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INEQUALITIES FOR BAER INVARIANTS OF FINITE GROUPS

JOHN BURNS AND GRAHAM ELLIS

ABSTRACT. In this note we further our investigation of Baer invariants of groups
by obtaining, as consequences of an exact sequence of A. S.-T. Lue, some numerical
inequalities for their orders, exponents, and generating sets. An interesting group theo-
retic corollary is an explicit bound for jçc+1(G)j given that GÛZc(G) is a finite p-group
with prescribed order and number of generators.

In a previous paper [3] we investigated groups G of the form G = HÛZc(H), where
c ½ 1 and Zc(H) is the c-th term of the upper central series of some group H. Extending
terminology of [9], such groups G were said to be c-capable. We proved that a finitely
generated abelian group is c-capable if and only if it is 1-capable. Moreover, we showed
that this result does not extend to p-groups by exhibiting a 2-group (of order 29) which
is 1-capable but not 2-capable. Our method for demonstrating that a particular group
G is not c-capable involved presenting it as the quotient of a free group F by a normal
subgroup R, and then computing the Baer invariant

M(c)(G) =
�
R \ çc+1(F)

�
Ûçc+1(RÒF)Ò

where

ç1(F) = FÒ çc+1(F) =
h
çc(F)ÒF

i
Ò

ç1(RÒF) = RÒ çc+1(RÒF) =
h
çc(RÒF)ÒF

i


The group M(c)(G) is well-known to be an invariant of G (see for instance [8]), and is
clearly abelian. In particular, M(1)(G) is the Schur multiplier of G.

A computer program for computing M(c)(G) is listed in [3]. As input data, the program
requires a finite presentation of G, and any positive integer q divisible by ec where e is the
exponent of M(c)(G). The main aim of this note is to give a few simple results for helping
to choose such an integer q. We obtain these results (as well as results on the order of
M(c)(G), and on the number of generators of M(c)(G)) as fairly direct consequences of an
exact sequence of Lue [13].

When c = 1 our results (but not our proofs) reduce to those of M. R. Jones [10, 11]
on the Schur multiplier, and Lue’s sequence reduces to the exact homology sequence of
Stallings and Ganea (cf. [8]).

In order to read the rest of this paper, one will need to be familiar with the nonabelian
tensor and exterior product of groups; a good introductory account of these can be found
in [2].
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Let N be a normal subgroup of G. The main result of Lue [13] can be reformulated as
a natural exact sequence

(*)
ker

��
(N ^ G) ^ G

�
^ Ð Ð Ð ^G

ñ
! çc+1(NÒG)

�
! M(c)(G) ! M(c)(GÛN) !

NÛçc+1(NÒG) ! GÛçc+1(G) ! GÛNçc+1(G) ! 1

Here ^ denotes the nonabelian exterior product of groups, and the group
�
(N ^ G) ^

G
�
^ Ð Ð Ð ^G involves one copy of N and c copies of G; we shall henceforth denote this

iterated exterior product by ^c+1(NÒG).

We write jGj and e(G) for the order and exponent of G. The minimum number
of elements needed to generate G is denoted by d(G). The following result is due to
M. R. R. Moghaddam [14].

PROPOSITION 1 [14]. Set H = GÛN.

(i) jM(c)(H)j divides jM(c)(G)j jN \ çc+1(G)jÛjçc+1(NÒG)j.
(ii) e

�
M(c)(H)

�
divides e

�
M(c)(G)

�
ð e

�
N \ çc+1(G)Ûçc+1(NÒG)

�
.

(iii) d
�
M(c)(H)

�
� d

�
M(c)(G)

�
+ d

�
N \ çc+1(G)Ûçc+1(NÒG)

�
.

PROOF. The sequence (Ł) yields an exact sequence

M(c)(G) ! M(c)(H) !
�
N \ çc+1(G)

�
Ûçc+1(NÒG) ! 1

from which (i), (ii) and (iii) follow.

As pointed out in [13], the first five terms of the sequence (Ł) in fact hold for
Baer invariants with respect to an arbitrary variety [8]. Thus Proposition 1 (and several
subsequent results) automatically extend to these more general Baer invariants. When
c = 1, Proposition 1 reduces to [10, Theorem 3.1].

