INEQUALITIES FOR BAER INVARIANTS OF FINITE GROUPS

JOHN BURNS AND GRAHAM ELLIS

ABSTRACT. In this note we further our investigation of Baer invariants of groups by obtaining, as consequences of an exact sequence of A. S.-T. Lue, some numerical inequalities for their orders, exponents, and generating sets. An interesting group theoretic corollary is an explicit bound for $|\gamma_{c+1}(G)|$ given that $G/Z_c(G)$ is a finite *p*-group with prescribed order and number of generators.

In a previous paper [3] we investigated groups *G* of the form $G = H/Z_c(H)$, where $c \ge 1$ and $Z_c(H)$ is the *c*-th term of the upper central series of some group *H*. Extending terminology of [9], such groups *G* were said to be *c*-capable. We proved that a finitely generated abelian group is *c*-capable if and only if it is 1-capable. Moreover, we showed that this result does not extend to *p*-groups by exhibiting a 2-group (of order 2⁹) which is 1-capable but not 2-capable. Our method for demonstrating that a particular group *G* is not *c*-capable involved presenting it as the quotient of a free group *F* by a normal subgroup *R*, and then computing the Baer invariant

$$M^{(c)}(G) = \left(R \cap \gamma_{c+1}(F)\right) / \gamma_{c+1}(R,F).$$

where

$$\gamma_1(F) = F, \quad \gamma_{c+1}(F) = \left[\gamma_c(F), F\right],$$

$$\gamma_1(R, F) = R, \quad \gamma_{c+1}(R, F) = \left[\gamma_c(R, F), F\right].$$

The group $M^{(c)}(G)$ is well-known to be an invariant of *G* (see for instance [8]), and is clearly abelian. In particular, $M^{(1)}(G)$ is the Schur multiplier of *G*.

A computer program for computing $M^{(c)}(G)$ is listed in [3]. As input data, the program requires a finite presentation of G, and any positive integer q divisible by e^c where e is the exponent of $M^{(c)}(G)$. The main aim of this note is to give a few simple results for helping to choose such an integer q. We obtain these results (as well as results on the order of $M^{(c)}(G)$, and on the number of generators of $M^{(c)}(G)$) as fairly direct consequences of an exact sequence of Lue [13].

When c = 1 our results (but not our proofs) reduce to those of M. R. Jones [10, 11] on the Schur multiplier, and Lue's sequence reduces to the exact homology sequence of Stallings and Ganea (*cf.* [8]).

In order to read the rest of this paper, one will need to be familiar with the nonabelian tensor and exterior product of groups; a good introductory account of these can be found in [2].

Received by the editors February 5, 1997. AMS subject classification: 20C25. ©Canadian Mathematical Society 1998.

385

Let N be a normal subgroup of G. The main result of Lue [13] can be reformulated as a natural exact sequence

(*)
$$\ker\left(\left((N \wedge G) \wedge G\right) \wedge \dots \wedge G \xrightarrow{\mu} \gamma_{c+1}(N,G)\right) \to M^{(c)}(G) \to M^{(c)}(G/N) \to N/\gamma_{c+1}(N,G) \to G/\gamma_{c+1}(G) \to G/N\gamma_{c+1}(G) \to 1.$$

Here \wedge denotes the nonabelian exterior product of groups, and the group $((N \wedge G) \wedge G) \wedge \cdots \wedge G$ involves one copy of *N* and *c* copies of *G*; we shall henceforth denote this iterated exterior product by $\wedge^{c+1}(N, G)$.

We write |G| and e(G) for the order and exponent of G. The minimum number of elements needed to generate G is denoted by d(G). The following result is due to M. R. R. Moghaddam [14].

PROPOSITION 1 [14]. Set H = G/N.

(i) $|M^{(c)}(H)|$ divides $|M^{(c)}(G)| |N \cap \gamma_{c+1}(G)| / |\gamma_{c+1}(N,G)|.$ (ii) $e(M^{(c)}(H))$ divides $e(M^{(c)}(G)) \times e(N \cap \gamma_{c+1}(G) / \gamma_{c+1}(N,G)).$ (iii) $d(M^{(c)}(H)) \le d(M^{(c)}(G)) + d(N \cap \gamma_{c+1}(G) / \gamma_{c+1}(N,G)).$

PROOF. The sequence (*) yields an exact sequence

$$M^{(c)}(G) \to M^{(c)}(H) \to \left(N \cap \gamma_{c+1}(G)\right) / \gamma_{c+1}(N,G) \to 1$$

from which (i), (ii) and (iii) follow.

