
AN INVESTIGATION ON THE LOGICAL STRUCTURE
OF MATHEMATICS (XΠI)**

A METHOD OF PROGRAMMING OF PROOFS IN MATHEMATICS
FOR ELECTRONIC COMPUTING MACHINES

SIGEKATU KURODA

1. Preliminaries

In spite of invaluable importance of the fundamental circuit logic of

performing the basic logical operators AND, OR, and NOT in achieving com-

plicated computations for electronic computing machines, the research of plan-

ning and programming of proving a given mathematical or logical assertion

for electronic computing machines is incomparatively far behind. This is of

course partly because of little practical demand for solving such a theoretical

problem, but there is also the essential reason for it that the proving procedures

are much more difficult than the computing ones. Namely, the latter is achieved

in attaining the objective (the result of computations) by the method which is

given to the machine by program, while the former is only accomplished

when the machine constructs a method by which the objective (the assertion to

be proved) is attained. In proving procedures the machine has to look for the

method of attaining a given objective, so that the direction of the action of the

machine is completely reversed. What is to be given to the machine in

proving procedures is not a definite way for attaining the objective, but

the fundamental rules of constructing a proof, by the complicated combination

of which the machine has to find a way, if any, to the objective that has been

placed in the storage of the machine.

Received June 19, 1959.
*> (Added January 15, 1960) This is the reproduction of the preprints of my talk at

the Meeting for the Research of Mathematical Sciences in Tokyo on June 19, 1959, so
that this Part (XIII) is quite independent of previous parts. On the contrary, the
definition of UL given in Part (I), Hamb. Abh. vol. 22, is repeated with a generalization
of defining formulas (see the formula (D*/>) in §5). This generalization is necessary
for the purpose of irreducible deductions of some branches of mathematics, which was
anticipated in the foot-note 1 in Part (I). However, (D*/>) will not be used in further
continuation of this investigation, unless it is explicitly noted to do so.

We do not enter here into actual programming but we note that detailed research

195

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

196 SIGEKATU KURODA

2. Fundamental rules of proofs

As far as the basic logical operators AND, OR, and NOT, already

mentioned above, are concerned, the rules to be given to the machine as the basis

of a proof are very simple as in the case of the fundamental circuit logic.

Namely,

(1) From F AND G to F G

(2) From NOT (F AND G) to NOT F or NOT G

(3) From F OR G to Fo r G

(4) From NOT (F OR G) to NOT F NOT G

where F, as well G, denotes a juxtaposition of symbols, which we shall later

define and call "formula".

Besides these, we need the following four rules concerning the so-called

quantifiers, universal and existential, of logic.

(5) From FOR ALL Fx to Fw

(6) From NOT (FOR ALL Fx) to NOT Fm

(7) From FOR SOME Fx to Fm

(8) From NOT (FOR SOME Fx) to NOT Fw

where w and m are variables and, in particular, w in (5) and (8) is called the

of programming along this line is successfully going on by several mathematicians,
using the computing machine M-l in the Electrical Communication Laboratory in
Tokyo and TAC in the Faculty of Engineering, University of Tokyo.

Meanwhile, we have come to be accessible to the publications at the International
Conference on Information Processing, Paris, 1959, in which several researches on
proving mathematical theorems by electronic computing machines are reported. See
H. Gelernter: Realization of a geometry theorem proving machine, UNESCO/NS/ICIP/
1.6.6; A. Newell, J. C. Shaw, and H. A. Simon: Report on a general problem-solving
program, UNESCO/NS/ICIP/1.6.8; B. Dunham, R. Fridshal, and G. L. Sward: A non-
heuristic program for proving elementary logical theorems, UNESCO/NS/ICIP/1.6.10;
P. C. Gilmore: A program for the production of proofs for theorems derivable within
the first order predicate culculus from axioms UNESCO/NS/ICIP/6.1.14. See also H.
Wang: Toward Mechanical Mathematics, reported in Gelernter s paper, cited above, to
be published in IBM Journal of Research and Development.

In programming of mathematical proofs it is especially necessary to apply.heuristic
method or strategy (see H. Gelernter's paper cited above) in order to minimanize the
numbers of mechanical trials. The method of using UL has the advantage for this
purpose because UL is faithful to the "meaning" of concept formation in mathematics
and is eligible for mechanization of proofs (see also §5, mechanization of mathematics,
Part (IV), this J. vol. 13).

