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CHARACTER SHEAVES AND GENERALIZED

SPRINGER CORRESPONDENCE

ANNE-MARIE AUBERT

Abstract. Let G be a connected reductive algebraic group over an algebraic
closure of a finite field of characteristic p. Under the assumption that p is
good for G, we prove that for each character sheaf A on G which has non-
zero restriction to the unipotent variety of G, there exists a unipotent class CA

canonically attached to A, such that A has non-zero restriction on CA, and
any unipotent class C in G on which A has non-zero restriction has dimension
strictly smaller than that of CA.

§1. Introduction

Let Fq be an algebraic closure of a finite field Fq of q elements. Let

G be a connected reductive algebraic group over Fq, defined over Fq. Let

T be a maximal torus in G, T ∗ be a maximal torus in the Langlands dual

G∗ of G which is dual to T , and let W = WG denote the Weyl group of G

with respect to T , that we identify with the Weyl group of G∗ with respect

to T ∗. Let s ∈ T ∗. Lusztig has defined a canonical surjective map from

the set Ĝ of characters sheaves on G to the set of W -orbits on T ∗. We will

denote by Ĝs the set of character sheaves in the fibre over the orbit of s of

this map. We set

(1.1) WG
s = Ws := {w ∈W | w(s) = s} .

Lusztig has also defined a map from Ĝs to the set of two-sided cells of

Ws. For c a given two-sided cell of Ws, we will denote by Ĝs,c the set of

character sheaves in the fibre over c of this map. Lusztig has described a

canonical construction by which we can associate a well-defined unipotent

class Cs,c with each pair (s, c), where s ∈ T ∗ and c is a two-sided cell in

Ws. The following theorem is a special case of a result of Lusztig [17, Th.

10.7]. One of our purposes is to replace, in this special case, the assumption
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of [loc. cit.] that the characteristic p of Fq is large enough by the weaker

assumption “p is good for G”.

Theorem 1.1. For any s ∈ T ∗ and any two-sided cell c in Ws, the

following hold :

(a) If A ∈ Ĝs,c and if C is a unipotent class in G such that the restriction

of A to C does not vanish, then

(1.2) dimC ≤ dimCs,c, with equality only for C = Cs,c ;

(b) There exists some A ∈ Ĝs,c such that the restriction of A to Cs,c does

not vanish.

We will first show that part (b) of the Theorem is implied by part (a):

for this we will use in a crucial way a result of Geck [5] which generalizes

to good primes the result of Lusztig concerning the unipotent support (as

an average value) of the irreducible characters of GF and the result of

Shoji [22] on Lusztig conjecture. When G is of exceptional type, and,

also in some cases for classical groups, we will derive directly the proof of

part (a) from Lusztig’s one. For the other cases, we will prove it using

direct computations in the spirit of [15] in order to obtain a unipotent class

CA satisfying analogous statements as (a) and (b), and then use Lusztig’s

result to check that CA = Cs,c. The scheme of the proof is explained at the

beginning of Section 4.1 and in (4.1.2).
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§2. Preliminaries

We keep the notation of the introduction. Let W 0
s be the Weyl group of

the connected component C0
G∗(s) of the centralizer CG∗(s) of s in G∗. It is

a normal subgroup of the group Ws defined in (1.1). Let Φs denote the root

system of W 0
s . Let V be the rational vector space spanned by Φs. Lusztig

has associated (see [9], [12, (4.1.2)]) with any irreducible representation E ′

of W 0
s an integer bE′ ≥ 0 by the requirement that bE′ is the smallest integer

i such that E ′ occurs in the i–th symmetric power of V , and (see [9], [12,

(4.1.1)]) with any irreducible representation E ′ of W 0
s , an integer aE′ ≥ 0

and an integer fE′ > 0 by the requirement that the generic degree of the

representation E ′ is of the form

(2.1) DE′(X) = f−1
E′ X

aE′ + higher powers of X.

Let E′ be an irreducible representation of Ws, and let Ẽ′ be an irre-

ducible representation of W 0
s which occurs in the restriction of E ′ to W 0

s .

We will set aE′ := aẼ′ . It does not depend on the choice of the representa-

tion Ẽ′, see also [14, (16.5)]. For each two-sided cell c, the functionE ′ 7→ aE′

is constant on the set of irreducible representations E ′ of Ws which belong

to c, see [12, (4.14.1) and (5.25)]. For any such representation E ′, we will

set as,c := aE′ .

Let NG be the set of pairs (C, E) such that C is a unipotent conjugacy

class in G, and E is a G-equivariant irreducible local system on C, given up

to isomorphism. Let C be a unipotent class in G, and fix u ∈ C. Then the

isomorphism classes of irreducible G-equivariant Q`-local systems on C are

in bijection with the isomorphism classes of irreducible representations of

the group AG(u) := CG(u)/C0
G(u) of components of the centralizer CG(u)

in G of u. Thus, we can identify a pair (C, E) ∈ NG with the G-conjugacy

class [u, ρ]G of a pair (u, ρ) where u is a unipotent element in G and ρ is an

irreducible representation of the groupAG(u). The Springer correspondence

is an injective map νG
T from the set of isomorphism classes of irreducible

representations of W into NG. Not all pairs (C, E) in NG occur in that

correspondence.

Let c be a two-sided cell in Ws, and E′(c) the unique special represen-

tation of Ws which belongs to c, see [17, 10.4]. Let Ẽ′(c) be an irreducible

component of the restriction of E ′(c) to W 0
s ; this is a special representation

of W 0
s . Hence the induced representation IndW

W 0
s
(Ẽ′(c)) contains a unique

irreducible W -submodule E(s, c) such that bE(s,c) = bẼ′(c), see [12, (13.3)],
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[9], [11]. It is easy to check that E(s, c) is independent of the choice of

Ẽ′(c), see also [17, (10.5)].

Then there is a well-defined unipotent element û in G (up to conjugacy)

such that E(s, c) is the Springer representation EG
û,1, [12, (13.3)]. Let Cs,c

denote the G-conjugacy class of û. We set d(Cs,c) := d(û) (the dimension

of the variety BG
û = Bû of Borel subgroups of G containing û). We have

(2.2) as,c = d(Cs,c).

§3. Character sheaves

We will assume from now that p is good for G. We denote by Gunip the

unipotent variety of G. By [14, Corollary 11.4] (see also [16, Section 1.6]),

there is a surjective map from the set Ĝ of the character sheaves on G to

the W -orbits on T ∗. For s ∈ T ∗, let Ĝs be the fibre over (s)G∗ of this map.

By [14, Corollary 16.7], there exists a well-defined surjective map from

Ĝs to the set of two-sided cells in Ws. For c a two-sided cell in Ws, we will

denote by Ĝs,c the set of character sheaves in the fibre over c of this map.

Proposition 3.1. Let s ∈ T ∗ and let c be a two-sided cell in Ws, such

that, for any A ∈ Ĝs,c, and any u ∈ Gunip satisfying A|{u} 6= 0, the element

u lies in Cs,c or in a unipotent class of dimension strictly smaller than that

of Cs,c.

Then there exists some A ∈ Ĝs,c such that A|Cs,c
6≡ 0.

