2 , Pt2 )− f (At1 , Pt1 )

+ f (At1 , Pt1 )− f (At0 , Pt0 ) = [f (At0 , Pt1 )− f (At0 , Pt0 )]
︷��������������︸︸��������������︷due to DPt1

+ [f (At1 , Pt0 )− f (At0 , Pt0 )]
︷��������������︸︸��������������︷due to DAt1

+ [f (At1 , Pt2 )− f (At1 , Pt1 )]
︷��������������︸︸��������������︷due to DPt2

+ [f (At2 , Pt1 )− f (At1 , Pt1 )]
︷��������������︸︸��������������︷due to DAt2

+ [f (At2 , Pt3 )− f (At2 , Pt2 )]
︷��������������︸︸��������������︷due to DPt3

+ [f (At3 , Pt2 )− f (At2 , Pt2 )]
︷��������������︸︸��������������︷due to DAt3

+ interaction terms capturing the joint effects ofDPt1DAt1 , DPt2DAt2 , and DPt3DAt3

= [f (At0 , Pt1 )− f (At0 , Pt0 )]+ [f (At1 , Pt2 )− f (At1 , Pt1 )]+ [f (At2 , Pt3 )− f (At2 , Pt2 )]
︷��������������������������������������������������︸︸��������������������������������������������������︷due to change in Pfrom Pt0 to Pt3

+ [f (At1 , Pt0 )− f (At0 , Pt0 )]+ [f (At2 , Pt1 )− f (At1 , Pt1 )]+ [f (At3 , Pt2 )− f (At2 , Pt2 )]
︷��������������������������������������������������︸︸��������������������������������������������������︷due to change in Afrom At0 to At3

+ interaction terms capturing the joint effects of DPt1DAt1 , DPt2DAt2 , and DPt3DAt3 .

(12)
In our specific empirical application, the function f(A, P) tells us the share of

homogamous couples in a society, whereas A stands for availability (i.e., trait
distribution of men and women), and P captures preferences.

While f (At, Pt) (the share of homogamous couples at time t) can be observed, f (At,
Ps≠t) cannot. So, to perform decompositions with equation (11), it is essential to
construct contingency tables under the counterfactual scenarios such that
structural availability is measured in a given year, while preferences are from
another year.

4.2. The new method for constructing counterfactuals

In this section, we introduce a new method for constructing contingency tables under
counterfactual scenarios. In consonance with the literature, we call the observed
contingency table in the period from which the marital preferences are taken as the
seed table. While the trait distributions in the other period are referred to as the
target marginals.

Subsection 4.2.1 presents the new method in the simplest set up where the
contingency table is a 2-by-2 table. Then subsection 4.2.2 introduces the new
method for the general case. Reading subsection 4.2.1 without subsection 4.2.2 is
sufficient to learn the logic of the new method. What subsection 4.2.2 adds is the
mathematical formula applicable when the assorted trait is a polytomous variable as
it is in our empirical decomposition problem.

4.2.1. The new method for constructing counterfactuals with dichotomous trait variable
The problem can be formalized in the 2-by-2 case as follows. Suppose that the seed table
is given by K in equation (1), while the target marginals are defined by the 1 × 2
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vector C, and the 2 × 1 vector R. Our goal is to determine the elements of the
transformed contingency table

K∗= N∗
L,L N∗

L,H
N∗
H,L N∗

H,H

[ ]
,

under the restrictions R = N∗
L,L+N∗

L,H
N∗
H,L+N∗

H,H

[ ]
, C = N∗

L,L+N∗
H,L N∗

L,H+N∗
H,H

[ ]
, and

LL(K) = LL(K∗). (13)

To solve the problem, we assume NH,H≥Q. It allows us to use the simplified version
of the Liu–Lu measure in equation (3). By substituting it into equation (13), we get

NH,H − int(NH,·N·,H/N)
min(NH,·, N·,H)− int(NH,·N·,H/N)

= N∗
H,H−int(N∗

H,·N
∗
·,H/N

∗)
min(N∗

H,·, N
∗
·,H)− int(N∗

H,·N
∗
·,H/N∗)

. (14)

We obtain the solution by rearranging equation (14):

N∗
H,H = [NH,H − int(NH,·N·,H/N)][min(N∗

H,·, N
∗
·,H)− int(N∗

H,·N
∗
·,H/N

∗)]
min(NH,·, N·,H)− int(NH,·N·,H/N)

+ int
N∗
H,·N

∗
·,H

N∗

( ) . (15)

The right-hand-side of equation (15) expresses N∗
H,H as a function of known

variables. Trivially, once N∗
H,H and the target marginals are known, all the other

three elements of the K* matrix are known as well.