The structure of the nonabelian tensor product of groups has been investigated exten-
sively by several authors. (To cite just one instance, paper [7] obtains bounds on the order
of G
H when G and H are finite prime-power groups acting compatibly on each other.)
Since this structure is fully understood in many instances, it is useful to obtain bounds
on M(c)(G) in terms of the tensor product. We obtain such bounds in Propositions 2 and 5
below.

A normal subgroup B in G is said to be k-central if çk+1(BÒG) = 1. In this case
conjugation yields an action of GÛçk+1(G) on B, and an action of B on GÛçk+1(G). We

can thus form the iterated nonabelian tensor product
��

B
GÛçk+1(G)
�

GÛçk+1(G)

�



Ð Ð Ð 
 GÛçk+1(G) involving c copies of GÛçk+1(G). Let us denote this iterated tensor
product by
c+1

�
BÒGÛçk+1(G)

�
. (Note that for k = 1 the tensor product
 coincides with

the usual tensor product of abelian groups.) We define the group ^c+1
�
BÒGÛçk+1(G)

�
by

a pushout square in the category of groups (in which ã and å are the obvious quotient
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homomorphisms):


c+1(BÒG)
ã

��! 
c+1
�
BÒGÛçk+1(G)

�

å

???y pushout
???y

^c+1(BÒG) ��! ^c+1
�
BÒGÛçk+1(G)

�


In other words, ^c+1
�
BÒGÛçk+1(G)

�
= ^c+1(BÒG)Ûå

�
ker(ã)

�
.

PROPOSITION 2. Let B be a k-central subgroup of G with k � c. Set A = GÛB.
(i) jM(c)(G)j jB \ çc+1(G)j divides jM(c)(A)j

þþþ^c+1
�
BÒGÛçk+1(G)

�þþþ.
(ii) e

�
M(c)(G)

�
divides e

�
M(c)(A)

�
e
�
^c+1

�
BÒGÛçk+1(G)

��
.

(iii) d
�
M(c)(G)

�
� d

�
M(c)(A)

�
+ d

�
^c+1

�
BÒGÛçk+1(G)

��
.

PROOF. The sequence (Ł) with N = B yields an exact sequence

^c+1(BÒG) ! M(c)(G) ! M(c)(A) ! B \ çc+1(G) ! 1

which, thanks to the commutative triangle of homomorphisms (cf. [13])

^c+1(BÒG) M(c)(G)

^c+1(BÒGÛçk+1G)Ò

implies (i), (ii) and (iii).
Proposition 2 reduces, when c = 1 and k = 1, to [10, Theorem 4.1] since in this case

one readily observes an exact sequence

B ^ B ! ^2
�
BÒGÛç2(G)

�
! B
 Aab ! 1Ò

and consequently:
(i)

þþþ^2
�
BÒGÛç2(G)

�þþþ divides jM(1)(B)j jB
 Aabj;

(ii) e
�
^2
�
BÒGÛç2(G)

��
divides e

�
M(1)(B)

�
e(B
 Aab);

(iii) d
�
^2
�
BÒGÛç2(G)

��
� d

�
M(1)(B)

�
+ d(B
 Aab).

For positive integers c and d let üc(d) denote the number of generators in a basis
for the free abelian group çc(F)Ûçc+1(F) where F is the free group of rank d. There is a
well-known formula for üc(d) due to Witt. Let ñ(m) be the Moebius function, defined
for all positive integers m by ñ(1) = 1, ñ(p) = �1 if p is a prime number, ñ(pk) = 0 for
k Ù 1, and ñ(bc) = ñ(b)ñ(c) if b and c are coprime integers. Witt’s formula is

üc(d) =
1
c

X
mjc

ñ(m)d(cÛm)

where m runs through all divisors of c. Thus, for instance, ü2(d) = (d2 � d)Û2, ü3(d) =
(d3 � d)Û3, ü4(d) = (d4 � d2)Û4.
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THEOREM 3. Suppose that G is a d-generator p-group (for some prime p). Let Φ
denote the Frattini subgroup of G, and suppose that çi(ΦÒG) has order pm

i for i ½ 1.
Then M(c)(G) is a p-group, and

püc+1 (d) � jM(c)(G)j jçc+1(G)j � püc+1(d)+mcd+mc�1d2+ÐÐÐ+m1dc


The upper and lower bounds are attained when G is elementary abelian: in this case
M(c)(G) is elementary abelian on üc+1(d) generators.