Proof. Let us assume that the restriction of each character sheaf A ∈
Ĝs,c to Cs,c is zero. We choose a Frobenius map F : G→ G as in section 3.2
below. Then we can similarly associate to the pair (s, c) a set of irreducible
representations of GF , as in [12]. Let π be such a representation. In a
similar way as in Lemma 3.3 below, we can assume that G has connected
center. Then, using the result of Shoji on Lusztig conjecture [22], we can
express the character of π as a linear combination of characteristic functions
of character sheaves in Ĝs,c. The assumption that these character sheaves
have zero restriction to Cs,c implies that the restriction of the character χπ

of π is zero too. Using that expression of the character χπ and the fact
that if A|C 6≡ 0 for some A ∈ Ĝs,c and some unipotent class C in G then
dimC ≤ dimCs,c, we obtain that χπ is zero on all unipotent classes of
dimension ≥ dimCs,c. Now, the main result of Geck [5, Th. 1.4 (a)] says
that there exists a unique F -stable unipotent class Cπ in G of maximal
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dimension such that ∑

u∈CF

χπ(u) 6= 0.

It follows that dimCπ < dimCs,c. Moreover, we know by [5, Th. 1.4 (b)]
that the p–part of the dimension of π equals qd(Cπ), where d(Cπ) denotes the
dimension of the variety of Borel subgroups which contain a fixed element
in the class Cπ. Using the equality dimCs,c = dimG− rank(G) − 2d(Cs,c)
(see [24]), we get d(Cπ) > d(Cs,c). On the other hand, the p–part of the
dimension of π also equals qas,c , see [12, (4.26.3)]. It follows that as,c >
d(Cs,c), which contradicts the equality (2.2). Hence there exists a character
sheaf A in Ĝs,c such that A|Cs,c

6≡ 0.

3.1.

Lusztig has proved in [17, (10.9)] that, if p is large enough, then the

following property always holds.

Property 3.2. For any s ∈ T ∗, any two-sided cell c in Ws, and any

A ∈ Ĝs,c, if C 6= Cs,c is a unipotent class in G such that A|C 6≡ 0 then

dimC < dimCs,c.

We remark the following easy fact.

Lemma 3.3. Let p be a prime number. Assume that all reductive con-

nected algebraic groups defined over a finite field of characteristic p, which

have connected center and are simple modulo their center, satisfy Prop-

erty 3.2. Then all reductive connected algebraic groups defined over a finite

field of characteristic p satisfy Property 3.2.

3.2.

We will assume from now that the center of G is connected. We choose

an Fq–rational structure on G, with corresponding Frobenius map F : G→

G. Replacing q by a power, we assume that T and T ∗ are F -stable and

split. We choose an element s ∈ T ∗F , and we fix it from now on. We assume

that F acts trivially on Ws and Ĝs. For each irreducible representation E ′

of Ws let Rs(E
′) denote the corresponding almost character, defined in [12,

(3.7)] as a certain rational linear combination of Deligne-Lusztig virtual

characters of GF . For w ∈ W , let Tw ⊂ G denote an F -stable maximal

torus obtained by twisting the torus T with w. Let Irr(W ) denote the set

of isomorphism classes of irreducible representations of W . Then, using the
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definition of almost characters given in [12, (3.7)], we obtain the following

relation:

(3.1) Rs(E
′)|GF

unip
=

∑

E∈Irr(W )

m(E,E′)R1(E)|GF
unip

,

where m(E,E ′) denotes the multiplicity of E in the representation

IndW
Ws

(E′).

Let E be an irreducible representation of W , and let (u, ρ) be its image

under the Springer correspondence νG
T . Replacing q by a power, we assume

that u ∈ GF and that F acts trivially on AG(u). Then (see [21, (5.2)]), the

following holds:

(3.2)

{
R1(E)(ua) = qd(u) trace(ρ(a)), for a ∈ AG(u);

R1(E)(g) = 0 if g 6∈ C
F
u ,

where ua are representatives of the GF -conjugacy classes in CF associated

to a ∈ AG(u).

3.3.

Let L ⊃ T be a Levi subgroup of a parabolic subgroup P of G and let

L̂ be the set of character sheaves on L. In [14, 4.1], Lusztig introduced the

notion of induction indG
L of character sheaves.

Remark 3.4. Assume that G is simple of adjoint type (with rankG 6=
0). Then Ĝs contains at most one cuspidal character sheaf with non-zero
restriction to Gunip and such a character sheaf exists exactly in the following
cases (see [14, Section 23], [2, (2.3), Appendix A]):

Type of G Condition on n Type of Ws

Bn n = 2t(t+ 1) Ct(t+1) × Ct(t+1)

Cn n = 2t(4t± 1) D4t2 ×B4t2±2t

Dn n = 8t2 D4t2 ×D4t2

G2 G2

F4 F4

E8 E8

where t ≥ 1.

Any character sheaf A of G is obtained as a direct summand of

indG
L (AL) for the Levi complement L of some parabolic subgroup P of G
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and a cuspidal character sheaf AL on L. The pair (L,AL) is unique up to

conjugacy, and we will set

(3.3) I(A) :=
{
(gLg−1, Ag

L) | g ∈ G
}
.

Assume that the set L̂0 of the cuspidal character sheaves on L is non-

emtpy. Then by [13, Theorem 9.2 (a)], the group W G
L = NG(L)/L is a finite

Coxeter group. For s ∈ T ∗, we we set L̂0
s := L̂s ∩ L̂

0. Now let s ∈ T ∗ such

that L̂0
s is not empty, and let AL ∈ L̂0

s. It implies that s is isolated in L∗,

that is, CL∗(s) has the same semisimple rank as L∗ (see [14, (17.12)]).

Shoji proves in [22, (5.16.1) and II, proof of (4.21)] (see also [12, (8.5)])

that the stabilizer of the cuspidal character sheaf AL in WG
L is the image

of the canonical map

(3.4) (NG∗(L∗) ∩ CG∗(s))/CL∗(s) ↪→ NG∗(L∗)/L∗,

where L∗ ⊆ G∗ denotes the standard Levi subgroup dual to L and CG∗(s)

(resp. CL∗(s)) denotes the centralizer of s in G∗ (resp. L∗). We see that

this stabilizer only depends on G, s and L, and we shall therefore denote it

by WG
L,s = WL,s. Note that we have WT,s = Ws.

Let L̂0
unip be the subset of all AL ∈ L̂0 such that AL has non-zero

restriction to Lunip. Assume that s isolated in G∗ and that the set L̂0
s∩L̂

0
unip

is non-empty.

Type of G Type of WG
L Type of WG

L,s

Bn Bn−2t(t+1) Ba ×Bb where a+ b = n− 2t(t+ 1)

Cn Cn−2t(4t±1)





Ca × Cb where a+ b = n− 2t(4t± 1),
if t ≥ 1

Da ×Cb where a+ b = n, if t = 0

Dn





Bn−8t2

if t ≥ 1

Dn if t = 0





Ba ×Bb where a+ b = n− 8t2,

if t ≥ 1

Da ×Db where a+ b = n, if t = 0
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Let AL ∈ L̂0
unip. We set K := indG

L (AL). Now let H(G,AL) :=

EndMG(K) be the endomorphism algebra of K in MG. It is known by

[15, (2.4) (a), (2.5) (b)] (see also [13, (3.4)]), that H(G,AL) is isomorphic

to the group algebra Q`[W
G
L,s]. Hence we have a decomposition

(3.5) indG
L (AL) =

∑

E′∈Irr(W G
L,s)

E′ ⊗As
E′ , where As

E′ ∈ Ĝs.