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

LOGICAL STRUCTURE OF MATHEMATICS (XIII) 197

eigen variable of the rules (5) or (8), respectively, and F*y Fw, and Fm are

again formulas containing the free variable explicitly written. The rules of use

of eigen variables and also the definition of a variable are given later.

These eight rules are all the fundamental rules we need in proving a given

mathematical or logical assertion. By virtue of the duality between AND and

OR and between ALL and SOME, the above eight rules are reduced to four

rules e.g. (1), (2), (5), and (6).

Any complicated proof in mathematics is nothing else than a complicated

superposition of these four fundamental rules, just were any computer function

interconnections of the fundamental circuit logic. Naturally there is another

rule about how to use these fundamental rules in a mathematical proof. Before

explaining these rules we have to explain what is a mathematical assertion.

3, Symbols

In order to describe any mathematical assertion, besides the symbols

already mentioned, namely, z7 (NOT), A (AND), v (OR), V (FOR ALL), 3

(FOR SOME), and variables such as a, b, . . . m, n, . . . x, y, . . . w, . . . ,

we need only one more symbol e . We use also the logical operators F-ϊG,

F=BG as abbreviations of ~7FΊG, {F+G)K(G+F) respectively, and the equality

a-b as the abbrevivation of

By using these symbols we construct formulas as follows.

4. Variables and formulas

Definition of formulas of order 0.

Assume that we have an indefinite number of variables a, b, . . . x, y, . . .

which can be used as independent variables at our disposal.

(i) a^b is a formula where a and b are independent variables.

(ii) If F and G are formulas then FKG and FvG are formulas.

(iii) If F is a formula and the negation is not the outermost logical

operator of F, then 7 F is a formula.

(iv) If Fx is a formula where x is an independent variable, free and not

bound in Fx, then V#FV and 3xFx are formulas.

An independent variable x occurring in a formula F is called free or bound

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

198 SIGEKATU KURODA

in F, according as there is an x in F which does not or does lie under the oper-

ation scope of V# of 3x in F respectively. An independent variable in a formula

can be free and bound at the same time.

Definition of dependent variables of order 0.

Assume that we have an indefinite number of variables p, q, . . . , which

can be used as dependent variables at our disposal.

(v) If Fu is a formula of order 0 where u is an independent variable, free

and not bound in Fu, then a new dependent variable p of order 0 can be intro-

duced with

(pΌ) V#i XnVu. Uep = Fu:Xι " Xιt

as its defining formula, where u, Xu - , xn(n>0) are the complete system

of free variables in Fu. Fu is called the definiens of p and u the element

variable of p. The variable p is called to depend on xu . . . , Xn and p is

written also as pXχ>''" *n. The independent variables upon which a dependent

variable q depends are called free in the formulas q&k and k&q.

Definition of formulas and dependent variables of order m(>l).

(vi) Assume that the formulas and dependent variables of order m - 1 {m>V,

have been defined. If, in (i) above, a and b represent any independent variables

or dependent variables of order less than my then (i), (ii), (iii), and (iv) give

the definition of formulas of order m. If Fu in (v) is a formula of order less

than m, then (v) gives the definition of the dependent variable p of order m.

Formulas and dependent variables of any order are simply called formulas

and dependent variables respectively.

If no independent variable other than u is free in the definiens of Fu of

a dependent variable p, p is called a constant.

Definition of subordination and superordination of dependent variables.

A dependent variable q which occurs in the definiens of Fu of a dependent

variable p is called (directly) subordinate to p. A dependent variable -subordi-

nate to a dependent variable which itself is subordinate to p is called subordi-

nate to p. If a dependent variable q is subordinate to py then p is called

superordinate to q.

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

LOGICAL STRUCTURE OF MATHEMATICS (XIII) 199

5. Assertions and proofs

Definition of an assertion

We denote by (ϊ) the formula expressing the principle of extensionality:

(I) \fxyz. x-

Let a be a sequence of a finite number of defining formulas, including possibly

the formula (I). If for any dependent variable p defined in σ, any dependent

variable subordinate to q is defined in o> then a is called closed. Assume that

a is closed, and let H be a formula in which no dependent variables occur other

than defined in a. Then we call

(A) cYH

is an assertion, a the premises of (A), and H the conclusion of (A).

