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Accelerated statistical computation of collisionless fusion alpha particle losses in
stellarator configurations is presented based on direct guiding-centre orbit tracing.
The approach relies on the combination of recently developed symplectic integrators
in canonicalized magnetic flux coordinates and early classification into regular and
chaotic orbit types. Only chaotic orbits have to be traced up to the end, as their
behaviour is unpredictable. An implementation of this technique is provided in
the code SIMPLE (symplectic integration methods for particle loss estimation,
Albert et al., 2020b, doi:10.5281/zenodo.3666820). Reliable results were obtained
for an ensemble of 1000 orbits in a quasi-isodynamic, a quasi-helical and a
quasi-axisymmetric configuration. Overall, a computational speed up of approximately
one order of magnitude is achieved compared to direct integration via adaptive
Runge–Kutta methods. This reduces run times to the range of typical magnetic
equilibrium computations and makes direct alpha particle loss computation adequate
for use within a stellarator optimization loop.
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1. Introduction
Finding a stellarator configuration with favourable properties for magnetic

confinement fusion poses a high-dimensional multi-objective optimization problem.
One of these objectives is to minimize the losses of energetic fusion alpha particles
over their slowing-down time in order to be able to heat the bulk plasma of a reactor.
Direct computation of such losses with usual numerical methods is relatively time
consuming compared to other calculations within the optimization loop, in particular
computation of three-dimensional (3-D) magnetohydrodynamic equilibria. This is why
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fusion alpha loss estimation is often performed via faster proxy models (Nemov et al.
2005, 2008; Bader et al. 2019) that, however, cannot capture the full physics of drift
orbits and, therefore, are suited only for the initial stage of optimization. The reason
for this is the high alpha energy of 3.5 MeV, leading to the following consequences.
On the one hand, alpha particles show a rather fast cross-field drift and rather wide
guiding-centre orbits on the bounce time scale. On the other hand, the collisional
decorrelation time of orbits from the magnetic field is very large because of very low
collision frequencies for alphas. These two factors combined can lead to diverse and
unpredictable behaviour of drift orbits in 3-D magnetic geometry. Therefore, direct
tracing of an ensemble of orbits and statistical estimation of losses is still a preferable
option for accurate results (Lotz et al. 1992; Nemov, Kasilov & Kernbichler 2014).

To address this problem, a class of symplectic integrators for guiding-centre motion
(Zhang et al. 2014) has recently been extended and applied (Albert, Kasilov &
Kernbichler 2020a) to alpha loss computation in stellarator configurations. Despite
reaching a significant speed up of factor 3–6 compared to adaptive Runge–Kutta
orbit integration, further improvements are required to reduce the wall-clock run time
below the time needed to compute magnetohydrodynamic equilibria.

To reach this goal, fast symplectic guiding-centre integration is complemented by
classification of orbits as regular or chaotic based on Poincaré maps. In this context,
‘regular’ orbits are those that stay bound to some surfaces, called ‘drift surfaces’ and,
therefore, can never leave the confinement volume. In particular, most of passing
particle orbits are regular, as their drift surfaces are close to magnetic surfaces and
only somewhat corrugated by cross-field drifts. This fact has been used in the past
to reduce the number of orbits that have to be traced (e.g. Nührenberg, Lotz & Gori
1994), and has inspired the idea of using a more rigorous classification, as presented
here. The method treats trapped and passing particles in the same way and, therefore,
takes into account possible losses of particles which would be classified from their
starting conditions as passing (‘marginally passing particles’). It should be noted
that in modern advanced stellarator concepts (Nührenberg & Zille 1988; Mikhailov
et al. 2002) not only most passing but also most trapped particles have regular orbits.
Therefore, the gain in efficiency via classification is significant.