Let Ĝunip be the set of isomorphism classes of characters sheaves A ∈ Ĝ

such that the restriction of A to Gunip is non-zero. We then get a bijective

map from the set T̃ (G):





t̃ := [L, s,E ′]G :

L Levi subgroup of some parabolic subgroup of G

s ∈ T ∗ such that L̂0
s ∩ L̂

0
unip is non empty

E′ isomorphism class of irreducible representations
of WG

L,s





to Ĝunip, by sending (L, s,E ′) to As
E′ ∈ Ĝunip. Then [L, s]G will be called

the inertial support of A. The character sheaves which have non-zero re-

striction to the unipotent variety of G and have a given inertial support are

in bijection with the irreducible characters of the group W G
L,s. Let Lad be

the adjoint group of L and let pr: L→ Lad be the canonical map. Let Lder

be the derived subgroup of L. By [14, (17.10)], we can write any A ∈ L̂0 in

the form A = pr∗(Ā)⊗L where Ā ∈ L̂0
ad and L is a tame local system on L

which is the inverse image of a local system on L/Lder under the canonical

map L→ L/Lder.

We have a corresponding embedding of dual groups L∗
der ⊆ L∗. If ĀL

lies in the series of Lad defined by s ∈ T ∗ ∩ L∗
der and L corresponds to the

central element z of L∗, then AL lies in the series of L defined by s := sz.

Clearly, we have CL∗(s) = CL∗(s). Note that if L = T then s = 1.

Assume that Lad has a cuspidal character sheaf ĀL such that ĀL has

non-zero restriction to the unipotent variety of Lad. Then ĀL is uniquely

determined. Let s ∈ T ∗ ∩ L∗
der ⊆ L∗ such that ĀL lies in the series defined

by s. By [13, Theorem 9.2 (b)], we have WG
L,s = WG

L . We consider the

decomposition

(3.6) indG
L (pr∗(ĀL)) =

∑

E∈Irr(W G
L )

E ⊗As
E, where As

E ∈ Ĝs.
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Let AL ∈ L̂ be any cuspidal character sheaf. If the restriction of AL to

Lunip is zero then the restrictions of all components of indG
L (AL) to Gunip

will also be zero (see [15, (2.9)]). Assume now that the restriction of AL

to Lunip is non-zero. We can write AL = pr∗(ĀL) ⊗ L where ĀL lies in

the series of Lad defined by s̄ ∈ T ∗ ∩L∗der and L is pulled back from a

local system on L/Lder. Let AL, ĀL lie in the series defined by s, s ∈ T ∗,

respectively.

It is clear that AL and pr∗(ĀL) have the same restriction to Lunip, [15,

(2.6) (c)]. Moreover, the restriction of the decomposition to Gunip is related

to the restriction of that in (a) by the following formula, see [15, (2.6) (e)]:

(3.7) As
E′ =

⊕

E

m(E,E′)As
E on Gunip,

where E′ ∈ Irr(WG
L,s), E ∈ Irr(WG

L ) and m(E,E ′) denotes the multiplicity

of E in the induced representation Ind
W G

L

W G
L,s

(E′).

Proposition 3.5. Let E ′ be an irreducible representation of WT,s =
Ws, and let c be the two-sided cell in Ws to which E ′ belongs. If C is a

unipotent class in G such that As
E′ |C 6≡ 0, then dimC ≤ dimCs,c, with

equality only for C = Cs,c.

Proof. Assume first that s = 1. Then Ws = W . We can choose a
Frobenius map F : G → G as in (3.2) so that the characteristic function
of A1

E′ coincides (for a suitable normalization) with the almost character
R1(E

′) of GF , see, for instance, [7, Cor. 2.3.2]. We have seen that, via
the Springer correspondence, the representation E ′ corresponds to a pair
(C ′, E ′), where C ′ is a unipotent class in G and E ′ is a certain G–invariant
irreducible local system on C ′, and that the restriction of the almost char-

acter R1(E
′) to GF

unip has non-zero values only in C
′F

(see (3.2)). The

unique special character belonging to c corresponds to the pair (Cs,c,Q`)
via the Springer correspondence, and we have seen that as,c = d(Cs,c). By
[17, Cor. 10.9], we have dimC ′ ≤ dimCs,c, with equality only for C ′ = Cs,c.
Note that this statement is true whenever p is good for G, since the Springer
correspondence as well the dimensions of varieties of Borel subgroups are
independent of the characteristic as long as the characteristic is good (see
the tables in [3], for instance). Now, if C is a unipotent class such that
As

E′ |{u} 6= 0 for some u ∈ C, then we may assume, as in (3.2), that F (u) = u
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and that R1(E
′)(u) 6= 0, and the above remarks on the values of Green func-

tions imply that the class C lies in the Zariski closure of C ′. Hence we have
dimC ≤ dimC ′ ≤ dimCs,c, with equality only for C = C ′ = Cs,c.

When s is not equal to 1, the result follows from [17, Cor. 10.9], the
formula (3.1), and the case s = 1.

We are now able to prove Theorem 1.1 for groups of exceptional type.

Proposition 3.6. Assume that G is of exceptional type. Then Theo-

rem 1.1 holds for G when p is good.

Proof. By using Lemma 3.3, we can assume that G is simple modulo
its center, which can be assumed to be connected. Then let A ∈ Ĝ, and let
(L,AL) ∈ I(A). Since G is of exceptional type, the only possibilities for L
are either L = T or L = G, see [14, §18]. When L = T , the result follows
from Proposition 3.5. When L = G, we have A = IC(C · ZG, E �L)[dim(C ·

ZG)], where (C, E) is a cuspidal pair, and L is a tame local system on L.
If G is of type E6, E7, there are no cuspidal pairs for L = G which are
supported on a unipotent class, see [2, Appendix].

Hence we can assume thatG is of typeG2, F4, E8. Let C ′ be a unipotent
class in G such that A|C′ 6≡ 0. It implies that C ′ is contained in the Zariski
closure of C. The unique special representation E of W belonging to c
corresponds to the pair (Cs,c,Q`) via the Springer correspondence. By
[14, (20.6) and §21], we know that E belongs to the unique family F of
representations of W with 4, 7, 17 elements, for G of type G2, F4, E8,
respectively. But, by [12, (13.1.3)], the order of AG(u) for u ∈ Cs,c equals
the order of the finite group GF associated to the family F . Hence the order
of AG(u) is 6, 24, 120, for G of type G2, F4, E8, respectively. But, for G
of type G2, F4, E8, there is exactly one cuspidal pair for L = G supported
on a unipotent class, say C, and the class C is uniquely determined by the
condition that the groupAG(u), for u ∈ C, has order 6, 24, 120, respectively.
Hence C = Cs,c. The assertion (a) of Theorem 1.1 follows. Then the
assertion (b) follows from Proposition 3.1.

