
JFP 13 (1): 179–190, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803001916 Printed in the United Kingdom

Chapter 17

List Utilities

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefixOf, isSuffixOf,
mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zip5, zip6, zip7,
zipWith4, zipWith5, zipWith6, zipWith7,
unzip4, unzip5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports
-- []((:), []), -- This is built-in syntax
map, (++), concat, filter,
head, last, tail, init, null, length, (!!),
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,
iterate, repeat, replicate, cycle,
take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum, concatMap,
zip, zip3, zipWith, zipWith3, unzip, unzip3
) where

infix 5 \\

179

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

180 CHAPTER 17. LIST UTILITIES

elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndices :: Eq a => a -> [a] -> [Int]
find :: (a -> Bool) -> [a] -> Maybe a
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndices :: (a -> Bool) -> [a] -> [Int]
nub :: Eq a => [a] -> [a]
nubBy :: (a -> a -> Bool) -> [a] -> [a]
delete :: Eq a => a -> [a] -> [a]
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
(\\) :: Eq a => [a] -> [a] -> [a]
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
union :: Eq a => [a] -> [a] -> [a]
unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

intersect :: Eq a => [a] -> [a] -> [a]
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersperse :: a -> [a] -> [a]
transpose :: [[a]] -> [[a]]
partition :: (a -> Bool) -> [a] -> ([a],[a])
group :: Eq a => [a] -> [[a]]
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
inits :: [a] -> [[a]]
tails :: [a] -> [[a]]
isPrefixOf :: Eq a => [a] -> [a] -> Bool
isSuffixOf :: Eq a => [a] -> [a] -> Bool
mapAccumL :: (a -> b -> (a, c)) -> a -> [b] -> (a, [c])
mapAccumR :: (a -> b -> (a, c)) -> a -> [b] -> (a, [c])
unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
sort :: Ord a => [a] -> [a]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]
insert :: Ord a => a -> [a] -> [a]
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
maximumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy :: (a -> a -> Ordering) -> [a] -> a
genericLength :: Integral a => [b] -> a
genericTake :: Integral a => a -> [b] -> [b]
genericDrop :: Integral a => a -> [b] -> [b]
genericSplitAt :: Integral a => a -> [b] -> ([b],[b])
genericIndex :: Integral a => [b] -> a -> b
genericReplicate :: Integral a => a -> b -> [b]

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f]

-> [(a,b,c,d,e,f)]
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]

-> [(a,b,c,d,e,f,g)]
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith5 :: (a->b->c->d->e->f) ->

[a]->[b]->[c]->[d]->[e]->[f]
zipWith6 :: (a->b->c->d->e->f->g) ->

[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith7 :: (a->b->c->d->e->f->g->h) ->

[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

17.1. INDEXING LISTS 181

This library defines some lesser-used operations over lists.

17.1 Indexing Lists

� elemIndex val list returns the index of the first occurrence, if any, of val in list
as Just index. Nothing is returned if not (val ‘elem‘ list).

� elemIndices val list returns an in-order list of indices, giving the occurrences of
val in list.

� find returns the first element of a list that satisfies a predicate, or Nothing, if there is no such
element. findIndex returns the corresponding index. findIndices returns a list of all
such indices.

17.2 “Set” Operations

There are a number of “set” operations defined over the List type. nub (meaning “essence”)
removes duplicates elements from a list. delete, (\\), union and intersect (and their By
variants) preserve the invariant that their result does not contain duplicates, provided that their first
argument contains no duplicates.

� nub removes duplicate elements from a list. For example:

nub [1,3,1,4,3,3] = [1,3,4]

� delete x removes the first occurrence of x from its list argument, e.g.

delete ’a’ "banana" == "bnana"

� (\\) is list difference (non-associative). In the result of xs \\ ys, the first occurrence of
each element of ys in turn (if any) has been removed from xs. Thus,
(xs ++ ys) \\ xs == ys.

� union is list union, e.g.

"dog" ‘union‘ "cow" == "dogcw"

� intersect is list intersection, e.g.

[1,2,3,4] ‘intersect‘ [2,4,6,8] == [2,4]

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

182 CHAPTER 17. LIST UTILITIES

17.3 List Transformations

� intersperse sep inserts sep between the elements of its list argument, e.g.

intersperse ’,’ "abcde" == "a,b,c,d,e"

� transpose transposes the rows and columns of its argument, e.g.

transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

� partition takes a predicate and a list and returns a pair of lists: those elements of the
argument list that do and do not satisfy the predicate, respectively; i.e.

partition p xs == (filter p xs, filter (not . p) xs)

� sort implement a stable sorting algorithm, here specified in terms of the insertBy func-
tion, which inserts objects into a list according to the specified ordering relation.

� insert inserts a new element into an ordered list (arranged in increasing order).

� group splits its list argument into a list of lists of equal, adjacent elements. For example

group "Mississippi" == ["M","i","ss","i","ss","i","pp","i"]

� inits returns the list of initial segments of its argument list, shortest first.

inits "abc" == ["","a","ab","abc"]

� tails returns the list of all final segments of its argument list, longest first.

tails "abc" == ["abc", "bc", "c",""]

� mapAccumL f s l applies f to an accumulating “state” parameter s and to each element
of l in turn.