As pointed out in [13], the first five terms of the sequence (*) in fact hold for Baer invariants with respect to an arbitrary variety [8]. Thus Proposition 1 (and several subsequent results) automatically extend to these more general Baer invariants. When c = 1, Proposition 1 reduces to [10, Theorem 3.1].

The structure of the nonabelian tensor product of groups has been investigated extensively by several authors. (To cite just one instance, paper [7] obtains bounds on the order of $G \otimes H$ when G and H are finite prime-power groups acting compatibly on each other.) Since this structure is fully understood in many instances, it is useful to obtain bounds on $M^{(c)}(G)$ in terms of the tensor product. We obtain such bounds in Propositions 2 and 5 below.

A normal subgroup *B* in *G* is said to be *k*-central if $\gamma_{k+1}(B, G) = 1$. In this case conjugation yields an action of $G/\gamma_{k+1}(G)$ on *B*, and an action of *B* on $G/\gamma_{k+1}(G)$. We can thus form the iterated nonabelian tensor product $((B \otimes G/\gamma_{k+1}(G)) \otimes G/\gamma_{k+1}(G)) \otimes$ $\cdots \otimes G/\gamma_{k+1}(G)$ involving *c* copies of $G/\gamma_{k+1}(G)$. Let us denote this iterated tensor product by $\otimes^{c+1}(B, G/\gamma_{k+1}(G))$. (Note that for k = 1 the tensor product \otimes coincides with the usual tensor product of abelian groups.) We define the group $\wedge^{c+1}(B, G/\gamma_{k+1}(G))$ by a pushout square in the category of groups (in which α and β are the obvious quotient

homomorphisms):

$$\begin{array}{ccc} \otimes^{c+1}(B,G) & \stackrel{\alpha}{\longrightarrow} & \otimes^{c+1}(B,G/\gamma_{k+1}(G)) \\ \beta & & \downarrow & \text{pushout} & & \downarrow \\ \wedge^{c+1}(B,G) & \longrightarrow & \wedge^{c+1}(B,G/\gamma_{k+1}(G)). \end{array}$$

In other words, $\wedge^{c+1}(B, G/\gamma_{k+1}(G)) = \wedge^{c+1}(B, G)/\beta(\ker(\alpha)).$

PROPOSITION 2. Let B be a k-central subgroup of G with $k \le c$. Set A = G/B. (i) $|M^{(c)}(G)| |B \cap \gamma_{c+1}(G)|$ divides $|M^{(c)}(A)| |\wedge^{c+1}(B, G/\gamma_{k+1}(G))|$.

(ii)
$$e(M^{(c)}(G))$$
 divides $e(M^{(c)}(A))e(\wedge^{c+1}(B,G/\gamma_{k+1}(G)))$.
(iii) $l(M^{(c)}(G)) \leq l(M^{(c)}(A)) + l(\wedge^{c+1}(B,G/\gamma_{k+1}(G)))$

(iii)
$$d(M^{(c)}(G)) \leq d(M^{(c)}(A)) + d(\wedge^{c+1}(B, G/\gamma_{k+1}(G))).$$

PROOF. The sequence (*) with N = B yields an exact sequence

$$\wedge^{c+1}(B,G) \longrightarrow M^{(c)}(G) \longrightarrow M^{(c)}(A) \longrightarrow B \cap \gamma_{c+1}(G) \longrightarrow 1$$

which, thanks to the commutative triangle of homomorphisms (cf. [13])

$$\wedge^{c+1}(B,G) \xrightarrow{M^{(c)}(G)} M^{(c)}(G)$$

implies (i), (ii) and (iii).

Proposition 2 reduces, when c = 1 and k = 1, to [10, Theorem 4.1] since in this case one readily observes an exact sequence

$$B \wedge B \longrightarrow \wedge^2 (B, G/\gamma_2(G)) \longrightarrow B \otimes A^{ab} \longrightarrow 1,$$

and consequently:

(i) $\left|\wedge^{2}(B, G/\gamma_{2}(G))\right|$ divides $|M^{(1)}(B)| |B \otimes A^{ab}|$; (ii) $e\left(\wedge^{2}(B, G/\gamma_{2}(G))\right)$ divides $e\left(M^{(1)}(B)\right)e(B \otimes A^{ab})$; (iii) $d\left(\wedge^{2}(B, G/\gamma_{2}(G))\right) \leq d\left(M^{(1)}(B)\right) + d(B \otimes A^{ab})$.