4.2.2. The new method for constructing counterfactuals with polytomous trait variable
Let us discuss the problem in the 3-by-3 case, i.e., where the seed table K is given by
equation (4), while the row-sum of the transformed table K* is the 3 × 1 vector R,
and the column-sum of K* is the 1 × 3 vector C. While the problem itself is a trivial
extension of the problem in the 2-by-2 case, its solution is not. We obtain the
solution in the 3-by-3 case by solving four 2-by-2 problems:

N∗
L,L = (KH,H)∗1,1 with target marginals RH= R1 R2 + R3

[ ]T
and CH = C1 C2 + C3

[ ]
N∗
H,H = (KL,L)∗2,2 with target marginals RL = R1 + R2 R3

[ ]T
and CL = C1 + C2 C3

[ ]
N∗
L,H = (KH,L)∗1,2 with target marginals RH= R1 R2 + R3

[ ]T
and CL = C1 + C2 C3

[ ]
N∗
H,L = (KL,H)∗2,1 with target marginals RL= R1 + R2 R3

[ ]T
and CH = C1 C2 + C3

[ ]
.

The other five elements of the 3 × 3 K* matrix can be expressed with the target
marginals.

Finally, we discuss the general case, where the seed matrix K is of size n ×m. The
problem in the general case can be formalized as follows. Our goal is to determine
the transformed contingency table K* of size n ×m under the restrictions given by
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the target marginals R = K∗eTm, and C = enK*, where em and en are all-ones row vectors
of size m and n, respectively. The additional restriction is LLgen(K) = LLgen(K*).

By using equation (10), we can rewrite the problem as follows. We look for K*, where
ViR = ViK∗eTm, and CWT

j = enK∗WT
j ; and LL(ViKWT

j ) = LL(ViK∗WT
j ) for all i∈ {1,

…, n− 1} and j∈ {1, …, m− 1}. The matrices Vk and Wp are the same as defined
under equation (10). For each i, j pairs, these equations define a problem that is of
the 2-by-2 form. Each problem can be solved separately by applying equation (15).
The solutions determine (m− 1) × (n− 1) entries of the K* table. The remaining
m + n− 1 elements of the K* matrix can be determined with the help of the target
marginals.

4.3 Analysis of the new method

Some properties of the new transformation method are worth visiting. They will be
compared, in this section, with the properties of the IPF algorithm, and the CS
method. In addition to analyzing and comparing some analytical properties of the
three methods, we also illustrate some differences and similarities with the help of a
numerical example.

4.3.1. Some analytical properties of the new method
First, we highlight the difference between the 2-by-2 problems solved by the new
method and its two alternatives. Each of the three methods transforms a seed table K
defined by equation (1) into another contingency table K* so as to make the
marginals of K* equal to their preset targets R and C. However, the additional
restrictions are different. As we have seen, in the case of the new method, it is given
by equation (13).

The additional restriction with the IPF algorithm is

CPR(K) = CPR(K∗), (16)

where CPR is the cross-product ratio9 defined as CPR(K) = (NL,LNH,H)/(NL,HNH,L).
In the case of the CS method, the set of additional restrictions is on the marital

surpluses in the CS model [see Choo and Siow (2006)]:

NL,L���������
NL,0N0,L

√ = N∗
L,L���������

N∗
L,0N

∗
0,L

√
NL,H����������
NL,0N0,H

√ = N∗
L,H����������

N∗
L,0N

∗
0,H

√
NH,L����������
NH,0N0,L

√ = N∗
H,L����������

N∗
H,0N

∗
0,L

√
NH,H����������
NH,0N0,H

√ = N∗
H,H����������

N∗
H,0N

∗
0,H

√ ,

(17)

9The cross-product ratio is identical to the odds ratio. It has the following interpretation: the odds of
being matched with an H-type women is CPR-times higher for an H-type men, than for an L-type men.
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where Ni,0(N0,j) denote the observed number of i-type single men ( j-type single
women), while N∗

i,0(N
∗
0,j) denote the number of i-type single men ( j-type single

women) under the counterfactual.
Second, the new method provides us a closed-form solution for the transformed

contingency table representing the counterfactual.
Third, a solution can be obtained even if the seed table contains zero entries. The

above two properties make the new method particularly attractive relative to the IPF
algorithm from a computational perspective since the latter offers a numerical
solution with its iterative procedure; and generalizing the IPF algorithm for seed
tables with zero cells is still considered a problem solved only partially.10

Next, we discuss three properties of the counterfactual constructed with the new
method. First, the solution offered by the new method is unique. For the 2-by-2 case,
this is apparent from equation (15) derived in subsection 4.2.1. Although we do not
provide a formal step-by-step proof of the uniqueness in the general case with a
contingency table of size n ×m, we give the intuition of the proof. The number of
additional cells to be determined relative to the 2-by-2 case is equal to the number
of additional independent linear restrictions.11

Second, the new transformation method commutes with another operation by
construction. This other operation is the merging of the categories of the assorted
trait. For the point of the counterfactual, it means the following. Suppose that
originally the transformed contingency table was constructed when the educational
categories were low (L), medium (M ), and high (H ). If L and M are merged in the
seed table and target marginals then the new transformed contingency table is the
same as the original transformed contingency table with merged corresponding rows
and columns.

The above properties of the new method do not guarantee that the various elements
making up the conditions of the constructed counterfactuals can jointly happen. Apart
from a few exceptions, we do not know what set of conditions is possible to happen and
what is not, i.e., what counterfactuals are possible and what are impossible. Certainly,
having a negative frequency of couples under a counterfactual clearly indicates that
the counterfactual is impossible.12

Constructing impossible counterfactuals with the new method is not only a
theoretical possibility. For instance, if one applies the new method for census data
from Portugal with the seed table taken from 2011 and the target marginal
distributions from the year 1981, then the transformed contingency table contains a

10Fienberg (1970) provides an overview of those special cases with a zero in the seed table that can be
solved with existing generalizations of the IPF algorithm. Sinkhorn (1964) presents some numerical
examples to illustrate the drawback of replacing zeros with some small quantities.