The combination of the two techniques allows us to reduce the wall-clock time for
collisionless alpha loss estimation by another factor 2–5 compared to using symplectic
schemes alone, and thus reaches the required target to be used directly in optimization.
This claim is supported by the presented results for three stellarator reactor
configurations of quasi-isodynamic (Drevlak et al. 2014), quasi-helical (Drevlak
et al. 2018) and quasi-axisymmetric type (Henneberg et al. 2019), respectively. The
implementation of the method is available in the code SIMPLE (Albert, Kasilov &
Kernbichler 2020b) as open source under the MIT License. To produce the present
results, version 1.1.1 of SIMPLE has been used.

2. Methods
2.1. Canonicalized flux coordinates

The guiding-centre Lagrangian (Littlejohn 1983; Cary & Brizard 2009) in magnetic
flux coordinates, omitting the ignorable term with gyrophase velocity φ̇, is given by

Lgc = hr ṙ+
(

mv‖hϑ +
e
c

Aϑ
)
ϑ̇ +

(
mv‖hϕ +

e
c

Aϕ
)
ϕ̇ −H, (2.1)

where hi = Bi/B are covariant components of unit vectors in direction of the
magnetic field B, the triple (r, ϑ, ϕ) are some spatial straight field line magnetic
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flux coordinates, m and e are particle mass and charge, respectively, c is the speed
of light, Ak = Ak(r) are covariant vector potential components and

H =
mv2
‖

2
+µB+ eΦ (2.2)

is the Hamiltonian containing magnetic moment µ and electrostatic potential Φ.
In spatial coordinates with hr = 0 it is immediately possible to identify canonical

momenta pϑ , pϕ of the reduced 4-D phase space in front of ϑ̇ and ϕ̇ in (2.1).
An efficient means of transformation from arbitrary 3-D magnetic flux coordinates
to such coordinates has been presented recently (Albert et al. 2020a), being a
three-dimensional generalization and synthesis of Meiss & Hazeltine (1990) and Li,
Breizman & Zheng (2016). Based on such a transformation, phase-space coordinates
z= (r, ϑ, ϕ, pϕ) are used, with only r remaining as a non-canonical variable, resulting
in dependencies

Lgc(z, ϑ̇, ϕ̇)= pϑ(z)ϑ̇ + pϕϕ̇ −H(z), (2.3)

pϑ(z)=mv‖(z)hϑ(r, ϑ, ϕ)+
e
c

Aϑ(r), (2.4)

v‖(z)=
1

mhϕ(r, ϑ, ϕ)

(
pϕ −

e
c

Aϕ(r)
)
. (2.5)

Computations of the exact transformation in the treated stellarator equilibria show
that (r, ϑ,ϕ) remain close to Boozer magnetic coordinates, becoming identical to them
in the zero beta limit. It has been argued by Boozer (2005) that, in such coordinates,
hr can be neglected for the purpose of orbit integration, thereby immediately providing
approximate canonicalized flux coordinates. Using such coordinates would further
increase performance, as they depend on fewer free 3-D parameters for which
interpolants have to be computed during evaluation of the magnetic field. Even
though for the current work the exact canonicalization of flux coordinates has been
chosen, a comparison to computation in Boozer coordinates with neglected hr could
be an interesting task for future investigations.

2.2. Symplectic integration in non-canonical coordinates
With canonical momenta given in terms of (partially) non-canonical coordinates, we
can proceed to apply a generalized form of symplectic integration (Zhang et al. 2014;
Albert et al. 2020a). Here, dependencies and derivatives of Hamiltonian H are written
in terms of non-canonical phase-space coordinates z, but the quadrature scheme relies
on classical symplectic integrators in canonical coordinates (Hairer, Lubich & Wanner
2006). For the present investigation, a semi-implicit symplectic Euler method has been
employed. In step number (n) with time difference 1t, two implicit equations

0=
∂pϑ
∂r
(pϑ,(n+1) − pϑ,(n))+1t

(
∂pϑ
∂r

∂H
∂ϑ
−
∂pϑ
∂ϑ

∂H
∂r

)
, (2.6)