For positive integers *c* and *d* let $\chi_c(d)$ denote the number of generators in a basis for the free abelian group $\gamma_c(F)/\gamma_{c+1}(F)$ where *F* is the free group of rank *d*. There is a well-known formula for $\chi_c(d)$ due to Witt. Let $\mu(m)$ be the Moebius function, defined for all positive integers *m* by $\mu(1) = 1$, $\mu(p) = -1$ if *p* is a prime number, $\mu(p^k) = 0$ for k > 1, and $\mu(bc) = \mu(b)\mu(c)$ if *b* and *c* are coprime integers. Witt's formula is

$$\chi_c(d) = \frac{1}{c} \sum_{m|c} \mu(m) d^{(c/m)}$$

where *m* runs through all divisors of *c*. Thus, for instance, $\chi_2(d) = (d^2 - d)/2$, $\chi_3(d) = (d^3 - d)/3$, $\chi_4(d) = (d^4 - d^2)/4$.

387

THEOREM 3. Suppose that G is a d-generator p-group (for some prime p). Let Φ denote the Frattini subgroup of G, and suppose that $\gamma_i(\Phi, G)$ has order p_i^m for $i \ge 1$. Then $M^{(c)}(G)$ is a p-group, and

$$p^{\chi_{c+1}}(d) \le |M^{(c)}(G)| |\gamma_{c+1}(G)| \le p^{\chi_{c+1}(d) + m_c d + m_{c-1} d^2 + \dots + m_1 d^c}$$

The upper and lower bounds are attained when G is elementary abelian: in this case $M^{(c)}(G)$ is elementary abelian on $\chi_{c+1}(d)$ generators.

PROOF. The sequence (*) with N = G yields $M^{(c)}(G)$ as a quotient of ker $(\mu: \wedge^{c+1}(G, G) \to G)$. It is shown in [4] that the exterior product of *p*-groups is a *p*-group. Consequently $M^{(c)}(G)$ is a *p*-group.

Note that $A = G/\Phi$ is elementary abelian of order p^d . In other words, A is a vector space of dimension d over \mathbb{Z}_p . It is observed in [5, Theorem 5] that the free Lie ring L(A) on A is isomorphic to the Lie ring $\bigoplus_{c\geq 0} M^{(c)}(A)$ (with the obvious Lie bracket), and in particular, that $M^{(c)}(A)$ is isomorphic to the (c + 1)-st term $\gamma_{c+1}(L(A))$ of the lower central series of the Lie ring L(A). But $\gamma_{c+1}(L(A))$ is a vector space over \mathbb{Z}_p of dimension $\chi_{c+1}(d)$. So the lower bound of the theorem follows from Proposition 1(i) with H = A.

To prove the upper bound let us introduce the invariant (cf. [8])

$$\gamma_{c+1}^*(G) = \gamma_{c+1}(F) / \gamma_{c+1}(R, F)$$

where $F/R \cong G$ is any free presentation of G. The sequence (*) with $N = \Phi$ and $A = G/\Phi$ implies an exact sequence

$$\otimes^{c+1}(\Phi,G) \xrightarrow{\iota} \gamma^*_{c+1}(G) \longrightarrow \gamma^*_{c+1}(A) \longrightarrow 1$$

Thus

$$|M^{(c)}(G)| |\gamma_{c+1}(G)| = |\gamma_{c+1}^*(G)| \le |\gamma_{c+1}^*(A)| |\otimes^{c+1} (\Phi, G)|$$

We know that $M^{(c)}(A) = p^{\chi_{c+1}(d)}$. Given an arbitrary normal subgroup *N* in *G*, Corollary 3 in [7] provides an upper bound for $|\otimes^{c+1} (N, G)|$. In particular, it provides the upper bound

$$|\otimes^{c+1}(\Phi,G)| \leq p^{m_c d+m_{c-1} d^2+\cdots+m_1 d^c}$$

which completes the proof.

When c = 1, Theorem 3 improves on [10, Corollary 3.2] (which in turn is a generalisation of a result of J. A. Green). The second author has pursued the above methods further for the case c = 1, and obtained sharper upper bounds for $|M^{(1)}(G)| |\gamma_2(G)|$ in [6].

We remark that the inequalities

$$\left| M^{(c)} \big((\mathbb{Z}_p)^d \big) \right| \le \left| M^{(c)}(G) \right| \left| \gamma_{c+1}(G) \right| \le \left| M^{(c)} \big((\mathbb{Z}_p)^n \big) \right|$$

were proved in [15] and [14].