PROOF. The sequence (Ł) with N = G yields M(c)(G) as a quotient of ker
�
ñ:

^c+1(GÒG) ! G
�
. It is shown in [4] that the exterior product of p-groups is a p-group.

Consequently M(c)(G) is a p-group.
Note that A = GÛΦ is elementary abelian of order pd. In other words, A is a vector

space of dimension d over Zp. It is observed in [5, Theorem 5] that the free Lie ring
L(A) on A is isomorphic to the Lie ring

L
c½0 M(c)(A) (with the obvious Lie bracket), and

in particular, that M(c)(A) is isomorphic to the (c + 1)-st term çc+1

�
L(A)

�
of the lower

central series of the Lie ring L(A). But çc+1

�
L(A)

�
is a vector space overZp of dimension

üc+1(d). So the lower bound of the theorem follows from Proposition 1(i) with H = A.
To prove the upper bound let us introduce the invariant (cf. [8])

çŁc+1(G) = çc+1(F)Ûçc+1(RÒF)Ò

where FÛR ≤ G is any free presentation of G. The sequence (Ł) with N = Φ and
A = GÛΦ implies an exact sequence


c+1(ΦÒG)
ì

��! çŁc+1(G) ! çŁc+1(A) ! 1

Thus
jM(c)(G)j jçc+1(G)j = jçŁc+1(G)j � jçŁc+1(A)j j 
c+1 (ΦÒG)j

We know that M(c)(A) = püc+1(d). Given an arbitrary normal subgroup N in G, Corollary 3
in [7] provides an upper bound for j 
c+1 (NÒG)j. In particular, it provides the upper
bound

j 
c+1 (ΦÒG)j � pmcd+mc�1d2+ÐÐÐ+m1dc

which completes the proof.
When c = 1, Theorem 3 improves on [10, Corollary 3.2] (which in turn is a gener-

alisation of a result of J. A. Green). The second author has pursued the above methods
further for the case c = 1, and obtained sharper upper bounds for jM(1)(G)j jç2(G)j in [6].

We remark that the inequalities
þþþM(c)

�
(Zp)d

�þþþ � jM(c)(G)j jçc+1(G)j �
þþþM(c)

�
(Zp)n

�þþþ
were proved in [15] and [14].

The final assertion in Theorem 3 leads to the computation of, for instance, the Baer
invariants M(c)(Q2) of the quaternion group Q2 of order 8. It is well-known that M(1)(Q2)
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is trivial. (Recall from [3] that ZŁ
c (G) is the canonical image in G of the c-th term of

the upper central series of FÛçc+1(RÒF). Let us recall two properties of ZŁ
c (G) from [3,

Lemma 2.1]: (i) ZŁ
1(G) lies in ZŁ

c (G); (ii) for any normal subgroup N of G which lies
in ZŁ

c (G), the induced homomorphism M(c)(G) M(c)(GÛN) is injective.) Now ZŁ
1(Q2) is

shown in [3] to be the centre of Q2. But the centre of Q2 is equal to the derived subgroup.
So for c ½ 2 the sequence (Ł) with G = Q2 and N = ZŁ

1(Q2) yields an isomorphism
M(c)(Q2) ≤ M(c)(Q2Û[Q2ÒQ2]). Since Qab

2 ≤ Z2 ý Z2, it follows from Theorem 3 that,
for c ½ 2, M(c)(Q2) is elementary abelian of order 2üc+1(2).

Theorem 3 has a “group-theoretic” corollary.

COROLLARY 4. (i) Let K be a group. Set G = KÛZc(K) and let Φ denote the Frattini
subgroup of G. If G is a d-generator p-group with jçi(ΦÒG)j = pmi for i ½ 1, then

jçc+1(K)j � püc+1(d)+mcd+mc�1d2+ÐÐÐ+m1dc


(ii) If G is an elementary abelian p-group of order pd, then there exists a group K
such that G ≤ KÛZc(K) and such that the bound is attained.