Definition of a proof

We shall give the definition of a proof of a given assertion (A). To do

this, we define first the association of a proof constituent with a proof formula.

These are the rules (l)-(8) stated before. Namely:

We associate the proof consituent

(i) F G with the formula FKG

ii) yF or yG » 7 . FKG

iii) F or G n FvG

ίv) yF yG tt y. FΊG

(v)

(vi)

(vii)

(viii)

pw
ypm

pin

ypw

3xFx

y3xFx

where m is any variable, dependent or independent, and w is an independent

variable which is called, as is mentioned before, the eigen variable of the proof

constituent concerned.

When C is any formula we use the proof constituent

C 7C

which is called a cut with C and 7 C as cut formulas.

Now, we define a proof of the assertion (A). A proof P of (A) is a

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

200 SIGEKATU KURODA

(reversed) tree form superposition of proof constituents such as

which has the four properties, stated below. Here 7a is the sequence con-

sisting of the negation of each formula of σ. 7 a, H is called the top-sequence

of P and a formula belonging to the top sequence 7 a, H of P a top formula

of P. A P-formula under which there is no horizontal line is called a bottom

formula of P. A P-string is a way, starting at a bottom P-formυla and ending

at the P-top sequence, running through each formula which is upon each

horizontal line, touched on the way. All the formulas of P-top sequence are

considered to belong to the string.

(i) Association property: For any P-constituent E there is over E a for-

mula with which E is associated, unless E is a cut,

(ii) Cancelling property: Any P-string contains a pair of formulas, the

one of which is the negation of the other.

(iii) Independent variable restriction: The eigen variable of a P-constituent

E does not occur free in P over E, except in 7a.

(iv) Dependent variable restriction: Any dependent variable occurring in

P is defined in a.

This is the definition of a proof of the assertion (A).

Restriction of variables

For the necessity of formulating a proof in mathematics more adequately,

we shall generalize the definitions of an assertion and a proof, given above, as

follows. Let Xu . . . , xn be the complete system of independent variables in

the definiens Fu of the defining formula {Dp) of p, then, instead of (Όp), we

use the formula

• • ' λ » = Fu'Xί' ' X n ,

where mu . . . , mn, k are any independent variables or dependent variables
m m

previously defined, and the notation such as V#(and 3x) means the restriction
m m

of the scope of the bound variable x to m, i.e. V#(and Ex) is the abbreviation

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

LOGICAL STRUCTURE OF MATHEMATICS (XIII) 201

of VΛΓ. #e=m-»(and 3#. ^ w λ) . We call the formula (D*/>) the defining

formula of p with restriction of variables, in which some or all of xu . . . , Xn

and α may be left universal, that is, some or all of mu . > w« and k may

be lacking.

We generalize the definition of an assertion aVH in allowing that the

formula (D*/>) may be used instead of the defining formula (Dp) of ί occur-

ring in a. The definition of closedness of the premises a should be affected

accordingly so that the defining formulas of the dependent variables, such as

nix, . . . , rπny k used for restriction of the ranges, should also be included in

the closed premises a again possibly in the form with restriction of variables.

The definition of a proof for an assertion a Y H in the generalized sense is the

same as that given above.

6. Universality of logic and machines

It is usually said that a computing machine should be or is of universal

character. What it means is, precisely speaking, nothing more nor less than

the fact that the machine can perform what the machine can, so that the con-

cept of universality should rather be regarded as defined by the machine itself,

unless we have a precise definition of universality, independent of the machine.

So, for instance, the concept of a computable function was defined by Turing

as the function the value of which is obtained from any given arguments of

the function by the theoretical machine now we call by his name. However, if

one could let a machine perform, or had the insight of being able to let it

perform, "any" mathematically rigorously formulated "algorithm", then one would

come to embrace the "thesis" that the machine is universal.

On the other hand, it seems very presumable that what we call usually a

proof in mathematics can be formulated as a proof defined above. So we

define as UL (Universal Logic) the logical system in which the variables,

formulas, and proofs are defined as above, and then we can consider a method

of programming of a UL-proof of a given UL-assertion for an existing compu-

ting machine.