Remark 3.7. The case of groups of classical type is more difficult, be-
cause it involves the group WL,s, with L 6= T , and not only the group Ws.
Because of that we will need to use the generalized Springer Correspondence
instead of the ordinary one. In particular, we will prove a generalization of
[17, Cor. 10.9] in that case.
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§4. The classical groups case

In this section, we will prove Theorem 1.1 for classical groups under

the assumption that p is odd.

4.1. The strategy of the proof

First note that, by Proposition 3.1, it is sufficient to prove the asser-

tion (a) of Theorem 1.1. Note also that if L = T , it follows from Proposi-

tion 3.5. Hence we can, if necessary, assume that L 6= T (we will assume

this when G is of type C or D). By Lemma 3.3, we can and do assume that

the center of G is connected and that G is simple modulo its center.

We will first show that the proof can be reduced to the case where

s ∈ G∗ is isolated semisimple: by using a similar argument as in the end

of the proof of Proposition 3.5, the formula 3.7 shows that in order to

investigate the restriction of As
E′ to the unipotent variety Gunip, it is enough

to consider the case where the cuspidal character sheaf AL has support on

Gunip. But in the case of classical groups, AL satisfies this condition only

when AL ∈ L̂s with s of order 2 (see [14, (17.12) and §23] or [18]), in which

case s is isolated. From now on we will assume that s is isolated. Our proof

will be based on the generalized Springer correspondence.

4.1.1. The generalized Springer correspondence

Let B(G) denote the set of G-conjugacy classes of triples (L, uL, ρL)

where L is the Levi subgroup of some parabolic subgroup of G, uL is

a unipotent element in L and ρL is an irreducible representation of the

group AL(uL) such that the pair (uL, ρL) is cuspidal in L. We denote by

[L, uL, ρL]G the G-conjugacy class of (L, uL, ρL). We set WG
L := NG(L)/L

(it is a Coxeter group, see [13, Th. 9.2]), and we denote by Irr
(
WG

L

)
the

set of all the isomorphism classes of irreducible representations of the group

WG
L . Let

(4.1) νG :
⊔

b∈B(G)
b=[L,uL,ρL]G

Irr
(
WG

L

)
−→ NG

be the generalized Springer correspondence [13, §6].

Let n = (C, E) ∈ NG. We choose the natural mixed structure on E ,

that is, the one (see [15, §3.2–3.4]) which has the property that F ∗E
∼
→E

induces on the stalk over a split element u of C the identity map times

q
1
2
(dim G−dn). (This property characterizes the mixed structure on E .) This
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mixed structure on AL extending the natural mixed structure on EL is com-

patible with the isomorphism H(G,AL) ' Q`[WL,s]. The induced complex

indG
L (AL) inherits a natural mixed structure, and we will denote by χAs

E′

the corresponding characteristic function of As
E′ .

On the other hand, we associate with any (C, E) ∈ NG the class function

Y(C,E) : G
F → Q` defined as follows:

(4.2) Y(C,E)(g) := χIC(C,E)(g), g ∈ C
F
,

extended by zero on GF − C
F

(where the mixed structure on IC(C, E) is

that extending the natural one on E).

We assume that G is a split classical group of adjoint type and that p

is odd. Let s ∈ T ∗ and E′ ∈ Irr(WL,s). If L∗ ⊃ T ∗ is a dual pair to L ⊃ T ,

we will set

(4.3) WG
L,s = WL,s := NCG∗(s)

(C
0
L∗(s))/C

0
L∗(s).

Let C be an F -stable unipotent class in G and let u ∈ CF be a split element.

If s is isolated in G∗ and CL∗(s) is cuspidal, then (see [2, Th. 3.2]) we have

the following formula

(4.4) χAs
E′

(u) =
∑

E∈Irr(W G
L )

m(E,E′)(−1)rank G qdimG−d(νG(E))YνG(E)(u),

where m(E,E ′) denotes the multiplicity of E in the representation

Ind
W G

L

W G
L,s

(E′).

4.1.2. Scheme of the proof of assertion (a) of Theorem 1.1

Following Lusztig (see [13]), we will consider a set ΨG and a map

ψG : ΨG −→ NG

which is essentially a bijection such that

• ΨG is the disjoint union of subsets ΨG
L where L ⊃ T are cuspidal Levi

subgroups of G,

• there exists a set ΨH
T , an injective map ψH : ΨH

T ↪→ NH , and two

bijections

∆G
L : ΨH

T −→ ΨG
L and ΘG

L : Irr(WG
L ) −→ ΨH

T ,

for H a reductive group with Weyl group WH = WG
L , satisfying, for

every E ∈ Irr(WG
L ),
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(4.5) νH
T (E) = (ψH ◦ ΘG

L )(E),

where νH
T : Irr(WH) ↪→ NH is the (ordinary) Springer correspon-

dence, and

(4.6) νG(E) = (ψG ◦ ∆G
L ◦ ΘG

L )(E).

For (C, E) ∈ NG, we will set Π(C, E) := C. Let E ′ ∈ Irr(WG
L,s) and let c

be the two-sided cell ofWs such that As
E′ belongs to Ĝs,c. Assuming that the

element s is isolated in G∗, we will prove that there exists Emax ∈ Irr(WG
L )

occurring with multiplicity one in the induced representation Ind
W G

L

W G
L,s

(E′)

such that the following hold

(i) for any E ∈ Irr(WG
L ) occurring in Ind

W G
L

W G
L,s

(E′):

dimΠ(νG(E)) ≤ dimΠ(νG(Emax)), with equality only for E=Emax.

We set CA := Π(νG(Emax)), for A = As
E′ . Then it follows from 4.4,

using (i), that

(∗) the restriction of A to CA does not vanish, and that dimC < dimCA,

for any unipotent class C 6= CA in G such that the restriction of A to

C does not vanish.

We will now prove that CA = Cs,c, for some A ∈ Ĝs,c. We first assume

that p is large enough so that Lusztig’s result [17, Th. 10.7] is applicable.

Let s ∈ T ∗ and let c be a two-sided cell in Ws. By [17, Th. 10.7 (ii)], we

see that Proposition 3.1 is applicable. It follows that there exists A ∈ Ĝs,c

such that A|Cs,c 6≡ 0. Assume that s is isolated in order to be able to apply

(i). Then using (∗) we get dimCs,c ≤ dimCA. Conversely, since we have

seen that A does not vanish on CA, by applying [17, Th. 10.7] again, we

obtain dimCA ≤ dimCs,c. Hence dimCA = dimCs,c. Then by using (∗),
we get Cs,c = CA, when p is sufficiently large.

Now we assume only that p is good for G. Let q ′ be a power of a

large prime and let G′ be a group defined over Fq′ of the same type as

G, with the same Weyl group W . We can choose q ′ in such a way that

there exists a semisimple element s′ in the dual group of G′ such that

WG′

s′ ⊂ W can be identified with Ws. We can assume that q′ was chosen
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large enough such that the results in [17] are applicable. Since p is good

for G, it follows from [24, Th. III 5.2], from the explicit results obtained by

Springer, Hotta-Springer, Shoji and Alvis-Lusztig (see [25], [6], [19], [20],

[1]) and from the link between the generalized Springer correspondence for

G and the (ordinary) Springer correspondence for H (see (4.5), (4.6)) that

there exists an isomorphism ηG of partially ordered sets from the set of

unipotent classes in G′ to the set of unipotent classes in G such that

ηG(Π(νG′

(E))) = Π(νG(E)), for every E ∈ Irr(WG
L ).