0=
∂pϑ
∂r
(pϕ,(n+1) − pϕ,(n))+1t

(
∂pϑ
∂r

∂H
∂ϕ
−
∂pϑ
∂ϕ

∂H
∂r

)
(2.7)

are first solved in r= r(n,ei) and pϕ = pϕ,(n+1). Partial derivatives of poloidal momentum
pϑ and Hamiltonian H are evaluated at (r(n,ei), ϑ(n), ϕ(n), pϕ,(n+1)), according to (2.2)
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and (2.4), expressing v‖ via (2.5). Subscripts (n) denote values at current time t, and
(n+ 1) the ones at t+1t. The internal stage r(n,ei) (with subscript ‘ei’ for ‘explicit–
implicit’ Euler) does not correspond to a full time step but remains sufficiently close
to the actual radial position r of the guiding centre. In particular, this evaluation point
in phase space is also used to express the poloidal momentum at step (n+ 1) via

pϑ,(n+1) = pϑ(r(n,ei), ϑ(n), ϕ(n), pϕ,(n+1)). (2.8)

In the remaining stages, new positions ϑ, ϕ follow explicitly in two equations

ϑ(n+1) = ϑ(n) +1t
∂H
∂r

(
∂pϑ
∂r

)−1

, (2.9)

ϕ(n+1) = ϕ(n) +1t
1
hϕ

(
v‖ −

∂H
∂r

(
∂pϑ
∂r

)−1

hϑ

)
, (2.10)

where derivatives of pϑ and H, as well as hϑ and v‖, are evaluated at the same phase
point as in (2.6) and (2.7).

2.3. Classification of Poincaré sections
As discussed above, regular orbits are bound to ‘drift surfaces’ which reduce to a
line (or set of closed lines) on some given cross-sections (Poincaré sections). For the
present analysis and classification, we use two types of Poincaré section of the whole
phase space defined by

v‖ = 0±, (2.11)

with v‖ switching either from negative to positive (0−) or vice versa (0+), and

ϕ =
2πl
Nper

, (2.12)

where Nper is the number of field periods of the configuration and l is an integer
between 0 and Nper − 1. Each of these sections is illustrated based on orbits in
figures 1–2.

The considered Poincaré sections are actually 3-D hypersurfaces in a 4-D phase
space (ignoring the gyrophase and treating the conserved magnetic moment µ as an
auxiliary parameter). Imposing the additional constraint of conservation of total energy
H together with one of (2.11)–(2.12), hypersurfaces are reduced to 1-D lines in the
case of regular orbits, or structures of fractal dimension between one and two in the
case of chaotic orbits. Classification of the kind of orbit at hand is performed with
the help of the box-counting fractal dimension described below.

The box-counting fractal dimension of a set of points (see, e.g., Falconer 2014,
chap. 3), also known as the Minkowski–Bouligand dimension, is defined as follows.
One considers the number of boxes N(ε) of width ε required to cover all points in the
set. In the limiting case of small boxes, the fractal dimension is obtained as a ratio
of exponents via

df = lim
ε→0

log N(ε)
log(ε−1)

. (2.13)

For a finite set of points and for numerical implementation, a sufficiently small finite
minimum value of ε is used instead of this limit. Figure 3 illustrates the behaviour in
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(a) (b)

FIGURE 1. (a) Trapped orbit with a Poincaré section (red) at turning points v‖= 0−, and
outer plasma boundary (blue). Panel (b) shows the projection of the section to the poloidal
plane.

(a) (b)

FIGURE 2. (a) Passing orbit with Poincaré sections (red) at toroidal field periods ϕ = ϕk,
and outer plasma boundary (blue). (b) Projection of the section to the poloidal plane.

terms of a regular orbit and a chaotic orbit. In the regular case, the number N(ε)
grows linearly with ε−1 and df is computed close to one. In comparison, for the
chaotic case, more boxes are required with smaller ε, leading to an estimated fractal
dimension df well between one and two. In the limit of points covering the whole
section equally, df approaches two.

