Bull. Austral. Math. Soc. Vol. 67 (2003) [365-375]

EXTREME POINTS IN SPACES BETWEEN DIRICHLET AND VANISHING MEAN OSCILLATION

K.J. WIRTHS AND J. XIAO

For $p \in (0, \infty)$ define $Q_{p,0}(\partial \Delta)$ as the space of all Lebesgue measurable complexvalued functions f on the unit circle $\partial \Delta$ for which $\int_{\partial \Delta} f(z) |dz|/(2\pi) = 0$ and

$$\frac{1}{(2\pi)^2} \int_I \int_I \frac{|f(z) - f(w)|^2}{|z - w|^{2-p}} |dz| \, |dw| = o(|I|^p)$$

as the open subarc I of $\partial \Delta$ varies. Note that each $Q_{p,0}(\partial \Delta)$ lies between the Dirichlet space and Sarason's vanishing mean oscillation space. This paper determines the extreme points of the closed unit ball of $Q_{p,0}(\partial \Delta)$ equipped with an appropriate norm.

1. INTRODUCTION

Denote by \triangle and $\partial \triangle$ the open unit disk and the unit circle in the finite complex plane \mathbb{C} , respectively. For $p \in (0, \infty)$, let $Q_p(\partial \triangle)$ (respectively $Q_{p,0}(\partial \triangle)$) be the class of all Lebesgue measurable functions $f : \partial \triangle \to \mathbb{C}$ for which $\int_{\partial \triangle} f(z) |dz|/(2\pi) = 0$ and

$$S_p(f,I) := rac{1}{\left(2\pi
ight)^2} \int_I \int_I rac{|f(z) - f(w)|^2}{|z - w|^{2-p}} |dz| |dw| = Oig(|I|^pig) \quad \left(ext{respectively} \quad oig(|I|^pig)ig)
ight)$$

as $I \subseteq \partial \Delta$ varies. Here and throughout this paper, I means an open subarc of $\partial \Delta$ and |I| stands for the normalised arclength of $I \subseteq \partial \Delta$, that is, $|I| = \int_{I} |dz|/(2\pi)$. It is clear that $Q_{p,0}(\partial \Delta) \subseteq Q_{p}(\partial \Delta)$. For convenience, equip $f \in Q_{p}(\partial \Delta)$ with the following norm

$$\|f\|_{Q_p(\partial \Delta)} := \sup_{I \subseteq \partial \Delta} \left[\frac{S_p(f,I)}{|I|^p} \right]^{1/2}.$$

So, $Q_p(\partial \Delta)$ is a Banach space and $Q_{p,0}(\partial \Delta)$ is its closed subspace.

In the case $p \in (0,1)$ both classes were introduced in [3] and [6] when Essén, Nicolau, and Xiao studied the boundary behaviour of the holomorphic Q_p -spaces (see

Received 23rd May, 2002

Research supported by AvH (Germany) and NSERC (Canada). The authors are grateful to S. Axler for interesting discussions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

K.J. Wirths and J. Xiao

[1]). More important is that the article [9] (see [4] for another proof) proved that $Q_p(\partial \Delta) \subseteq BMO(\partial \Delta)$ and equality occurs as p > 1. In Section 4 of our current paper, we shall demonstrate that $Q_{p,0}(\partial \Delta) \subseteq VMO(\partial \Delta)$ and equality happens again as p > 1. Here $BMO(\partial \Delta)$ (respectively $VMO(\partial \Delta)$) is John-Nirenberg's [5] (respectively Sarason's [8]) space of functions with bounded respectively vanishing mean oscillation on $\partial \Delta$. More precisely, for $q \ge 1$ and a Lebesgue measurable function $f : \partial \Delta \to \mathbb{C}$ we say $f \in BMO(\partial \Delta)$ provided $\int_{\partial \Delta} f(z) |dz|/(2\pi) = 0$ and $||f||_{q-MO} = \sup_{z \in \partial \Delta} f_q^{\#}(z) < \infty$, where

$$f_q^{\#}(z) = \sup_{z \in I} \left[\frac{1}{2\pi |I|} \int_I \left| f(z) - \frac{1}{2\pi |I|} \int_I f(w) |dw| \right|^q |dz| \right]^{1/q},$$

and here, the supremum is taken over all open subarcs $I \subseteq \partial \Delta$ such that $z \in I$. Moreover we call $f \in VMO(\partial \Delta)$ if $f \in BMO(\partial \Delta)$ and

$$\lim_{\delta \searrow 0} \sup_{|I| < \delta} \frac{1}{2\pi |I|} \int_{I} \left| f(z) - \frac{1}{2\pi |I|} \int_{I} f(w) |dw| \right|^{q} |dz| = 0,$$

where the supremum ranges through all open subarcs $I \subseteq \partial \Delta$ with $|I| < \delta$.