PROOF. (i) There is a canonical surjection çŁc+1(G) !! çc+1(K). Thus jçc+1(K)j �
jçŁc+1(G)j = jM(c)(G)j jçc+1(G)j, and so the bound of the corollary follows from Theorem 3.

(ii) Suppose that G is elementary abelian of order pd, and that G is freely presented
as G = FÛR. It is shown in [3] that G ≤ KÛZc(K) where K = FÛçc+1(RÒF). The bound
of the corollary is attained since jçc+1(K)j = jçŁc+1(G)j.

When c = 1, Corollary 4 improves on [16, Theorem 2.1].
We remark that for jKÛZc(K)j = pn the inequality jçc+1(K)j �

þþþM(c)
�
(Zp)n

�þþþ is the
principal result of [15]. (No explicit bound on jçc+1(K)j is given in [15].)

Suppose that G is any nilpotent group of class k. Then conjugation yields trivial
actions of GÛZk�1(G) on çk(G), and of çk(G) on GÛZk�1(G). We define the group
^c+1(çkGÒGÛZk�1G) by a pushout square in the category of groups (in which ã and å
are the obvious quotient homomorphisms):


c+1(çkGÒG)
ã

��! 
c+1(çkGÒGÛZk�1G)

å

???y pushout
???y

^c+1(çkGÒG) ��! ^c+1(çkGÒGÛZk�1G)

In other words, ^c+1(çkGÒGÛçk�1G) = 
c+1(çkGÒGÛZk�1G)Ûã
�
ker(å)

�
. Note that


c+1(çkGÒGÛZk�1G) is just an iteration of the usual tensor product of abelian groups.

PROPOSITION 5. Let G be a nilpotent group of class k ½ 2. Then
(i) jçk(G)j jM(c)(G)j divides jM(c)(GÛçkG)j j ^c+1 (çkGÒGÛZk�1G)j.

(ii) e
�
M(c)(G)

�
divides e

�
M(c)(GÛçkG)

�
ð e

�
^c+1(çkGÒGÛZk�1G)

�
.

(iii) d
�
M(c)(G)

�
� d

�
M(c)(GÛçkG)

�
+ d

�
^c+1(çkGÒGÛZk�1G)

�
.
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PROOF. The sequence (Ł) with N = çk(G) yields an exact sequence

^c+1(çkGÒGÛZk�1G) ! M(c)(G) ! M(c)(GÛçkG) ! çkG ! 1

from which (i), (ii) and (iii) follow.
When c = 1, Proposition 5 reduces to [11, Proposition 2.4].
The following theorem is a particularly useful “starting key” for the computer pro-

gram [3] mentioned above.

THEOREM 6. Let G be a group of prime-power exponent pe and nilpotency class
k ½ 2. Then e

�
M(c)(G)

�
divides pe(k�1).

PROOF. The result follows from Proposition 5(ii) and induction on k, once we have
proved the case k = 2. So suppose k = 2. The sequence (Ł) with N = G yields M(c)(G)
as a quotient of 
c+1(GÒG). We shall show that the exponent of 
c+1(GÒG) divides pe.
Since G is of class 2, for any integer m and elements x, y in G the identity

x 
 ym = (x 
 y)m
�
y 
 [xÒ y]( m

2 )
�

holds in
2(GÒG) = G
G thanks to [1, Lemma 3.4]. In particular, for m = pe the integer
( m

2 ) is divisible by m when p ½ 3, and divisible by mÛ2 when p = 2. But when p = 2 and
m = pe the identity

1 = (xy)m = xmym[xÒ y]m(m�1)Û2 = [xÒ y](mÛ2)(m�1)

holds for all x, y in G, and implies [xÒ y]mÛ2 = 1. Thus the exponent of
2(GÒG) divides pe.
Since
2(GÒG) acts trivially on G, the exponent of
c+1(GÒG) =

�

2(GÒG)
G

�

Ð Ð Ð
G

divides the exponent of 
2(GÒG).
When c = 1, Theorem 6 reduces to [11, Corollaries 2.6 and 2.7].
There is a string of further interesting results on M(c)(G) that can be deduced from the

sequence (Ł). For instance, generalisations of Theorem 3.1 in [11], and its corollaries,
are consequences of the sequence. Details are left to the reader.
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