Hence ηG(Π(νG′

(Emax))) = Π(νG(Emax)). Since ηG(Cs′,c) = Cs,c (be-

cause the class Cs,c is defined using the Springer correspondence), and since

Π(νG′

(Emax)) = Cs′,c, we finally obtain CA = Cs,c.

The strategy of proving (i) is as follows. We will consider a bijection

ΣG
L from Irr(WG

L ) to a certain partially ordered set ΦH
T (with partial order

denoted by ≤
ΦH

T

), and show that

(∗∗) there exists Emax ∈ Irr(WG
L ) occurring with mutiplicity one in

Ind
W G

L

W G
L,s

(E′) such that

ΣG
L (E) ≤

ΦH
T

ΣG
L(Emax), for every E occurring in Ind

W G
L

W G
L,s

(E′).

The statement (∗∗) will follow easily from Corollary 4.3 and Proposition 4.1

(the latter studying the case of groups of type A).

On the other hand, we will set

(4.7) σG
L := ΘG

L ◦ (ΣG
L )−1;

σG
L is a bijection from ΦH

T to ΨH
T . In (4.3.1), we will consider a naive

order on ΨH
T (resp. ΨG

L ), denoted by ≤
ΨH

T

(resp ≤
ΨG

L

) such that, for any ΛT ,

Λ̃T in ΦH
T , we have ΛT ≤

ΦH
T

Λ̃T if and only if σG
L (ΛT ) ≤

ΨH
T

σG
L (Λ̃T ) (resp. (∆G

L ◦

σG
L )(ΛT )≤

ΨG
L

(∆G
L ◦σ

G
L )(Λ̃T ). Finally, we will prove in Proposition 4.4 that if θ,

θ̃ ∈ ΨG
L satisfy θ ≤

ΨG
L

θ̃, then dimC(θ) ≤ dimC(θ̃), where C(θ) := Π(ψG(θ)),

C(θ̃) := Π(ψG(θ̃)) and that the function ΨG
L 3 θ 7→ dimΠ(ψG(θ)) attains

it maximum at a unique element of ΨG
L . Then by applying (∗∗) we will get

(i).
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4.1.3. Type of the Levi subgroup

First, we note that by the explicit classification of cuspidal character

sheaves recalled in (3.4) the cuspidal Levi subgroups L must be of type

isomorphic to

(Bn) : SO(2t+1)2 ×GL1 × · · · × GL1,

(Cn) : PSp16t2±4t ×GL1 × · · · × GL1,

(Dn) : PSO16t2 ×GL1 × · · · × GL1,

for some integer t ≥ 0. We denote by ñ the number of factors GL1 in each

type of Levi above, that is:

(Bn) : ñ = n− 2t2 − 2t,

(Cn) : ñ = n− (8t2 ± 2t),

(Dn) : ñ = n− 8t2.

4.1.4. Description of the ramification subgroup of L

We denote by Wn the group of all permutations of the set {1, 2, . . . , n,
n∗, . . . , 2∗, 1∗} which commute with the involution i 7→ i∗, i∗ 7→ i, (1 ≤
i ≤ n). We set W0 = {1}. For each j, 1 ≤ j ≤ n − 1, let sj ∈ Wn be

the permutation which interchanges j with j + 1 and also j∗ with j∗ + 1

and leaves the other elements unchanged. Let σa ∈ Wn (1 ≤ a ≤ n) be

the permutation which interchanges a with a∗ and leaves the other elements

unchanged. Let S = {s1, s2, . . . , sn−1, σn}. Then (Wn, S) is a Coxeter group

of type Bn = Cn.

Let ϕ = ϕn : Wn → {−1, 1} be the homorphism defined by the condi-

tion ϕn(sj) = 1 (1 ≤ j ≤ n− 1), ϕn(σn) = −1. Let W ′
n be the kernel of ϕ.

It is a Coxeter group of type Dn.

Then we can identify the group WG
L with the group Wñ if G is of type

Bn or Cn, or if t ≥ 1 and G is of type Dn as follows. Consider a basis e1, . . .,

en, e∗n, . . ., e∗1 of V such that (ei, e
∗
i ) = 1, (e∗i , ei) = 1 (resp. (e∗i , ei) = −1) if

( , ) is orthogonal (resp. symplectic) and all other scalar products equal to

zero. We assume that L is the set of g ∈ G which map each of the vectors

e1, . . ., eñ, e∗ñ, . . ., e∗1 into a scalar multiple of itself. Then each element of

NG(L)/L defines a permutation of the set of lines 〈e1〉, . . ., 〈eñ〉, 〈e
∗
ñ〉, . . .,

〈e∗1〉 and this gives the wanted isomorphism. If G is of type Dn and t = 0

then WG
L = W ′

ñ = W ′
n.
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4.1.5. Dual side

The group L∗ is of type

(Bn) : Sp4t2+4t ×GL1 × · · · × GL1,

(Cn) : Spin16t2±4t+1 ×GL1 × · · · × GL1,

(Dn) : Spin16t2 ×GL1 × · · · × GL1.

Since the cuspidal character sheaf A of L is supported by the closure

of a unipotent class, the group CL∗(s) is of type

(Bn) : Sp2t2+2t ×Sp2t2+2t ×GL1 × · · · × GL1,

(Cn) : Spin8t2 ×Spin8t2±4t+1 ×GL1 × · · · × GL1,

(Dn) : Spin8t2 ×Spin8t2 ×GL1 × · · · × GL1.

4.1.6. The ramification subgroup of the cuspidal pair

We can identify in a standard way the group WG
L,s with

• Wñ′ ×Wñ′′ if G is of type Bn or if t ≥ 1 and G is of type Cn or Dn,

• W ′
ñ′ ×Wñ′′ if G is of type Cn and t = 0,

• W ′
ñ′ ×W ′

ñ′′ if G is of type Dn and t = 0

where ñ′ + ñ′′ = ñ; the isomorphism is canonical up to conjugation with

inner automorphism of Wñ′×Wñ′′ (resp. W ′
ñ′×Wñ′′ , W ′

ñ′×W ′
ñ′′). Hence an

irreducible representation of WG
L,s may be identified with the corresponding

representation of Wñ′ ×Wñ′′ (resp. W ′
ñ′ ×Wñ′′ , W ′

ñ′ ×W ′
ñ′′).

4.1.7. The associated combinatorial data

For L and ñ are as in (4.1.3), we set

• d := 1±4t, ΨG
L := Ψ2n,d, H := PSp2ñ, ΨH

T := Ψ2ñ,1, whenG = PSp2n;

• d := 2t + 1, ΨG
L := Ψ′

2n+1,d, H := SO2ñ+1, ΨH
T := Ψ′

2ñ+1,1, when

G = SO2n+1;

• d := 4t, ΨG
L := Ψ′

2n+1,d, H := SO2ñ+1, ΨH
T := Ψ′

2ñ+1,1, when G =

SO2n and t ≥ 1;

• ΨG
L := Ψ′0

N = ΨH
T , H := G, when G = SO2n and t = 0.
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4.2. On induced representations of Weyl groups of classical
type

4.2.1.