It is particularly to be noted that the cardinal problem of the foundational

research about consistency and inconsistency is put quite aside from our

present concern,

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

202 SIGEKATU KURODA

7. Undecidability and proofs

There is in logic a series of results, obtained by Godel, Church, Quine,

etc., which prove the impossibility of some attempts formulated precisely. To

these results belong the non-existence of decision procedures for all formulas

in predicate logic even with a binary relation (Church, Quine), and the ex-

istence of undecidable statements in a sort of axiomatic theories in mathema-

tics, satisfying certain conditions (Gδdel).

Therefore, there is no mechanical procedures to prove all the "true"

dependent-variable-free UL-assertions hi/, and there is a UL-assertion aYK in

a certain axiomatic theory T, for which both aYK and aV7K are T-unprovable.

In such a situation it seems meaningless to endeavour to construct a proof of

aYK, or aY7K. However, it may happen that τ, aYK or p, σY7K is provable

for some appropriate premises r, a or p, a.

As is stated above, it is proved by Godel that there is an undecidable

statement if we fix some axiomatic theory. This does not mean at all that

for a given assertion there is no consistent axiomatic theory in which the

assertion is decidable. GodeΓs theorem asserts the weakness of a fixed axio-

matic theory but not the weakness of mathematics. It is the mathematician's

idea to determine an enough number of appropriate premises in order to prove

some given assertions. It is, therefore, not meaningless to look for a proof of

aYH, if one has the confidence that the premise a is enough to prove the

conclusion H. Even in such a case, the length of a possible proof of ahH is

unbounded. We mean by the length of a proof the maximum of the numbers

of horizontal lines which each string of the proof crosses. It is proved that

a proof of aYH of less than a given length can be determined by a finite

number of procedures and such a proof, if any, can be constructed by a machine

in principle, unless the proof does not exceed the capacity of the machine.

However, a tremendous number of trials is necessary, if we wish to

construct a proof mechanically. The number of trials may be reduced to a

smaller number both by using the properties of proofs and by making use of

the device of the machine. Herein lies the fundamental problem of program-

ming of mathematical proofs.

It is unbelievable that an existing computing machine can perform so

elaborated a proof in mathematics. But it is doubtless that it can perform'

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

L O G I C A L S T R U C T U R E O F M A T H E M A T I C S (X I I I) 2 0 3

some simpler proofs in mathematics by a suitable programming. It is also a

problem to examine whether a computing machine is provided with a qualified

potency as proving machine, since a special kind of procedures is strongly

required in proving process, but not all kinds of procedures needed in com-

puting procedures. It is equally important what machine is most suitable for

the purpose of performing mathematical proofs and what formulation of

mathematics is most convenient for the same purpose. The logical system UL

seems to be one of the most useful formulations of mathematics for this

purpose and UL is, as is well known, translated into part of quantification

theory (pure predicate logic).

(Added in proof, February 29, 1960) H. Wang's paper, mentioned in foot-

note*), appeared in IBM Journal of Research and Development, vol. 4, no. 1,

pp 2-22, January 1960. Wang reports in it that he wrote three programs on

an IBM 704, by the first of which all the theorems, amounting to over 200 in

number, in the first ήve chapters of Principia Matheniatica were proved in less

than 3 minutes by IBM 704. He obtained also many other interesting results

of having the machine prove formulas of predicate logic.

independently of Wang's research, two different programs of proving

mathematical theorems have been written since last autumn, one by T. Simauti

and others on TAC (see foot-note*)) and the other by S. Takasu on M-l (ibid.).

These programs have recently been finished and proofs of some theorems

were performed by the machines. Namely: TAC proved, for instance, on

February 11, I960, the equality of left and right identities of an algebraic

system:

VAT. xe = x. ΛVΛΓ. e'x^x. KVxyzw. xy = z\xy=zιv *z = tυ -ϊe^e'

in about 61 sec, not including input and output time M-l proved, for instance,

on February 29, I960, the formula Is*2 (see Nagoya Math. J. vol. 13, p. 41):

in about 90^120 sec. These results, including the description of the programs

and the feature of TAC and M-l, will be published elsewhere.

Mathematical Institute

Nagoya University

https://doi.org/10.1017/S0027763000007650 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007650