Motivated by Axler-Shields' work [2], this paper is devoted to an investigation of the extreme points of the closed ball of $Q_{p,0}(\partial \Delta)$ (as well as $Q_p(\partial \Delta)$), but also extends those corresponding results on $VMO(\partial \Delta)$ (as well as $BMO(\partial \Delta)$). The main results of this note are presented in Section 2. Of particular interest are some examples of the extreme/nonextreme points provided in Section 3. In the meantime, it is worth mentioning that our functions g_n constructed as the extreme points of the closed unit ball of $(Q_{p,0}(\partial \Delta), \|\cdot\|_{Q_p(\partial \Delta)})$ are still extreme points of the closed unit ball of $(VMO(\partial \Delta), \|\cdot\|_{2-MO})$. Besides this, the method of constructing some nonextreme points of the closed unit ball of $(Q_{p,0}(\partial \Delta), \|\cdot\|_{Q_p(\partial \Delta)})$ is valid for the space $(VMO(\partial \Delta), \|\cdot\|_{q-MO})$. In other words, there are some nonextreme points in the closed unit ball of $(VMO(\partial \Delta), \|\cdot\|_{q-MO})$.

2. Results

First of all, let us determine the extreme points of the closed unit ball of $Q_{p,0}(\partial \Delta)$. For $f \in Q_p(\partial \Delta)$, $p \in (0, \infty)$, define the function $E_p(f, \cdot)$ on $\partial \Delta$ by

$$E_p(f,z) := \sup_{z \in I} \left[\frac{S_p(f,I)}{|I|^p} \right]^{1/2},$$

where the supremum ranges over all open subarcs $I \subseteq \partial \Delta$ such that $z \in I$. It is easy to establish the formula:

$$||f||_{Q_p(\partial \Delta)} = \sup_{z \in \partial \Delta} E_p(f, z).$$

This is due to an obvious fact that $E_p(f, \cdot)$ is lower semi-continuous, that is, $\{z \in \partial \Delta : E_p(f, z) > t\}$ is an open set for every t > 0. Letting $C(\partial \Delta)$ be the class of all continuous functions $f : \partial \Delta \to \mathbb{C}$, we can get further information on $E_p(f, \cdot)$. More precisely,

LEMMA 2.1. Let $p \in (0,\infty)$ and let $f \in Q_{p,0}(\partial \Delta)$. Then $E_p(f, \cdot) \in C(\partial \Delta)$.

PROOF: It suffices to prove that $E_p(f, \cdot)$ is upper semi-continuous too, namely that $\{z \in \partial \Delta : E_p(f, z) < t\}$ is an open set for every t > 0. To do this, fix t > 0 and let $z \in \partial \Delta$ obey $E_p(f, z) < t$. If $E_p(f, z) \neq 0$, then by $f \in Q_{p,0}(\partial \Delta)$, there exists a $\delta > 0$ such that

$$\sup_{I\subseteq\partial\Delta;|I|<\delta}\frac{S_p(f,I)}{|I|^p}\leqslant \left[E_p(f,z)\right]^2.$$

Now let $J \subseteq \partial \Delta$ be an open subarc centred at z whose arclength $|J| = \varepsilon$ is very small compared to δ . And, for $w \in J$ suppose $I \subseteq \partial \Delta$ contains w. When $|I| < \delta$, one has $S_p(f, I)/|I|^p < t^2$, thanks to the previous estimation. In the case $|I| \ge \delta$ take $K = J \cup I$. Then K is an open subarc containing z and hence

$$\frac{S_p(f,I)}{|I|^p} \leqslant \Big(\frac{|K|}{|I|}\Big)^p \frac{S_p(f,K)}{|K|^p} \leqslant \Big(\frac{|K|}{|I|}\Big)^p \Big[E_p(f,z)\Big]^2.$$

Further, putting $E_p(f,z) = t - \tau$, $\tau \in (0,t)$, we get that $S_p(f,I)/|I|^p < t^2$ and thus $E_p(f,w) < t$ when $w \in J$ and $|J| = \varepsilon < \delta \left[\left(t/(t-\tau) \right)^{2/p} - 1 \right]$. On the other hand, if $E_p(f,z) = 0$ then via the analysis on the open subarc K, we can select an open subarc J centred at z such that $E_p(f,w) = 0 < t$ as $w \in J$. This completes the proof.

THEOREM 2.2. Let $p \in (0, \infty)$ and $f \in Q_{p,0}(\partial \Delta)$. Then f is an extreme point of the closed unit ball of $Q_{p,0}(\partial \Delta)$ if and only if $E_p(f, \cdot)$ is identical with 1.