Let Sñ be the permutation group of the set {1, 2, . . . , ñ}. We write

α a ñ to mean that α is a partition of the integer ñ. Each E ∈ Irr(Sñ)

is parametrized by a partition of ñ; we shall denote by Eα the irreducible

representation of Sñ corresponding to the partition α.

Let ñ′, ñ′′ be two non-negative integers such that ñ′ + ñ′′ = ñ. We

construct from representations Eα′ of Sñ′ andEα′′ of Sñ′′ the representation

(4.8) I(α′, α′′) := IndSñ

Sñ′×Sñ′′
(Eα′ ⊗Eα′′)

of Sñ induced from the tensor product representation Eα′ ⊗ Eα′′ of the

subgroup Sñ′ × Sñ′′ of Sñ. Let

(4.9) I(α′, α′′) =
∑

αan

m(α′′, α\α′)Eα

be the irreducible decomposition.

Let ≤ be the natural partial order on partitions defined as follows. Let

α = (0 ≤ α0 ≤ α1 ≤ · · · ≤ αm) and β = (0 ≤ β0 ≤ β1 ≤ · · · ≤ βm) be two

partitions of ñ. Then

β ≤ α if(4.10) 



βm ≤ αm

βm−1 + βm ≤ αm−1 + αm

βm−2 + βm−1 + βm ≤ αm−2 + αm−1 + αm

...
β1 + β2 + · · · + βm−1 + βm ≤ α1 + α2 + · · · + αm−1 + αm.

For any partition α of ñ, and any integer i ≥ 1, we will denote by ci(α)

the numbers of integers j such that αj = i. Let ñ′, ñ′′ two integers such

that ñ′ + ñ′′ = ñ, and let α′, α′′ be partitions of ñ′, ñ′′ respectively. We will

denote by α′ ∪ α′′ the unique partition of ñ such that

ci(α
′ ∪ α′′) = ci(α

′) + ci(α
′′),

for any integer i ≥ 1, and by α′ + α′′ the partition of ñ defined by

(4.11) α′ + α′′ := (0 ≤ α′
0 + α′′

0 ≤ α′
1 + α′′

1 ≤ . . . ≤ α′
m + α′′

m),
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Proposition 4.1. Let ñ′, ñ′′ be such that ñ′ + ñ′′ = ñ. Let α, α′, α′′

be partitions of ñ, ñ′, ñ′′ respectively. Then the following hold.

(a) Both the representations Eα′∪α′′ and Eα′+α′′ occur with multiplicity

one in I(α′, α′′).

(b) If Eα occurs in I(α′, α′′), then α′ ∪ α′′ ≤ α ≤ α′ + α′′.

Proof. For the facts that Eα′∪α′′ occurs with multiplicity one in
I(α′, α′′), and that α′ ∪ α′′ ≤ α, for any Eα occurring in I(α′, α′′), see
[26, VIII.2.(5)]. For the remaining assertion, it is enough to notice that
(α′ ∪α′′)∨ = α′∨ +α′′∨, that I(α′, α′′)⊗ sign = I(α′∨, α′′∨), and that α ≤ β
if and only if α∨ ≥ β∨, where ∨ denotes the dual partition.

4.2.2.

First let us introduce the following notation. Let α be a partition of a

and let β be a partition of b, where a+ b = ñ. Then we shall set

(4.12) Eα,β := IndWñ

Wa×Wb
(Eα ⊗ ϕEβ),

whereWa×Wb is regarded as a subgroup of Wñ in a natural way. We denote

by E′
α,β the restriction of Eα,β to W ′

ñ when that restriction is irreducible

(that is when the sets {αi} and {βj} do not coincide); if the restriction is

not irreducible we shall write ResWñ

W ′
ñ
(Eα,β) = E′

α,β +E′′
α,β.

Proposition 4.2. Let ñ′, ñ′′ be two integers such that ñ′+ñ′′ = ñ. Let

(a′, b′), (a′′′, b′′) be two pairs of integers such that a′ + b′ = ñ′, a′′ + b′′ = ñ′′.
Let α′, α′′, β′, β′′ be partitions of a′, a′′, b′, b′′ respectively. Then

IndWñ

Wñ′×Wñ′′
(Eα′,β′ ⊗Eα′′,β′′)

=
∑

(α,β)

αaa′+a′′, βab′+b′′

m(α′′, α\α′) m(β′′, β\β′) Eα,β.

Proof. It follows from [27, §7] that IndWñ

Wñ′×Wñ′′
(Eα′ ,β′ ⊗ Eα′′⊗β′′))

equals

IndWñ

Wa′+a′′,b′+b′′

(
IndSa′+a′′

Sa′×Sa′′
(Eα′ ⊗Eα′′) ⊗ ϕ IndSb′+b′′

Sb′×Sb′′
(Eβ′ ⊗Eβ′′)

)

=
∑

αaa′+a′′

βab′+b′′

m(α′′, α\α′) m(β′′, β\β′) IndWñ

Wa+a′,b+b′
(Eα ⊗ ϕEβ).
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Corollary 4.3. We keep the notations of Proposition 4.2. Then the

following hold.

(a) Both the representations Eα′∪α′′,β′∪β′′ and Eα′+α′′,β′+β′′ occur with

multiplicity one in the induced representation

I
(
α′, β′;α′′, β′′

)
:= IndWñ

Wñ′×Wñ′′
(Eα′,β′ ⊗Eα′′,β′′).

(b) Let α, β be partitions of a, b respectively. If Eα,β occurs in

I (α′, β′;α′′, β′′), then we have α′ ∪ α′′ ≤ α ≤ α′ + α′′ and β′ ∪ β′′ ≤
β ≤ β′ + β′′.

4.3. u-Symbols

We will now recall some combinatorial objects which have been in-

troduced by Lusztig in [13] in order to parametrize the NG when G is of

classical type.

For an integer n ≥ 1, let Ψ2n = ΨPSp2n be the set of all ordered pairs(
A

B

)
, called u–symbols, where A is a finite subset of {0, 1, 2, . . .}, B a finite

subset of {1, 2, 3 . . .} subject to the condition that

(1) A, B contain no consecutive integers;

(2)
∑

a∈A

a +
∑

b∈B

b = n +
(|A| + |B|)(|A| + |B| − 1)

2
;

(3) |A| + |B| is odd;

the pairs are taken modulo the equivalence relation generated by the shift

operation

(
A

B

)
∼

(
Ã

B̃

)
if Ã = {0} ∪ (A+ 2), B̃ = {1} ∪ (B + 2).