� mapAccumR is similar to mapAccumL except that the list is processed from right-to-left
rather than left-to-right.

17.4 unfoldr

The unfoldr function is a “dual” to foldr: while foldr reduces a list to a summary value,
unfoldr builds a list from a seed value. For example:

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

17.5. PREDICATES 183

iterate f == unfoldr (\x -> Just (x, f x))

In some cases, unfoldr can undo a foldr operation:

unfoldr f’ (foldr f z xs) == xs

if the following holds:

f’ (f x y) = Just (x,y)
f’ z = Nothing

17.5 Predicates

isPrefixOf and isSuffixOf check whether the first argument is a prefix (resp. suffix) of the
second argument.

17.6 The “By” Operations

By convention, overloaded functions have a non-overloaded counterpart whose name is suffixed
with “By”. For example, the function nub could be defined as follows:

nub :: (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (filter (\y -> not (x == y)) xs)

However, the equality method may not be appropriate in all situations. The function:

nubBy :: (a -> a -> Bool) -> [a] -> [a]
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)

allows the programmer to supply their own equality test. When the “By” function replaces an Eq
context by a binary predicate, the predicate is assumed to define an equivalence; when the “By”
function replaces an Ord context by a binary predicate, the predicate is assumed to define a total
ordering.

The “By” variants are as follows: nubBy, deleteBy, deleteFirstsBy (the By variant of
\\), unionBy, intersectBy, groupBy, sortBy, insertBy, maximumBy, minimumBy.

The library does not provideelemBy, becauseany (eq x) does the same job as elemBy eq x
would. A handful of overloaded functions (elemIndex, elemIndices, isPrefixOf, is-
SuffixOf) were not considered important enough to have “By” variants.

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

184 CHAPTER 17. LIST UTILITIES

17.7 The “generic” Operations

The prefix “generic” indicates an overloaded function that is a generalised version of a Prelude
function. For example,

genericLength :: Integral a => [b] -> a

is a generalised version of length.

The “generic” operations are as follows: genericLength , genericTake, genericDrop,
genericSplitAt, genericIndex (the generic version of !!), genericReplicate.

17.8 Further “zip” Operations

The Prelude provides zip, zip3, unzip, unzip3, zipWith, and zipWith3. The List library
provides these same three operations for 4, 5, 6, and 7 arguments.

17.9 Library List

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefixOf, isSuffixOf,
mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zip5, zip6, zip7,
zipWith4, zipWith5, zipWith6, zipWith7,
unzip4, unzip5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports
-- []((:), []), -- This is built-in syntax
map, (++), concat, filter,
head, last, tail, init, null, length, (!!),
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,
iterate, repeat, replicate, cycle,
take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum, concatMap,
zip, zip3, zipWith, zipWith3, unzip, unzip3
) where

import Maybe(listToMaybe)

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST 185

infix 5 \\

elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x = findIndex (x ==)

elemIndices :: Eq a => a -> [a] -> [Int]
elemIndices x = findIndices (x ==)

find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p

findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p = listToMaybe . findIndices p

findIndices :: (a -> Bool) -> [a] -> [Int]
findIndices p xs = [i | (x,i) <- zip xs [0..], p x]

nub :: Eq a => [a] -> [a]
nub = nubBy (==)

nubBy :: (a -> a -> Bool) -> [a] -> [a]
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)

delete :: Eq a => a -> [a] -> [a]
delete = deleteBy (==)

deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
deleteBy eq x [] = []
deleteBy eq x (y:ys) = if x ‘eq‘ y then ys else y : deleteBy eq x ys

(\\) :: Eq a => [a] -> [a] -> [a]
(\\) = foldl (flip delete)

deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
deleteFirstsBy eq = foldl (flip (deleteBy eq))

union :: Eq a => [a] -> [a] -> [a]
union = unionBy (==)

unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ deleteFirstsBy eq (nubBy eq ys) xs

intersect :: Eq a => [a] -> [a] -> [a]
intersect = intersectBy (==)

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]

intersperse :: a -> [a] -> [a]
intersperse sep [] = []
intersperse sep [x] = [x]
intersperse sep (x:xs) = x : sep : intersperse sep xs

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

186 CHAPTER 17. LIST UTILITIES

-- transpose is lazy in both rows and columns,
-- and works for non-rectangular ’matrices’
-- For example, transpose [[1,2],[3,4,5],[]] = [[1,3],[2,4],[5]]
-- Note that [h | (h:t) <- xss] is not the same as (map head xss)
-- because the former discards empty sublists inside xss
transpose :: [[a]] -> [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss) = (x : [h | (h:t) <- xss]) :

transpose (xs : [t | (h:t) <- xss])

partition :: (a -> Bool) -> [a] -> ([a],[a])
partition p xs = (filter p xs, filter (not . p) xs)