11For instance, in the 3-by-3 case, one needs to determine the value of 5( = 3 × 3− 2 × 2) more cells of
the transformed table relative to the 2-by-2 case. We have (3− 1) × (3− 1)− (2− 1) × (2− 1) = 3 more
elements in the Liu–Lu matrix relative to the 2-by-2 case with scalar valued Liu–Lu measure. These
three elements in the Liu–Lu matrix yield three additional independent linear restrictions and we have
two additional independent linear restrictions from the target marginals.

12To note, it is independent of the choice of the transformation method which set of conditions is
possible to happen. However, checking the possibility of a counterfactual may not be independent of the
transformation method applied. Checking the non-negativity criterion of the frequencies offers a joint
test of the transformation method and the possibility of the set of conditions.
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negative element.13 (By contrast, the transformed matrix generated by the CS method is
always non-negative if the seed table is non-negative. This follows from equation (17).)

In the empirical part of this paper, we decompose changes in marital patterns in the
US over a similarly long period as in the example with Portugal. There, we follow an
approach different from the one in the example.14 In particular, we use observations
from four years (t0 < t1 < t2 < t3) instead of two. Accordingly, we apply the
decomposition scheme represented by equation (12).

Our multi-period decomposition involves constructing f (At1 , Pt0 ), f (At0 , Pt1 ),
f (At2 , Pt1 ), f (At1 , Pt2 ), f (At3 , Pt2 ), f (At2 , Pt3 ), whereas it does not require to construct
counterfactual with factors measured in relatively distant years. This is a fortunate case,
because over a relatively long horizon any factor may change so that the respective
counterfactual is impossible. Using the multi-period decomposition scheme is a
potential solution for avoiding such counterfactuals.15 It works well in practice: at least
we obtain no negative entries in any of the transformed tables for Portugal using data
from 1981, 1991, 2001, and 2011. This gives us hope that the counterfactual tables for
the US generated for the multi-period decomposition scheme with data from 1980,
1990, 2000, and 2010 also represent realistic scenarios.

4.3.2. A numerical example with the new method
Let us illustrate with a numerical example the difference between the new method and

some other statistical methods. Suppose that the seed table is K = 45 15
5 35

[ ]
. While

the target marginals are R = 105
45

[ ]
, and C = 100 50

[ ]
.

We obtain K∗
new = 92.5 12.5

7.5 37.5

[ ]
with the new transformation method.16 By

contrast, we would get K∗
conv =

90 15
10 35

[ ]
as a transformed table (with entries

rounded to the nearest integers) by many conventional approaches including the IPF
algorithm. The cross-product ratio, the trait correlation, and the regression slope coefficient
are either exactly invariant or approximately invariant to transforming K to K∗

conv.
17

13See sheet PT_A1981_P2011_Not_meaningful of the Excel file Naszodi_Mendonca
2020_NewMethod_US_PT_1980_2010_age3034.xlsx that can be downloaded from http://dx.doi.org/10.
17632/x2ry7bcm95.1.

14The way Eika et al. (2019) construct their counterfactual is similar to the one in the example with
Portugal. They measure marital sorting in the year 1962 and the educational distributions in 2013.

15An example for an impossible counterfactual is the one under which Europeans already know how to
make popcorn without having discovered the North American continent. Researchers might need to
construct such a counterfactual if they aim at disentangling the effects of inventions and discoveries on
growth in Europe over the history of mankind while being restricted to use observations only from the
endpoints of the time period.

16We check the invariance of the Liu–Lu measure by using equation (3):

LL(K) = 35−int(40×50/100)
min(40, 50)−int(40×50/100) = LL(K∗

new) = 37.5−int(45×50/150)
min(45, 50)−int(45×50/150) = 3

4.

17The only reason for having approximate invariance for some statistics instead of exact invariance is the
rounding of the transformed table entries. The cross-product ratio [defined below equation (16)] is exactly
invariant to transforming K to K∗

conv since CPR(K) = CPR(K∗
conv) = 21. Whereas it is not invariant to

transforming K to K∗
new since CPR(K) = CPR(K∗

new) = 37. Similarly, the Liu–Lu measure is not
invariant to transforming K to K∗

conv since 3
4 = LL(K) = LL(K∗

conv) = 35−int(45×50/150)
min(45, 50)−int(45×50/150) = 2

3.
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This numeric example illustrates two points. First, the dissimilarity across the
counterfactuals obtained with various conventional methods can be negligible. This
point has relevance for robustness checks of decomposition results: one may not
represent model uncertainty sufficiently well if the applied methods are all from the
conventional family even if those are derived from different theoretical models.

Second, our numerical example illustrates well the point that the Liu–Lu measure is
not from the family of conventional measures populated by the cross-product ratio, the
trait correlation, and the regression slope coefficient. And also, a counterfactual
constructed with the new method can be different from the counterfactuals
constructed with some other methods. Whether the difference between the new
method and its alternatives is empirically relevant will be investigated in the next section.