The final assertion in Theorem 3 leads to the computation of, for instance, the Baer invariants $M^{(c)}(Q_2)$ of the quaternion group Q_2 of order 8. It is well-known that $M^{(1)}(Q_2)$

https://doi.org/10.4153/CMB-1998-051-3 Published online by Cambridge University Press

is trivial. (Recall from [3] that $Z_c^*(G)$ is the canonical image in G of the c-th term of the upper central series of $F/\gamma_{c+1}(R, F)$. Let us recall two properties of $Z_c^*(G)$ from [3, Lemma 2.1]: (i) $Z_1^*(G)$ lies in $Z_c^*(G)$; (ii) for any normal subgroup N of G which lies in $Z_c^*(G)$, the induced homomorphism $M^{(c)}(G) \rightarrow M^{(c)}(G/N)$ is injective.) Now $Z_1^*(Q_2)$ is shown in [3] to be the centre of Q_2 . But the centre of Q_2 is equal to the derived subgroup. So for $c \ge 2$ the sequence (*) with $G = Q_2$ and $N = Z_1^*(Q_2)$ yields an isomorphism $M^{(c)}(Q_2) \cong M^{(c)}(Q_2/[Q_2, Q_2])$. Since $Q_2^{ab} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$, it follows from Theorem 3 that, for $c \ge 2$, $M^{(c)}(Q_2)$ is elementary abelian of order $2^{\chi_{c+1}(2)}$.

Theorem 3 has a "group-theoretic" corollary.

COROLLARY 4. (i) Let K be a group. Set $G = K/Z_c(K)$ and let Φ denote the Frattini subgroup of G. If G is a d-generator p-group with $|\gamma_i(\Phi, G)| = p^{m_i}$ for $i \ge 1$, then

 $|\gamma_{c+1}(K)| \leq p^{\chi_{c+1}(d) + m_c d + m_{c-1} d^2 + \dots + m_1 d^c}.$

(ii) If G is an elementary abelian p-group of order p^d , then there exists a group K such that $G \cong K/Z_c(K)$ and such that the bound is attained.

PROOF. (i) There is a canonical surjection $\gamma_{c+1}^*(G) \longrightarrow \gamma_{c+1}(K)$. Thus $|\gamma_{c+1}(K)| \le |\gamma_{c+1}^*(G)| = |M^{(c)}(G)| |\gamma_{c+1}(G)|$, and so the bound of the corollary follows from Theorem 3.

(ii) Suppose that *G* is elementary abelian of order p^d , and that *G* is freely presented as G = F/R. It is shown in [3] that $G \cong K/Z_c(K)$ where $K = F/\gamma_{c+1}(R, F)$. The bound of the corollary is attained since $|\gamma_{c+1}(K)| = |\gamma_{c+1}^*(G)|$.

When c = 1, Corollary 4 improves on [16, Theorem 2.1].

We remark that for $|K/Z_c(K)| = p^n$ the inequality $|\gamma_{c+1}(K)| \le |M^{(c)}((\mathbb{Z}_p)^n)|$ is the principal result of [15]. (No explicit bound on $|\gamma_{c+1}(K)|$ is given in [15].)

Suppose that *G* is any nilpotent group of class *k*. Then conjugation yields trivial actions of $G/Z_{k-1}(G)$ on $\gamma_k(G)$, and of $\gamma_k(G)$ on $G/Z_{k-1}(G)$. We define the group $\wedge^{c+1}(\gamma_k G, G/Z_{k-1}G)$ by a pushout square in the category of groups (in which α and β are the obvious quotient homomorphisms):

$$\overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\alpha}{\longrightarrow} \overset{\beta}{\longrightarrow} \overset{\beta$$

In other words, $\wedge^{c+1}(\gamma_k G, G/\gamma_{k-1}G) = \otimes^{c+1}(\gamma_k G, G/Z_{k-1}G)/\alpha(\ker(\beta))$. Note that $\otimes^{c+1}(\gamma_k G, G/Z_{k-1}G)$ is just an iteration of the usual tensor product of abelian groups.

PROPOSITION 5. Let G be a nilpotent group of class $k \ge 2$. Then (i) $|\gamma_k(G)| |M^{(c)}(G)| \text{ divides } |M^{(c)}(G/\gamma_k G)| | \wedge^{c+1} (\gamma_k G, G/Z_{k-1}G)|.$ (ii) $e(M^{(c)}(G)) \text{ divides } e(M^{(c)}(G/\gamma_k G)) \times e(\wedge^{c+1}(\gamma_k G, G/Z_{k-1}G)).$ (iii) $d(M^{(c)}(G)) \le d(M^{(c)}(G/\gamma_k G)) + d(\wedge^{c+1}(\gamma_k G, G/Z_{k-1}G)).$ **PROOF.** The sequence (*) with $N = \gamma_k(G)$ yields an exact sequence

$$\wedge^{c+1}(\gamma_k G, G/Z_{k-1}G) \longrightarrow M^{(c)}(G) \longrightarrow M^{(c)}(G/\gamma_k G) \longrightarrow \gamma_k G \longrightarrow 1$$

from which (i), (ii) and (iii) follow.