-- group splits its list argument into a list of lists of equal, adjacent
-- elements. e.g.,
-- group "Mississippi" == ["M","i","ss","i","ss","i","pp","i"]
group :: Eq a => [a] -> [[a]]
group = groupBy (==)

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy eq [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs

where (ys,zs) = span (eq x) xs

-- inits xs returns the list of initial segments of xs, shortest first.
-- e.g., inits "abc" == ["","a","ab","abc"]
inits :: [a] -> [[a]]
inits [] = [[]]
inits (x:xs) = [[]] ++ map (x:) (inits xs)

-- tails xs returns the list of all final segments of xs, longest first.
-- e.g., tails "abc" == ["abc", "bc", "c",""]
tails :: [a] -> [[a]]
tails [] = [[]]
tails xxs@(_:xs) = xxs : tails xs

isPrefixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

isSuffixOf :: Eq a => [a] -> [a] -> Bool
isSuffixOf x y = reverse x ‘isPrefixOf‘ reverse y

mapAccumL :: (a -> b -> (a, c)) -> a -> [b] -> (a, [c])
mapAccumL f s [] = (s, [])
mapAccumL f s (x:xs) = (s’’,y:ys)

where (s’, y) = f s x
(s’’,ys) = mapAccumL f s’ xs

mapAccumR :: (a -> b -> (a, c)) -> a -> [b] -> (a, [c])
mapAccumR f s [] = (s, [])
mapAccumR f s (x:xs) = (s’’, y:ys)

where (s’’,y) = f s’ x
(s’, ys) = mapAccumR f s xs

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST 187

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of

Nothing -> []
Just (a,b) -> a : unfoldr f b

sort :: (Ord a) => [a] -> [a]
sort = sortBy compare

sortBy :: (a -> a -> Ordering) -> [a] -> [a]
sortBy cmp = foldr (insertBy cmp) []

insert :: (Ord a) => a -> [a] -> [a]
insert = insertBy compare

insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
insertBy cmp x [] = [x]
insertBy cmp x ys@(y:ys’)

= case cmp x y of
GT -> y : insertBy cmp x ys’
_ -> x : ys

maximumBy :: (a -> a -> Ordering) -> [a] -> a
maximumBy cmp [] = error "List.maximumBy: empty list"
maximumBy cmp xs = foldl1 max xs

where
max x y = case cmp x y of

GT -> x
_ -> y

minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy cmp [] = error "List.minimumBy: empty list"
minimumBy cmp xs = foldl1 min xs

where
min x y = case cmp x y of

GT -> y
_ -> x

genericLength :: (Integral a) => [b] -> a
genericLength [] = 0
genericLength (x:xs) = 1 + genericLength xs

genericTake :: (Integral a) => a -> [b] -> [b]
genericTake _ [] = []
genericTake 0 _ = []
genericTake n (x:xs)

| n > 0 = x : genericTake (n-1) xs
| otherwise = error "List.genericTake: negative argument"

genericDrop :: (Integral a) => a -> [b] -> [b]
genericDrop 0 xs = xs
genericDrop _ [] = []
genericDrop n (_:xs)

| n > 0 = genericDrop (n-1) xs
| otherwise = error "List.genericDrop: negative argument"

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

188 CHAPTER 17. LIST UTILITIES

genericSplitAt :: (Integral a) => a -> [b] -> ([b],[b])
genericSplitAt 0 xs = ([],xs)
genericSplitAt _ [] = ([],[])
genericSplitAt n (x:xs)

| n > 0 = (x:xs’,xs’’)
| otherwise = error "List.genericSplitAt: negative argument"

where (xs’,xs’’) = genericSplitAt (n-1) xs

genericIndex :: (Integral a) => [b] -> a -> b
genericIndex (x:_) 0 = x
genericIndex (_:xs) n

| n > 0 = genericIndex xs (n-1)
| otherwise = error "List.genericIndex: negative argument"

genericIndex _ _ = error "List.genericIndex: index too large"

genericReplicate :: (Integral a) => a -> b -> [b]
genericReplicate n x = genericTake n (repeat x)

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (,,,)

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)

zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[(a,b,c,d,e,f)]

zip6 = zipWith6 (,,,,,)

zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[g] -> [(a,b,c,d,e,f,g)]

zip7 = zipWith7 (,,,,,,)

zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)

= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []

zipWith5 :: (a->b->c->d->e->f) ->
[a]->[b]->[c]->[d]->[e]->[f]

zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es

zipWith5 _ _ _ _ _ _ = []

zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]

zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs

zipWith6 _ _ _ _ _ _ _ = []

zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]

zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs

zipWith7 _ _ _ _ _ _ _ _ = []

unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ˜(as,bs,cs,ds) ->

(a:as,b:bs,c:cs,d:ds))
([],[],[],[])

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

17.9. LIBRARY LIST 189

unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ˜(as,bs,cs,ds,es) ->

(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])

unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ˜(as,bs,cs,ds,es,fs) ->

(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])

unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ˜(as,bs,cs,ds,es,fs,gs) ->

(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

https://doi.org/10.1017/S0956796803001916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001916