5. Empirical analysis

5.1. Data

For the empirical analysis, decennial census data of the United States are used from four
census waves between 1980 and 2010. The census wave-specific contingency tables are
presented in Table 2. Details on the construction of the data used are presented in
Appendix B in the online appendix (see: https://doi.org/10.1017/dem.2021.1).

Our sample covers those heterosexual young couples where the men are aged 30–34
years.18 We do not distinguish between officially married couples and couples in a
consensual union.19 Hereafter, by “marriage” we mean both types of union.

In addition to couples, our data also cover single individuals from the same age
group. Data on single people are used by the CS method, but not by the IPF
algorithm and the new method.

Our variable on the highest level of education can take five values, i.e., “less than
primary completed”, “primary completed”, “secondary completed”, “some college”, and
“university completed”. For the main analysis, we merge the lowest two categories and
also the next two categories. So, we work with the following three categories: “less than
high school”, “high school completed”, and “university completed”.20

5.2. Stylized facts

Three stylized facts are documented by Tables 3 and 4. First, the studied period was
characterized by an educational expansion. Second, the educational gender gap has
closed and then it has reversed: in 2010, women in relationships with young men

18Another sample covers those heterosexual couples where the women are aged 30–34 years. We use this
sample in one of our robustness checks. The choice of the age group guarantees to observe individuals
almost only with finalized educational attainment (or with a BA if still in study assigning them already
to the highest education category in this paper). It also ensures not to have overlapping observations: no
individual is observed twice in our decennial census data. In addition, it helps to keep the age-related
variation in marital preferences low in each generation under study.

19The marital status variable in the census data has one common category: “married/in union”. By using
another dataset with distinct categories for married and cohabiting couples, Eika et al. (2019) find that
classifying the cohabiting couples as married does not materially change the estimates of the marital
sorting parameters.

20Choo and Siow (2006) use the same three categories as we do. While the education variable in Eika
et al. (2019) can take four categories: “high school dropouts”, “high school graduates”, “some college”,
and “college graduates”.
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Table 2. The contingency tables for the US from four census waves

(a) Couples 1980

Wife/female partner

L M H Total

Husb./male p.

L 468,151 429,125 16,417 913,693

M 436,459 2,786,413 296,450 3,519,322

H 33,235 901,832 921,656 1,856,723

Total 937,845 4,117,370 1,234,523 6,289,738

(b) Singles 1980

L M H Total

Female 470,715 1,398,382 506,246 2,375,343

Male 400,071 1,223,829 664,115 2,288,015

(c) Couples 1990

Wife/female partner

L M H Total

Husb./male p.

L 367,228 430,219 19,076 816,523

M 373,347 3,726,106 532,355 4,631,808

H 19,244 750,676 1,053,370 1,823,290

Total 759,819 4,907,001 1,604,801 7,271,621

(d) Singles 1990

L M H Total

Female 512,808 2,390,532 807,477 3,710,817

Male 621,937 2,558,696 874,855 4,055,488

(e) Couples 2000

Wife/female partner

L M H Total

Husb./male p.

L 358,332 347,489 24,252 730,073

M 286,655 2,917,020 613,873 3,817,548

H 16,308 547,492 1,261,129 1,824,929

Total 661,295 3,812,001 1,899,254 6,372,550

(Continued)
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Table 2. (Continued.)

(f) Singles 2000

L M H Total

Female 427,016 2,291,427 945,353 3,663,796

Male 574,146 2,540,118 993,819 4,108,083

(g) Couples 2010

Wife/female partner

L M H Total

Husb./male p.

L 314,032 295,373 28,823 638,228

M 191,865 2,310,584 733,754 3,236,203

H 11,594 425,542 1,411,180 1,848,316

Total 517,491 3,031,499 2,173,757 5,722,747

(h) Singles 2010

L M H Total

Female 497,157 2,589,723 1,262,563 4,349,443

Male 728,746 3,035,923 1,132,050 4,896,719

Source: Data are from the international version of Integrated Public Use Microdata Series (IPUMS) from the Minnesota
Population Center.
Notes: Our sample covers heterosexual couples where the men are aged 30–34 years, and single people from the same
age group. The variable on the highest level of education can take three different values, where L stands for “low level of
education” corresponding to not having completed high school; M denotes “medium level of education” corresponding
to having a high school degree; and H stands for “high level of education” corresponding to holding a university
diploma.

Table 3. Educational distribution of married/in union young men and that of their spouses in the US
between 1980 and 2010 (in %)

Year

Share of married/in union individuals who attained

No high school High school Diploma

Women Men Women Men Women Men

1980 15 15 65 56 20 30

1990 10 11 67 64 22 25

2000 10 11 60 60 30 29

2010 9 11 53 57 38 32

Source: Authors’ calculations using data in Table 2.
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were more educated than their spouses on average, although it was just the opposite
30 years earlier. Third, the proportion of educationally homogamous couples has
increased.

The first two stylized facts clearly show that the structural availability of marriageable
men and women with a given qualification level has changed. Whether these changes
can fully explain the observed increase in the prevalence of homogamy is undoubtedly
an important empirical question.21 An equally relevant and exciting question is whether
the answer to the previous question depends on the choice of the method applied for
the analysis. This is addressed in the next section.