PROOF: Assume that f is an extreme point of the closed unit ball of $Q_{p,0}(\partial \Delta)$. Since $||f||_{Q_p(\partial \Delta)} \leq 1$, one has that $E_p(f,z) \leq 1$ for all $z \in \partial \Delta$. If $E_p(f, \cdot)$ is not identical with 1, then by Lemma 2.1, there is an open subarc $J \subseteq \partial \Delta$ such that $\sup_{z \in J} E_p(f,z) < 1$. Choose a function $g \in Q_{p,0}(\partial \Delta)$ such that $||g||_{Q_p(\partial \Delta)} \leq 1 - \sup_{z \in J} E_p(f,z)$, g = 0 outside J, and $g \neq 0$. When $I \subseteq \partial \Delta$ is such that $I \cap J = \emptyset$, we obviously obtain

$$\frac{S_p(f+g,I)}{|I|^p} = \frac{S_p(f,I)}{|I|^p} \leqslant 1.$$

If $I \subseteq \partial \triangle$ ensures $I \cap J \neq \emptyset$, then

$$\left[\frac{S_p(f+g,I)}{|I|^p}\right]^{1/2} \leqslant \left[\frac{S_p(f,I)}{|I|^p}\right]^{1/2} + \left[\frac{S_p(g,I)}{|I|^p}\right]^{1/2} \leqslant \sup_{z \in J} E_p(f,z) + \|g\|_{Q_p(\partial \Delta)} \leqslant 1.$$

Thus $||f + g||_{Q_p(\partial \Delta)} \leq 1$. Similarly, $||f - g||_{Q_p(\partial \Delta)} \leq 1$. As $g \neq 0$, those inequalities show that f is not an extreme point of the closed unit ball of $Q_{p,0}(\partial \Delta)$, contradicting the assumption.

Conversely, let $E_p(f, \cdot) \equiv 1$. If $z_0 \in \partial \Delta$, then there exists a sequence of open subarcs I_n containing z_0 such that $S_p(f, I_n)/|I_n|^p$ is convergent to 1. Without loss of generality, let $I_n := (a_n, b_n)$, intervals moving counterclockwise. Then, by passing to a subsequence, we may assume that $a_n \to a$ and $b_n \to b$ in the usual sense. After that, let $I_{z_0} \subseteq \partial \Delta$ be the open subarc determined by the interval (a, b), that is, $I_{z_0} := (a, b)$. In this sense, I_{z_0} is viewed as the limiting open subarc of I_n . Accordingly, $S_p(f, I_{z_0})/|I_{z_0}|^p = 1$. Although I_{z_0} does not necessarily contain z_0 , it is easy to see that z_0 belongs to \overline{I}_{z_0} — the closure of I_{z_0} — a closed subarc [a, b] of $\partial \Delta$. Observe that since $f \in Q_{p,0}(\partial \Delta)$, I_n cannot get small and hence I_{z_0} is not empty.

Now suppose $g \in Q_{p,0}(\partial \Delta)$ and $||f + g||_{Q_p(\partial \Delta)} \leq 1$ and $||f - g||_{Q_p(\partial \Delta)} \leq 1$. In order to prove that f is an extreme point, we must show that $g \equiv 0$. Fix $z_0 \in \partial \Delta$ with the open subarc I_{z_0} constructed above. Thus,

$$\frac{f(z) - f(w)}{\left(|z - w| / |I_{z_0}|\right)^{(2-p)/2}}\Big|_{I_{z_0} \times I_{z_0}}$$

is an element of the unit sphere of $L^2(I_{z_0} \times I_{z_0}, (2\pi |I_{z_0}|)^{-2} |dz||dw|)$. From $||f + g||_{Q_p(\partial \Delta)} \leq 1$, we also know that

$$\frac{f(z) - f(w) + g(z) - g(w)}{\left(|z - w| / |I_{z_0}|\right)^{(2-p)/2}}\Big|_{I_{z_0} \times I_{z_0}}$$

is a member of the closed unit ball of $L^2(I_{z_0} \times I_{z_0}, (2\pi |I_{z_0}|)^{-2} |dz| |dw|)$, and similarly when g is replaced by -g. Notice that

$$\frac{f(z) - f(w)}{(|z - w|/|I_{z_0}|)^{(2-p)/2}}\Big|_{I_{z_0} \times I_{z_0}} = \frac{[f(z) - f(w)] + [g(z) - g(w)]}{2(|z - w|/|I_{z_0}|)^{(2-p)/2}}\Big|_{I_{z_0} \times I_{z_0}} + \frac{[f(z) - f(w)] - [g(z) - g(w)]}{2(|z - w|/|I_{z_0}|)^{(2-p)/2}}\Big|_{I_{z_0} \times I_{z_0}}$$

and more importantly, that $L^2(I_{z_0} \times I_{z_0}, (2\pi |I_{z_0}|)^{-2} |dz||dw|)$ enjoys the property that every point of the unit sphere is an extreme point of the closed unit ball ([7, p. 84, problem 16]). So, the last equation implies that g(z) - g(w) = 0 on $I_{z_0} \times I_{z_0}$, that is, g is a constant on I_{z_0} .