In practice, to classify orbits, a threshold value for df has to be set, below which
orbits are classified as regular. In the present implementation this threshold has been
determined empirically as df ≈ 1.6 with adaptation to more conservative criteria
with decreasing number of available points. If all section types (2.11)–(2.12) have a
dimension below the threshold, the orbit is classified as regular. In the actual code
realization it is more convenient to use, instead of the fractal dimension, a ratio ν of
full boxes Nfull to the total number of boxes Nbox, linked to df by

df = 2
log(ν)

log(Nbox)
+ 2. (2.14)

Here, the threshold is set directly as ν = 0.2.
Figure 4 shows an example of the estimated fractal dimension as a function of

Nbox for a number of regular and chaotic orbits in a quasi-isodynamic stellarator
configuration. Actual classification happens when the number of boxes becomes equal

https://doi.org/10.1017/S0022377820000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000203


6 C. G. Albert, S. V. Kasilov and W. Kernbichler

FIGURE 3. Classification of poloidal projections of Poincaré sections via box counting.
The regular orbit in the upper plots has a one-dimensional projection, while the projection
of the chaotic orbit on the bottom has a fractal dimension between one and two apparent
on refinement.

to the number of orbit footprints in the Poincaré section. At higher Nbox this estimate
can no longer be used, which is clearly seen from the behaviour of chaotic orbits.

3. Results
In this section numerical results on fusion alpha particle confinement are presented

for three optimized stellarator configurations of similar (reactor) size with an on-axis
magnetic field of B0 = 5 T: a quasi-isodynamic (QI) configuration (major radius
R = 25 m, aspect ratio A = 12, plasma β = 4.9 %) of Drevlak et al. (2014), a
quasi-helical (QH) configuration (R = 19 m, A = 8.7, β = 3.9 %) of Drevlak et al.
(2018) and a quasi-axisymmetric (QA) configuration (R= 10.3 m, A= 3.4, β = 3.5 %)
of Henneberg et al. (2019). Resulting loss fractions over time match the ones in
the references. It should be stressed once more that the high degree of optimization
in these configurations makes the present classification method especially efficient,
as most orbits are regular and losses are small. Still, the algorithm is expected
to give a significant speed up in optimizing any magnetic configuration where the
initial equilibrium already has an alpha loss fraction below 0.5 at the alpha particle
slowing-down time ts. If this is not the case, alpha loss computations are anyway fast
as long as losses happen well before ts and tracing can be terminated frequently.
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(a) (b)

FIGURE 4. Estimated fractal dimension df by box counting versus number of boxes Nbox
for several regular (a) and chaotic (b) orbits in a quasi-isodynamic configuration. Orbits
are classified when Nbox equals the number of footprints using the threshold value df = 1.6
(dashed lines).

Figures 5–7 show losses of alpha particles over time and a trapping parameter
defined as

θtrap =

(
µ

µtp
− 1
)(

Bmax

Bmin
− 1
)−1

, (3.1)

where µtp is the magnetic moment corresponding to the trapped passing boundary,
and Bmin and Bmax are maximum and minimum values of the magnetic field modulus
on the starting flux surface, respectively. For deeply trapped particles θtrap = 1, while
it vanishes at the trapped passing boundary. Negative values of θtrap correspond to
passing particles. In addition to black dots marking the actual loss of a test particle,
shaded plots from a kernel density estimator based on the statistical samples have been
added to mark regions of losses in time and phase space. Finally, the confined fraction
fc over time is plotted as a curve.