5.3. The empirical application of the new method

Let us apply the methodology introduced in section 4 to the data described in
subsection 5.1. It involves the following three steps. First, we construct the
contingency tables under the counterfactuals. This is the step where we apply the
new method introduced in subsection 4.2.2. Second, we calculate the share of
educationally homogamous couples. For that, we simply take the sum of the diagonal
elements in each of the observed contingency tables and divide it by the
corresponding total number of couples. We obtain f(A1980, P1980), f(A1990, P1990), f
(A2000, P2000), and f(A2010, P2010). Similarly, we calculate the share of educationally
homogamous couples in each of the six counterfactual tables. We obtain f(A1980,
P1990), f(A1990, P1980), f(A1990, P2000), f(A2000, P1990), f(A2000, P2010), f(A2010, P2000).
Finally, we apply the decomposition scheme in equation (11) three times (or,
equation (12)).

5.3.1. Results of the main analysis
Figure 1 presents the outcome of the main decomposition. It reports the extent to which
certain drivers contributed to the changes in the share of educationally homogamous
couples in the US between 1980 and 2010. Figure 1b shows the results for
the investigated three decades separately, while these outcomes are aggregated in
Figure 1a.

Table 4. The proportion of educationally homogamous couples in the US between 1980 and 2010 (in %)

Year

Share of homogamous couples who attained

No high school High school Diploma All types

(1) (2) (3) (4) = (1) + (2) + (3)

1980 7 44 15 66

1990 5 51 14 71

2000 6 46 20 71

2010 5 40 25 71

Source: Authors’ calculations using data in Table 2.

21This question is studied for various countries and periods by several papers. See, for instance, Naszodi
and Mendonca (2019b), Hu and Qian (2016) and references therein.
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The results presented in Figure 1 cover not only the decompositions performed with
the new method, but also those obtained with the CS solution, and the IPF algorithm.22

Regarding some other methods, we cannot present decompositions with them. This is
because the transformed contingency table has a negative cell when it is obtained with
any of the statistical approaches, where the covariance, or the Pearson’s correlation, or
the regression coefficient is kept fixed.23

Figure 1a suggests that the components are robust to the choice of the method when
the decomposition is applied to the period between 1980 and 2010.24 Interestingly, it is
not the case with all the decade-specific components (see Figure 1b). For the period
between 1980 and 1990, the sign of the decomposed effect of varying marital
preferences across the groups of young American adults from different cohorts
depends on whether the new method is applied or any of its alternatives.25 Whereas
for the period between 2000 and 2010, it is the magnitude of the same effect that is
sensitive to the choice of the method (see the dark bars of Figure 1b).

The analysis in this section had a limited scope in documenting differences between
the empirical findings of the methods. The next subsection checks the robustness of
some findings obtained with the new method. While in subsection 5.4, we use some
survey evidence and the decade-specific components to support our claim that the
new method is better than its two alternatives.

5.3.2. Robustness checks
In this subsection, we investigate whether our decompositions obtained with the new
method are robust to some choices; specifically, the choice on the number of
educational categories (3 in the main specification, 4 in its two alternatives), and the
definition of young couples (men are aged 30–34 years vs. women are aged 30–34 years).

We present not only the decade-specific results (see Figure 2b), but also the
aggregate results (see Figure 2a). However, we interpret only the decade-specific
results since we use them for method selection. Lack of their robustness would
undermine the concept of selection. Fortunately, this is not the case: Figure 2b shows
that the sign of the decade-specific components is sensitive neither to the definition of
young couples, nor to the educational categories considered. Moreover, the magnitude
of the marital preference-component in the last decade is also robust (see the dark
bars in Figure 2b belonging to the period 2000–2010).

5.4. A supplementary analysis

When different methods deliver contrasting results, it calls for checking how well
these results fit other evidence. To study whether the CS solution, the IPF

22For the empirical implementation of the IPF algorithm, we use the “mipfp” package in R developed by
Barthélemy and Suesse (2018) (see https://github.com/jojo-/mipfp). For the CS method, we solve the system
of quadratic equations numerically.

23We repeat our point made in Footnote 12 that a negative frequency is consistent with anyone or both
of the following cases: (i) the transformation method is not adequate, (ii) the elements of conditions of the
counterfactual are not possible to happen jointly.

24All three methods suggest that we can attribute an economically significant increase (>2 percentage
points) in the share of homogamous couples to the varying marital preferences between 1980 and 2010
(see the dark bars of Figure 1a).

25This sensitivity cannot be due to sample variation and sampling variation. First, the new method and
the IPF are applied to the very same set of data. Second, we work with census data that are large and
representative, by construction, to the population.
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algorithm or the new method provides us with a more realistic view, we use survey
evidence from the Pew Research Center on the views of different generations about
spousal education.