Next, for any integer N ≥ 3, let Ψ′
N = ΨSON be the set of (unordered)

pairs

(
A′

B′

)
, also called u–symbols, where A′ and B′ are finite subsets of

{0, 1, 2, . . .} subject to the condition that

(1′) A′, B′ contain no consecutive integers,
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(2′)
∑

a′∈A′

a′ +
∑

b′∈B′

b′ =
N

2
+

(|A′| + |B′| − 1)2 − 1

2

(which implies that |A′| + |B′| ≡ Nmod2);

the pairs are taken modulo the equivalence relation generated by the shift

operation

(
A′

B′

)
∼

(
Ã′

B̃′

)
if Ã′ = {0} ∪ (A′ + 2), B̃′ = {0} ∪ (B′ + 2). Now

for each θ =

(
A

B

)
∈ ΨN (resp. θ =

(
A′

B′

)
∈ Ψ′

N), we define the defect

def(θ) of θ by def(θ) = |A| − |B| (resp. the absolute value of |A′| − |B′|).

An element

(
A′

B′

)
of Ψ′

N of zero defect is said to be degenerate if A′ = B′.

We denote by Ψ′
N,0 the subset of u–symbols of zero defect in Ψ′

N , where the

degenerate u–symbols are counted twice. We denote by ΨN,d (resp. Ψ′
N,d,

with d 6= 0) the subset of u–symbols in ΨN (resp. Ψ′
N) of defect equal to d.

If G = PSp2n, there exists a bijective map ψPSp2n : Ψ2n −→ NG, see

[13, (11.6.1)]. If G = SON , we have a “map” ψSON : Ψ′
N −→ NG which is

bijective over the set of non-degenerate u–symbols in Ψ′
N and is such for

each degenerate u–symbol in Ψ′
N it has two values, see [13, (11.7.3)].

4.3.1. Orders on u–symbols

Let

θ :=

(
a1 < a2 < · · · < am+d

b1 < b2 < · · · < bm

)
, θ̃ :=

(
ã1 < ã2 < · · · < ãm+d

b̃1 < b̃2 < · · · < b̃m

)

in ΨG two u–symbols with same defect d. We will write θ ≤
ΨG

θ̃ if

{
ai+ai+1+· · ·+am+d ≤ ãi + ãi+1+· · ·+ãm, for any i∈{0, 1,. . . ,m+ d},

bj + bj+1 + · · · + bm ≤ b̃j + b̃j+1 + · · · + b̃m, for any j ∈ {1, 2, . . . ,m}.

4.3.2. Similarities on u–symbols

Let θ1, θ2 be two elements of Ψ′
2n+1 (resp. Ψ2n, Ψ′

2n). We say that θ1,

θ2 are similar if they can be represented in the form

(
A1

B1

)
,

(
A2

B2

)
so that

A1 ∪B1 = A2 ∪B2, A1 ∩B1 = A2 ∩B2. We then write θ1 ∼ θ2. This is an

equivalence relation on Ψ′
2n+1 (resp. Ψ2n, Ψ′

2n) called similarity. In each
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similarity class of Ψ′
2n+1 (resp. Ψ2n, Ψ′

2n) there is unique element which

can be represented by

(
A

B

)
with

A = {a1 < a2 < · · · < ah}, B = {b1 < b2 < · · · < bl}

such that the following holds:

h = l+1, a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ah ≤ bh ≤ ah+1, if

(
A

B

)
∈ Ψ′

2n+1;

h = l + 1, a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ah ≤ bh ≤ ah+1, if

(
A

B

)
∈ Ψ2n;

h = l, a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ah ≤ bh, if

(
A

B

)
∈ Ψ′

2n.

Such an element is said to be distinguished.

4.3.3. Main result on u-symbols

Following [15, (4.4)], we define a function

b : Ψ′
2n+1 → N (resp. b : Ψ2n → N, b : Ψ′

2n → N),

as follows.

(Bn) Let θ =

(
A

B

)
∈ Ψ′

2n+1. Write the entries of A and B in a single

row in increasing order: x0 ≤ x1 ≤ x2 ≤ · · · ≤ x2m. Let x0
0 ≤ x0

1 ≤
x0

2 ≤ · · · ≤ x0
2m be the sequence 0 ≤ 0 ≤ 2 ≤ 2 ≤ · · · ≤ 2(m − 1) ≤

2(m− 1) ≤ 2m. Then by definition

b(θ) :=
∑

0≤i<j≤2m

inf(xi, xj) −
∑

0≤i<j≤2m

inf(x0
i , x

0
j ).

(Cn) Let θ =

(
A

B

)
∈ Ψ2n. Write the entries of A and B in a single row

in increasing order: x0 ≤ x1 ≤ x2 ≤ · · · ≤ x2m. Let x0
0 ≤ x0

1 ≤ x0
2 ≤

· · · ≤ x0
2m be the sequence 0 ≤ 1 ≤ 2 ≤ 3 ≤ · · · ≤ 2m− 1 ≤ 2m. Then

by definition

b(θ) :=
∑

0≤i<j≤2m

inf(xi, xj) −
∑

0≤i<j≤2m

inf(x0
i , x

0
j ).
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(Dn) Let θ =

(
A

B

)
∈ Ψ′

2n. Write the entries of A and B in a single row in

increasing order: x1 ≤ x2 ≤ · · · ≤ x2m. Let x0
1 ≤ x0

2 ≤ · · · ≤ x0
2m be

the sequence 0 ≤ 0 ≤ 2 ≤ 2 ≤ · · · ≤ 2(m − 1) ≤ 2(m − 1). Then by

definition

b(θ) :=
∑

1≤i<j≤2m

inf(xi, xj) −
∑

1≤i<j≤2m

inf(x0
i , x

0
j).

First note that b(θ) is indeed well-defined. Furthermore, b is constant on

similarity classes, and we have

(4.13) b(θ) = d(C(θ)) =
1

2
(dimG− dimC(θ) − rkG),

where (C(θ), E(θ)) denotes the element of NG corresponding to θ via the

map ψG.

It follows from (4.13), that b(θ) ≥ b(θ̃) if and only if dimC(θ) ≤

dimC(θ̃). Let ε be equal to 0 in case Bn and Cn, and equal to 1 in case

Dn. Hence we have dimC(θ) ≤ dimC(θ̃) if and only if

∑

ε≤i<j≤2m

inf(xi, xj) ≥
∑

ε≤i<j≤2m

inf(x̃i, x̃j),

where xε ≤ xε+1 ≤ · · · ≤ x2m and x̃ε ≤ x̃ε+1 ≤ x̃2 ≤ · · · ≤ x̃2m are the

entries of θ and θ̃ respectively.

Theorem 4.4. Let θ, θ̃ in ΨG with same defect. If θ ≤
ΨG

θ̃, then

dimC(θ) ≤ dimC(θ̃).

Proof. We can assume that θ and θ̃ belong to ΨH
T . Then we set

θ :=

(
A

B

)
=

(
aε < aε+1 < · · · < am

b1 < b2 < · · · < bm

)
.

We get

∑

ε≤i<j≤2m

inf(xi, xj) =
m∑

i=ε

(m− i)ai +
m∑

j=1

(m− j)bj +
∑

a∈A
b∈B

inf(a, b),
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that is,

2mn−
m∑

i=1

(ai + ai+1 + · · · + am) −
m∑

j=1

(bj + bj+1 + · · · + bm) +
∑

a∈A
b∈B

inf(a, b).