Two cases are considered for each configuration where particles are started at a
flux surface with radius r = s ≡ ψtor/ψ

a
tor = 0.6 and s = 0.3, respectively, where ψtor

is the toroidal magnetic flux and ψa
tor its value at the outer plasma boundary. A

total of Ntot = 1000 randomly chosen orbits are traced up to physical time t = 1 s
such that the slowing-down time is well covered. The estimated standard deviation σ
(random error) in the computed fraction fc of particles which remain confined scales
inversely with this number as σ =

√
fc(1− fc)/Ntot. Classification of regular/chaotic

orbit types is performed at t = 10−1 s. After this point, regular orbits are considered
to be confined and only chaotic orbits are traced further. Initial conditions are set
to isotropic in velocity space with spatial positions distributed along the field line
densely covering the flux surface so that particle density is constant in the flux tube.
This method has worked without problems in the present cases and is also suitable in
the general case where the coordinate system is not necessarily flux-surface aligned
(Nemov et al. 2014). It has, however, some disadvantage if the starting surface is
close to a low-order rational surface such that one needs a very long field line to
cover it. In that case, the method of Bader et al. (2019) for flux coordinate systems
would be preferable.

At the outer flux surface s = 0.6 the QI configuration in figure 5 first shows
some prompt losses (t= 10−4 s) near the trapped–passing boundary. Those are orbits
such that they immediately cross the boundary at s = 1.0 before even completing
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(a) (b)

FIGURE 5. Alpha particle losses from s= 0.3 (a) and s= 0.6 (b) over time and trapping
parameter (left axis) for a quasi-isodynamic stellarator configuration. Density plot over lost
particles (black dots); confined fraction fc over time (lower curve, right axis). Error bands
at ±1.96σ around this curve describe the 95 % confidence interval due to the Monte Carlo
error.

(a) (b)

FIGURE 6. Alpha particle losses from s= 0.3 (a) and s= 0.6 (b) over time and trapping
parameter (left axis) for a quasi-helical stellarator configuration in the style of figure 5.
Final losses at s= 0.3 are below 2 %, including error bars.

a significant number of poloidal or toroidal turns in the device. At intermediate
times between t = 10−3 s and 10−2 s originally deeply trapped particles are lost as
drift motion and stochasticity remove them from their magnetic well. Finally, late
losses at the trapped–passing boundary set in due to chaotic trajectories. In the QH
configuration in figure 6 most losses from s = 0.6 happen already early, between
t = 10−4 s and 10−3 s for trapped particles that are neither deeply nor marginally
trapped. Late losses are again located around the trapped–passing boundary, where
chaotic effects are especially pronounced. The QA configuration in figure 7 spreads
losses from s= 0.6 more evenly over both time and trapping parameter. Most losses
happen at t between 10−3 s and 10−2 s, depleting the population in the region near
the trapped–passing boundary.
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(a) (b)

FIGURE 7. Alpha particle losses from s= 0.3 (a) and s= 0.6 (b) over time and trapping
parameter (left axis) for a quasi-axisymmetric stellarator configuration in the style of
figure 5.

At the inner flux surface s = 0.3 alpha confinement in the QI configuration in
figure 5 is governed by late losses close to the trapped–passing boundary. In contrast,
the QH configuration in figure 6 shows a few prompt losses and retains alphas up
to the tracing time of 1 s. In the quasi-axisymmetric configuration in figure 7 losses
appear over the whole trapped region with deeply and marginally trapped orbits lost
earlier. Here, the region of losses also extends into the marginally passing range.

If the threshold for the fractal dimension to identify chaotic orbits is set too high,
the classification might produce ‘false negatives’. In that case, an orbit is classified
as regular despite being chaotic and lost if traced up to the end. In that case, final
losses are underestimated if classification is used. In the computations for figures 5–7
no false negatives occurred, meaning that classification did not deteriorate results on
late losses. In contrast, ‘false positive’ classification of chaotic orbits just increases
computation time by tracing them up to the end, but does not influence the result.
This trade-off between accuracy and computation time is adjusted via the choice of the
threshold fractal dimension (2.13) to decide whether an orbit is chaotic. As mentioned
above, this option has been left at default settings independent of the treated cases and
could potentially be optimized.