The Changing American Family survey conducted in 2010 informs us about two
shares: the share of men who say it is very important for a woman to be well-educated
in order to be a good wife/partner; and the share of women who say it is very
important for a man to be well-educated in order to be a good husband/partner.26

Figure 1. The long-horizon and short-horizon decompositions of changing prevalence of marital homogamy in
the US with counterfactuals constructed by three different methods.
Source: Authors’ calculations using data in Table 2.
Notes: The decompositions are performed with the decomposition scheme in equation (11) for each of the three
decades (1980–1990, 1990–2000, and 2000–2010), and with the three methods (Choo–Siow method, IPF
algorithm, and the new method). The results are presented in 1b. The corresponding aggregate components
obtained with the decomposition scheme in equation (12) are presented in 1a.

26The survey data can be downloaded from https://www.pewsocialtrends.org/dataset/changing-
american-family/.
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This survey is not designed to identify directly those respondents who have preferences
for homogamy. Therefore, we cannot learn from it what share of the male and female
respondents prefer to mate with others who have the same education level as they do.

Obviously, the observed shares and the shares that cannot be identified from the
survey capture the prevalence of different types of preferences in society. However, as
it is pointed out by Hitsch et al. (2010) and others, “both types of preferences can
lead to empirically observed assortative mating patterns [Becker (1973), Browning
et al. (2008), and Kalmijn (1998)] and are thus indistinguishable using data on
marriages only.” On the one hand, the point they make questions whether the effects
identified in the previous section are really the effects of changing preferences for

Figure 2. The long-horizon and short-horizon decompositions of changing prevalence of marital homogamy in
the US with counterfactuals constructed by the new method.
Source: Authors’ calculations using data in Table 2.
Notes: In the first case, we introduced the educational category “some college” by splitting the middle education
category of the main analysis. In the second case, we introduced the education category “less than primary
completed” by splitting the lowest category of the main analysis. In the third case, we defined young couples
with the age of the wives/female partners by restricting it between 30 and 34 years. The decade-specific
components in 2b are summed in order to obtain the results of the long-horizon decompositions reported in 2a.
The decomposition scheme used is the same as in the main analysis.
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partners with the same education level or, rather, they are the effects of changing
preferences for well-educated partners. On the other hand, their point motivates us
to use the variation in the observed shares across generations as a proxy for the
effect of changing marital preferences irrespective of the exact type of these preferences.

When analyzing the survey data, our primary focus is on the responses of the early
baby boomers (who were in the age group of 30–34 in the census year 1980) and the late
boomers (who were in the same age group 10 years later in 1990) since the conflicting
findings presented in subsection 5.3 were related to the revealed preferences of these
two generations.

Figure 3 shows that in 2010 spousal education was viewed to be very important by 35%
of the women respondents and 34% of the men respondents among the late boomers.
These shares are lower than the corresponding shares in the generation of early
boomers (around 39% and 45%, respectively). The detected variation across generations
suggests that the changing composition of the studied age group with respect to its
members’ marital/mating preferences has a negative effect on the share of educationally
homogamous young couples in the US between 1980 and 1990. The latter finding is in
line with the result obtained by the new method, but not with those of the CS method
and the IPF algorithm (see the dark bars in Figure 1b for the period 1980–1990).

Moreover, Figure 3 shows that there is a remarkable difference not only between the
early boomers and the late boomers but also between the early generation-X (who were
in the age group of 30–34 in 2000) and the late generation-X (who were in the same age
group in 2010) regarding their preferences. In 2010, spousal education was viewed to be
very important by about 41% of the female and 32% of the male respondents in the
early generation-X. These shares are higher in the late generation-X since those are
close to 46% and 45%, respectively. This survey evidence suggests that the share of
educationally homogamous young couples would have increased massively between
2000 and 2010 if the educational composition of the early generation-X and that of
the late generation-X had been the same. This result is again more in line with the
finding obtained by the new method than with the finding obtained with its
alternatives (see the dark bars of Figure 1b for the period 2000–2010).

All in all, the reviewed survey evidence yield support for the new method.27

6. Conclusion

Counterfactual analysis is in the focus of several research papers in the assortative
mating literature. The typical question addressed is how the marriage patterns would
have changed in the absence of change in the education levels of men and women.

In this paper, we proposed a new method that can provide an answer to the typical
question. We compared it with some conventional methods for constructing
counterfactuals, such as the well-known IPF algorithm and the method relying on the
Choo–Siow model. Our empirical analysis performed on US census data illustrated the
following point. Some answers to the new method are different from those provided with
the IPF algorithm, and the CS method. It shows that the choice of method can be crucial.

Motivated by the detected lack of robustness to the method, we proposed an empirical
method selection criterion. The supplementary analysis in this paper checked whether the
results of the new method or that of its alternatives are closer to some survey evidence on
Americans’ marital/mating preferences. This analysis supports the new method.