We set α := (a1 < a2 < · · · < am) and β := (b1 < b2 < · · · < bm), and
similarly α̃ := (ã1 < ã2 < · · · < ãm) and β̃ := (b̃1 < b̃2 < · · · < b̃m), for

θ̃ =

(
ãε < ãε+1 < · · · < ãm

b̃1 < b̃2 < · · · < b̃m

)
.

If θ ≤
ΨG

θ̃, then by definition α ≤ α̃ and β ≤ β̃. Hence we clearly have

−
m∑

i=1

(ai + ai+1 + · · · + am) ≥ −
m∑

i=1

(ãi + ãi+1 + · · · + ãm),

and similarly for the b, b̃.

Moreover, setting

G(α, β) :=
∑

a∈A
b∈B

inf(a, b),

we check that G(α, β) ≥ G(α̃, β̃). For this, it is enough to show that

(*) If α ≤ α̃, then we have G(α, β) ≥ G(α̃, β), and similarly if β ≤ β̃,
then G(α, β) ≥ G(α, β̃).

The verification of (*) is reduced to the special case where α̃ is

(aε<aε+1< · · ·<ak−1<ak − 1<ak+1< · · ·<al−1<al + 1<al+1< · · ·<am).

But in this case (*) is easily verified using the definition of G(α, β).

Thus, if α ≤ α̃ and β ≤ β̃, we have obtained that b(θ) ≥ b(θ̃), that is,
dimC(θ) ≤ dimC(θ̃).
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4.4. End of the proof of Theorem 1.1

For L and ñ as in (4.1.3), and H as in 4.1.7, we take for ΦH
T the set

Φñ,1 of symbols of rank ñ and defect 1 (see [8]). Let ΣG
L : Irr(Wñ) → ΦH

T

be the natural bijection defined in [8, Lemma 2.7]. We associate with any

symbol

ΛT :=

(
λ0 < λ1 < · · · < λm

µ1 < µ2 < · · · < µm

)
∈ ΦH

T

two partitions αΛT , βΛT of the following form

αΛT = (0 ≤ α0 ≤ α1 ≤ · · · ≤ αm), βΛT = (0 ≤ β1 ≤ β2 ≤ · · · ≤ βm)

such that
∑m

i=0 αi+
∑m

j=1 βj = ñ, by setting αi := λi−i and βj := µj−j+1.

We will write ΛT Λ̃T , for ΛT , Λ̃T ∈ ΦH
T , if both αΛT ≤ α

eΛT , and βΛT ≤ β
eΛT ;

hence,

ΛT =

(
λ0 < λ1 < · · · < λm

µ1 < µ2 < · · · < µm

)
≤
ΦH

T

(
λ̃0 < λ̃1 < · · · < λ̃m

µ̃1 < µ̃2 < · · · < µ̃m

)
= Λ̃T

if and only if

{
λi + λi+1 + · · · + λm ≤ λ̃i + λ̃i+1 + · · · + λ̃m, for any i∈{0, 1, . . . ,m},
µj + µj+1 + · · · + µm ≤ µ̃j + µ̃j+1 + · · · + µ̃m, for any j∈{1, 2, . . . ,m}.

By using Corollary 4.3, we see that there exists Emax ∈ Irr(WG
L ) occurring

with mutiplicity one in Ind
W G

L

W G
L,s

(E′) such that

(4.14) ΣG
L(E) ≤

ΦH
T

ΣG
L (Emax), for every E occurring in Ind

W G
L

W G
L,s

(E′).

Now we set

• ΘG
L := Θñ if d ≥ 1 (resp. ΘG

L := tΘñ if d ≤ −1), when G = PSp2n,

• ΘG
L := Θ′

ñ, when G = SO2n+1,

• ΘG
L := Θ′

ñ, when G = SO2n and t ≥ 1,

where

Θñ : Irr(Wñ)
1−1
−→ Ψ2ñ,1,

tΘñ : Irr(Wñ)
1−1
−→ Ψ2ñ,1, Θ′

ñ : Irr(Wñ)
1−1
−→ Ψ′

2ñ+1,1
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are the bijections defined in [23, §5.7]. It follows from the explicit descrip-

tions of ΘG
L and ΣG

L that, for any ΛT , Λ̃T in ΦH
T ,

ΛT ≤
ΦH

T

Λ̃T if and only if σG
L (ΛT ) ≤

ΨH
T

σG
L (Λ̃T ),

where σG
L is the map defined in 4.7.

Let ∆G
L : ΨH

T → ΨG
L be the map defined by Lusztig in [13, §12.2 and

§13.2]. We observe also that

θ ≤
ΨH

T

θ̃ if and only if ∆G
L (θ) ≤

ΨG

∆G
L (θ̃),

for any θ and θ̃ in ΨH
T . Then the assertion (a) of Theorem 1.1 follows

from (4.14) and Theorem 4.4, as explained in Section 4.1.2.
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1988/89. Astérisque No. 177-178, (1989), Exp. No. 709, 231–260.

[8] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math., 43

(1977), 125–175.

[9] , A class of irreducible representations of a Weyl group, Proc. Kon. Nederl.

Akad. series A, 82 (1979), 323–335.

[10] , Green polynomials and singularities of unipotent classes, Adv. Math., 42

(1981), 169–178.

[11] , A class of irreducible representations of a Weyl group II, Proc. Kon. Nederl.

Akad., series A, 85 (1982), 323–335.

https://doi.org/10.1017/S0027763000008539 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008539


72 A.-M. AUBERT

[12] , Characters of reductive groups over a finite field Annals Math. Studies vol.

107, Princeton University Press, 1984.

[13] , Intersection cohomology complexes on a reductive group, Invent. Math., 75

(1984), 205–272.

[14] Character sheaves, Adv. Math. 56 (1985), 193–237, 57 (1985), 226–265, 57

(1985), 266–315, 59 (1986), 1–63, 61 (1986), 103–155.

[15] , On the character values of finite Chevalley groups at unipotent elements, J.

Algebra, 104 (1986), 146–194.

[16] , Green functions and character sheaves, Ann. Math., 131 (1990), 355–408.

[17] , A unipotent support for irreducible representations, Adv. Math., 94 (1992),

139–179.

[18] Remarks on computing irreducible characters, J. Amer. Math. Soc., 5 (1992),

971–986.

[19] T. Shoji, On the Springer representations of the Weyl groups of classical algebraic

groups, Comm. Algebra, 7 (16) (1979), 1713–1745, 7 (18) (1979), 2027–2033.

[20] , On the Springer representations of Chevalley groups of type F4, Comm.

Algebra, 8 (1980), 409–440.

[21] , Green functions of reductive groups over a field, Proc. Conf., Arcata/Calif.

1986, Part 2, Proc. of Symposia in Pure Math., 47 (1987), 297–303.

[22] , Character sheaves and almost characters of reductive groups I and II, Adv.

Math., 111, No. 2 (1995), 244–313, 314–354.

[23] , Unipotent characters of finite classical groups. Finite reductive groups (Lu-

miny, 1994), 373–413, Progr. Math., 141, Birkhäuser Boston, Boston, MA, 1997.
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