Figure 8 shows the classification results depending on initial conditions in pitch
parameter v‖/v and poloidal angle ϑ for 104 orbits started at s = 0.6 and ϕ = ϕn/2,
i.e. in the middle of the first field period. All three configurations show regular orbits
in the passing region at some distance from the trapped–passing boundary. For the
QI and QH configurations there is a clear separation of early losses of orbits that
cross the plasma boundary soon and chaotic orbits that slowly diffuse away. Losses are
localized at the trapped–passing boundary and in certain phase-space regions for more
deeply trapped orbits. In the QA configuration most trapped orbits are chaotic, but
some are lost relatively late due to slow stochastic diffusion. The described behaviour
is also seen in figures 5–7. Therefore, the classification is of less use in the QA case,
as most regular orbits are passing and could be identified in simpler ways. In contrast,
for QI and QH types the method allows us to exclude also a large portion of the
trapped region from further computation. A relatively small number of ‘false positives’
that are incorrectly classified as chaotic are seen, in particular in the QI configuration,
and traced to the end despite being actually regular.
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(a) (b) (c)

FIGURE 8. Orbit types over initial condition in v‖/v and ϑ from s= 0.6 for QI (a), QH
(b) and QA configuration (c). The background (p) is filled by regular orbits, early losses
before t= 0.1 s are marked as ‘E’, and chaotic orbits potentially causing late losses after
t = 0.1 s as ‘×’ with some ‘false positives’ visible that remain confined. The trapped–
passing boundary is marked by a white line.

Type Flux surface s Regular trapped Regular passing

QI 0.3 0.8219 0.9987
QI 0.6 0.6751 0.9946
QH 0.3 0.5343 0.9594
QH 0.6 0.5884 0.9780
QA 0.3 0.0927 0.9607
QA 0.6 0.0657 0.9721

TABLE 1. Fractions of regular orbits in the trapped and passing regions for different
configurations.

Table 1 shows numerical values of respective regular fractions for trapped and
passing orbits in the considered configurations. A significant portion of chaotic
trapped orbits in the QH and QA configurations stays confined within t= 1 s, which
makes confinement properties of alphas acceptable even in cases where only a small
fraction of trapped orbits are regular.

Computations were performed on the COBRA cluster of MPCDF on a single node
with 40 cores/80 threads of Intel(R) Xeon(R) Gold 6126 CPUs. Table 2 shows a
summary of computation wall-clock time using a symplectic integrator alone compared
to added classification after 1/10th of the integration time. The obtained speed up of
another factor 2–5 compared to an integration method that is already a factor 3–6
faster than conventional Runge–Kutta integration for alpha loss results of the same
accuracy (Albert et al. 2020a) leads to a total speed up of factor 6–30 compared to
conventional methods.

4. Summary and outlook

A combined method of symplectic integration and early classification has been
presented to accelerate the computation of loss fractions of fusion alpha particles
over their slowing-down time in stellarator reactor configurations. Reliable results
could be obtained for three different stellarator configuration types within wall-clock
times of approximately 10 min. This corresponds to a speed up of approximately
an order of magnitude compared to conventional methods and makes the technique
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Type Flux surface s No classification With classification

QI 0.3 27 : 26 07 : 28
QI 0.6 25 : 21 07 : 25
QH 0.3 29 : 33 11 : 39
QH 0.6 31 : 26 07 : 24
QA 0.3 41 : 53 16 : 55
QA 0.6 40 : 03 07 : 23

TABLE 2. Wall-clock run times in minutes on 40 CPU cores with hyperthreading for the
considered configurations. Computation for the QA equilibrium at inner flux surfaces is
least efficient, as most orbits are chaotic, even when confined over their slowing-down
time.

useful for integrated in stellarator optimization, where computation times for magnetic
equilibria are of the same order.

Currently, the approach is limited to collisionless orbits. Adding collisions could
limit the effectiveness of early classification by additional diffusion and requires
further investigations. Even though mis-classifications influencing final results were
rare with default settings, the classification algorithm could benefit from additional
tuning in order to become even more robust. Finally, the influence of using Boozer
coordinates instead of exact canonicalized flux coordinates should be studied further,
as it provides room for further efficiency improvements.
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