When c = 1, Proposition 5 reduces to [11, Proposition 2.4].

The following theorem is a particularly useful "starting key" for the computer program [3] mentioned above.

THEOREM 6. Let G be a group of prime-power exponent p^e and nilpotency class k > 2. Then $e(M^{(c)}(G))$ divides $p^{e(k-1)}$.

PROOF. The result follows from Proposition 5(ii) and induction on k, once we have proved the case k = 2. So suppose k = 2. The sequence (*) with N = G yields $M^{(c)}(G)$ as a quotient of $\otimes^{c+1}(G, G)$. We shall show that the exponent of $\otimes^{c+1}(G, G)$ divides p^e . Since G is of class 2, for any integer m and elements x, y in G the identity

$$x \otimes y^m = (x \otimes y)^m (y \otimes [x, y]^{\binom{m}{2}})$$

holds in $\otimes^2(G, G) = G \otimes G$ thanks to [1, Lemma 3.4]. In particular, for $m = p^e$ the integer $\binom{m}{2}$ is divisible by *m* when $p \ge 3$, and divisible by m/2 when p = 2. But when p = 2 and $m = p^e$ the identity

$$1 = (xy)^m = x^m y^m [x, y]^{m(m-1)/2} = [x, y]^{(m/2)(m-1)}$$

holds for all *x*, *y* in *G*, and implies $[x, y]^{m/2} = 1$. Thus the exponent of $\otimes^2(G, G)$ divides p^e . Since $\otimes^2(G, G)$ acts trivially on *G*, the exponent of $\otimes^{c+1}(G, G) = (\otimes^2(G, G) \otimes G) \otimes \cdots \otimes G$ divides the exponent of $\otimes^2(G, G)$.

When c = 1, Theorem 6 reduces to [11, Corollaries 2.6 and 2.7].

There is a string of further interesting results on $M^{(c)}(G)$ that can be deduced from the sequence (*). For instance, generalisations of Theorem 3.1 in [11], and its corollaries, are consequences of the sequence. Details are left to the reader.

REFERENCES

- 1. M. R. Bacon and L.-C. Kappe, *The nonabelian tensor square of a 2-generator p-group of class 2.* Arch. Math. **61**(1993), 501–516.
- R. Brown, D. L. Johnson and E. F. Robertson, Some computations of nonabelian tensor products of groups. J. Algebra 111(1987), 177–202.
- 3. J. Burns and G. Ellis, On the nilpotent multipliers of a group. Math. Zeit. 226(1997), 405-428.
- 4. G. Ellis, The nonabelian tensor product of finite groups is finite. J. Algebra 111(1987), 203–205.
- 5. _____, On five well-known commutator identities. J. Austral. Math. Soc. Ser. A 54(1993), 1–19.
- 6. _____, Bounds for the derived and Frattini subgroups of a prime power group. Proc. Amer. Math. Soc. 126(1998), 2513–2523.
- 7. G. Ellis and A. McDermott, Tensor products of prime power groups. J. Pure Appl. Algebra (to appear).
- 8. A. Fröhlich, Baer-invariants of algebras. Trans. Amer. Math. Soc. 109(1963), 221-244.
- **9.** M. Hall and J. K. Senior, *The groups of order* 2^n ($n \le 6$). Macmillan, 1964.
- M. R. Jones, Some inequalities for the multiplicator of a finite group. Proc. Amer. Math. Soc. (3) 39(1973), 450–456.

390

- 11. _____, Some inequalities for the multiplicator of a finite group II. Proc. Amer. Math. Soc. (2) 45(1974), 167–172.
- **12.** G. Karpilovsky, *The Schur multiplier*. London Math. Soc. Monographs (N.S.) **2**. Oxford University Press, New York, 1987.
- 13. A. S.-T. Lue, The Ganea map for nilpotent groups. J. London Math. Soc. 14(1976), 309-312.
- 14. M. R. R. Moghaddam, Some inequalities for the Baer invariant of a finite group. Bull. Iranian Math. Soc. 9(1981), 5–10.
- 15. _____, On the Schur-Baer property. J. Austral. Math. Soc. Ser. A 31(1981), 343–361.
- 16. J. Wiegold, Multiplicators and groups with finite central factor-groups. Math. Zeit. 89(1965), 345–347.

Mathematics Department University College Galway Galway Ireland email: graham.ellis@ucg.ie