27In our Appendix C, we discuss some potential limitations of this supplementary analysis (see: https://
doi.org/10.1017/dem.2021.1).
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It remains partly for future research to test systematically the assumptions behind
the new method and to apply the test to other methods as well. It is also on our
research agenda to recover a micro foundation of the Liu–Lu measure as an
aggregate matching function. We have already started to address some points of this
research agenda. In a follow-up paper, we investigate whether the empirical findings
obtained with the new method are sensitive to the assumption which rules out the
possibility of remaining single.28

Figure 3. Generation-specific views from the opposite sex on the importance of spousal education in the US in
2010.
Source: Authors’ calculations based on the answers to the survey questions number 23 and number 24 in the
Changing American Family survey conducted by the Pew Research Center in 2010.
Notes: Answering the corresponding survey questions was refused by 3 women (aged 35, 55, and 87 in 2010) and 1
men (aged 57 in 2010), while the questions were answered by 289 women and 237 men in the age groups studied.
Out of the 289 women 84 were in the age group 60–64 (representing early boomers), 92 were in the age group 50–54
(representing late boomers), 60 were in the age group 40–44 (representing early generation-X) and 53 were in the age
group 30–34 (representing late generation-X) in 2010. Out of the 237 men respondents 56 were in the age group 60–
64, 75 were in the age group 50–54, 61 were in the age group 40–44, 45 were in the age group 30–34 in the same year.
The 95% symmetric confidence intervals are obtained with the approximation proposed by Agresti and Coull (1998).

28In Naszodi and Mendonca (2019a), we use dating data in addition to aggregate census data to identify
the effect of changing preferences on marriage matching patterns and to estimate the share of singles
refrained from the marriage market.
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Supplementary material. The online appendix of this article can be found at https://doi.org/10.1017/
dem.2021.1. The new method (implemented in Excel, Visual Basic, and R) can be downloaded from
http://dx.doi.org/10.17632/x2ry7bcm95.1.

Acknowledgements. The authors thank Pierre-André Chiappori, Alfred Galichon, and Erik Plug for the
helpful discussions and gratefully acknowledge comments from Liliana Cuccu, Andrea Barta, Sven
Langedijk, Péter Mihályi, Eszter Naszodi, Tamás K. Papp, Sylke Schnepf, András Simonovits, Kornél
Steiger, Iván Szelényi, Márta Ujvári, Stefano Verzillo, and two anonymous referees.

Author contribution. Anna Naszodi formed the concept of the research, wrote the first draft of the
manuscript, and revised the paper before re-submission. She reviewed the literature and positioned the
paper relative to some related papers on the topic; collected data from IPUMS and the Pew Research
Center; implemented the new method developed in the paper in excel and Visual Basic; performed the
final empirical analysis. Francisco Mendonca made some first-round data analysis using census data.
He identified thereby the discrepancy of performing the decomposition for Portugal by using only the
endpoints of the sample and recognized that the solution of the new method is unique. He
implemented the new method in R. Also, he contributed by proof reading the manuscript and
formatting its tables. In addition, he contributed indirectly by working on the companion paper entitled
“Changing educational homogamy: Shifting preferences or evolving educational distribution?”.

Disclaimer. The views expressed in this paper are those of the authors and do not necessarily reflect the
official views of the European Commission.

References
Agresti, Alan and Brent A. Coull (1998) Approximate is better than “exact” for interval estimation of

binomial proportions. The American Statistician 52(2), 119–126.
Altham, Patricia (1970) The measurement of association of rows and columns for an r×s contingency table.

Journal of the Royal Statistical Society Series B 32 (1), 63–73.
Altham, Patricia, and Joseph Ferrie (2007) Comparing contingency tables tools for analyzing data from two

groups cross-classified by two characteristics. Historical Methods: A Journal of Quantitative and
Interdisciplinary History 40, 3–16.

Barthélemy, Johan and Thomas Suesse (2018) Mipfp: an R package for multidimensional array fitting
and simulating multivariate Bernoulli distributions. Journal of Statistical Software, Code Snippets 86
(2), 1–20.

Becker, Gary S. (1973) A theory of marriage: part I. Journal of Political Economy 81(4), 813–846.
Biewen, Martin (2012) Additive decompositions with interaction effects. Discussion Papers No. 6730. IZA.
Breen, Richard and Leire Salazar (2005) Has increased women’s educational attainment led to greater

earnings inequality in the UK? Working paper No. 216. Estudio.
Breen, Richard and Leire Salazar (2011) Educational assortative mating and earnings inequality in the

United States. American Journal of Sociology 117(3), 808–843.
Browning, Martin and Pierre-André Chiappori, and Yoram Weiss (2008) The economics of the

family. http://www.tau.ac.il/~weiss/fam_econ/.
Chen, Liang, Eugene Choo, Alfred Galichon and Simon Weber (2019) Matching function equilibria:

Existence, uniqueness and estimation. 13 May 2019. https://ssrn.com/abstract=3387335.
Chiappori, Pierre-André, Bernard Salanié and Yoram Weiss (2017) Partner choice, investment in children,

and the marital college premium. American Economic Review 107(8), 2109–2167.
Choo, Eugene and Aloysius Siow (2006)Whomarries whom and why. Journal of Political Economy 114(1), 175–201.
Dagsvik, John (2000) Aggregation in matching markets. International Economic Review 41(1), 27–58.
DiNardo, John, Nicole Fortin and Thomas Lemieux (1996) Labor market institutions and the distribution

of wages, 1973–1992: a semiparametric approach. Econometrica 64(5), 1001–1044.
Dupuy, Arnaud and Alfred Galichon (2014) Personality traits and the marriage market. Journal of Political

Economy 122(6), 1271–1319.
Eika, Lasse and Magne Mogstad and Basit Zafar (2019) Educational assortative mating and household

income inequality. Journal of Political Economy 127(6), 2795–2835.

26 Anna Naszodi and Francisco Mendonca

https://doi.org/10.1017/dem.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2021.1
https://doi.org/10.1017/dem.2021.1
https://doi.org/10.1017/dem.2021.1
http://dx.doi.org/10.17632/x2ry7bcm95.1
http://www.tau.ac.il/~weiss/fam_econ/
https://ssrn.com/abstract=3387335
https://ssrn.com/abstract=3387335
https://doi.org/10.1017/dem.2021.1


Fernandez, Raquel (2001) Education, segregation and marital sorting: Theory and an application to UK
data (Working Paper No. 8377). National Bureau of Economic Research. Retrieved from DOI
10.3386/w8377 .

Fernandez, Raquel, Nezih Guner and John Knowles (2005) Love and money: a theoretical and empirical
analysis of household sorting and inequality. The Quarterly Journal of Economics 120(1), 273–344.

Fernandez, Raquel and Richard Rogerson (2001) Sorting and long-run inequality. Quarterly Journal of
Economics 116, 1305–1341.

Fienberg, Stephen E. (1970) An iterative procedure for estimation in contingency tables. The Annals of
Mathematical Statistics 41(3), 907–917.

Greenwood, Jeremy, Nezih Guner and Georgi Kocharkov and Cezar Santos (2014) Marry your like:
assortative mating and income inequality. American Economic Review 104(5), 348–353.

Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov and Cezar Santos (2015) Corrigendum to Marry
Your Like: Assortative Mating and Income Inequality. Retrieved from http://www.jeremygreenwood.
net/papers/ggksPandPcorrigendum.pdf.

Hitsch, Günter J., Ali Hortaçsu and Dan Ariely (2010) What makes You click? –Mate preferences in online
dating. Quantitative Marketing and Economics 8(4), 393–427.

Hu, Anning and Zhenchao Qian (2016) Does higher education expansion promote educational
homogamy? Evidence from married couples of the post-80s generation in Shanghai, China. Social
Science Research 60, 148–162.

Kalmijn, Matthijs (1998) Intermarriage and homogamy: causes, patterns, trends. Annual Review of
Sociology 24, 395–421.

Kremer, Michael (1997) How much does sorting increase inequality? The Quarterly Journal of Economics
112(1), 115–139.

Liu, Haoming and Jingfeng Lu (2006) Measuring the degree of assortative mating. Economics Letters 92(3),
317–322.

Menzel, Konrad (2015) Large matching markets as two-sided demand systems. Econometrica 83(3), 897–941.
Naszodi, Anna and Francisco Mendonca (2019a) Changing educational homogamy: Shifting preferences or

evolving educational distribution? Unpublished manuscript, under review.
Naszodi, Anna and Francisco Mendonca (2019b) Like marries like. JRC Science for Policy Briefs Series

JRC115102, March. European Commission, Joint Research Centre. URL: https://ec.europa.eu/jrc/sites/
jrcsh/files/fairness_pb2019_assortative_mating_jrc115102.pdf.

Sinkhorn, Richard (1964) A relationship between arbitrary positive matrices and doubly stochastic
matrices. The Annals of Mathematical Statistics 35(2), 876–879.

Sinkhorn, Richard (1967) Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly 74(4), 402–405.

Stephan, Frederick F. and W. Edwards Deming (1940) On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known. The Annals of Mathematical Statistics
11(4), 427–444.

Cite this article: Naszodi A, Mendonca F (2023). A new method for identifying the role of marital
preferences at shaping marriage patterns. Journal of Demographic Economics 89, 1–27. https://doi.org/
10.1017/dem.2021.1

Journal of Demographic Economics 27

https://doi.org/10.1017/dem.2021.1 Published online by Cambridge University Press

http://www.jeremygreenwood.net/papers/ggksPandPcorrigendum.pdf
http://www.jeremygreenwood.net/papers/ggksPandPcorrigendum.pdf
http://www.jeremygreenwood.net/papers/ggksPandPcorrigendum.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/fairness_pb2019_assortative_mating_jrc115102.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/fairness_pb2019_assortative_mating_jrc115102.pdf
https://ec.europa.eu/jrc/sites/jrcsh/files/fairness_pb2019_assortative_mating_jrc115102.pdf
https://doi.org/10.1017/dem.2021.1
https://doi.org/10.1017/dem.2021.1
https://doi.org/10.1017/dem.2021.1

	A new method for identifying the role of marital preferences at shaping marriage patterns
	Introduction
	Literature
	Three strands of the literature
	Some recent contributions to the literature on measure selection

	Characterizing marital preferences &agrave; la Liu and Lu
	The Liu--Lu measure
	The generalized Liu--Lu measure

	Methodology
	Decomposition scheme
	The new method for constructing counterfactuals
	The new method for constructing counterfactuals with dichotomous trait variable
	The new method for constructing counterfactuals with polytomous trait variable

	Analysis of the new method
	Some analytical properties of the new method
	A numerical example with the new method


	Empirical analysis
	Data
	Stylized facts
	The empirical application of the new method
	Results of the main analysis
	Robustness checks

	A supplementary analysis

	Conclusion
	Acknowledgements
	References