For each $z_0 \in \partial \Delta$ let J_{z_0} denote the largest open subarc covering I_{z_0} such that $g|J_{z_0}$ is constant. Obviously, as $z_0, w_0 \in \partial \Delta$, $J_{z_0} \cap J_{w_0} \neq \emptyset$ induces $J_{z_0} = J_{w_0}$, and so the collection $\{J_{z_0}\}$ can contain at most countably many different open subarcs, because $|\partial \Delta| = 1$. Relabel these disjoint open subarcs $\{K_n\}$. The condition $z_0 \in \overline{I}_{z_0}$ implies $\partial \Delta = \bigcup \overline{K}_n$ (where \overline{K}_n stands for the closure of K_n). Thus $A := \partial \Delta \setminus \bigcup K_n$ consists of all endpoints of all the subarcs K_n . In particular, A is a closed, countable set. If $A = \emptyset$, then $\{K_n\}$ contains only one element, namely $\partial \Delta$, and thus g is a constant function on $\partial \Delta$. Note that $\int_{\partial \Delta} g(z)|dz|/(2\pi) = 0$. Accordingly, $g \equiv 0$.

It remains to consider the case: $A \neq \emptyset$. Using the Baire Category Theorem, we see that the non-empty, countable, closed set A must have an isolated point $c \in \partial \Delta$. Since $\partial \Delta = \bigcup \overline{K}_n$, we can conclude that there must be two disjoint open subarcs K_n and K_m such that c is an endpoint for them. Recall that $g|K_n$ and $g|K_m$ are constant. If the two constants do not coincide, then g has a jump discontinuity at c, which certainly contradicts the condition $g \in Q_{p,0}(\partial \Delta)$. If the two constants are the same, then g is constant on the open subarc $K_n \cup \{c\} \cup K_m$, which violates the maximality of the open subarcs $\{J_{z_0}\}_{z_0\in\partial\Delta}$. Thus the case $A \neq \emptyset$ cannot occur, and therefore the proof of the theorem is finished.

Next, we shall deal with the extreme points of the closed unit ball of $Q_p(\partial \Delta)$. This part may be considered as a consequence of the proof of the above theorem, although the forthcoming result looks quite different from that of the extreme points of the closed unit ball of $Q_{p,0}(\partial \Delta)$.

For $f \in Q_p(\partial \Delta)$ and $z \in \partial \Delta$, we shall use $E_p(f, z) = 1^+$ to denote that $E_p(f, z) = 1$ and there exists some open subarc I_z containing z that gives $S_p(f, I_z)/|I_z|^p = 1$. This means that the supremum defining $E_p(f, z)$ is attained.

COROLLARY 2.3. Let $p \in (0, \infty)$ and let $f \in Q_p(\partial \Delta)$. If f is an extreme point of the closed unit ball of $Q_p(\partial \Delta)$ then there exist no two distinct points z_1 and z_2 in $\partial \Delta$ such that $E_p(f, z_1) < 1$ and $E_p(f, z_2) < 1$. Conversely, if $E_p(f, z) = 1^+$ for all $z \in \partial \Delta$ with one possible exception, then f is an extreme point of the closed unit ball of $Q_p(\partial \Delta)$.

PROOF: Let f be an extreme point of the closed unit ball of $Q_p(\partial \Delta)$. Without loss of generality, we may assume that $||f||_{Q_p(\partial \Delta)} = 1$ in that if $||f||_{Q_p(\partial \Delta)} < 1$ then we may select $g = (1 - \varepsilon)f$ and $h = (1 + \varepsilon)f$, where $0 < \varepsilon < \min\{1, ||f||_{Q_p(\partial \Delta)}^{-1} - 1\}$, and hence it turns out from the equation f = (g + h)/2 that f cannot be an extreme point of the closed unit ball of $Q_p(\partial \Delta)$. In order to reach our goal, suppose otherwise that there are two distinct points $z_k \in \partial \Delta$, k = 1, 2 such that $E_p(f, z_k) < 1$, k = 1, 2; and use I_k , k = 1, 2 to denote the two open subarcs of $\partial \Delta$ which have $\{z_1, z_2\}$ as endpoints. Define a function $g \in Q_p(\partial \Delta)$ by $g|_{I_1} = \varepsilon_1, g|_{I_2} = -\varepsilon_2$, where $\varepsilon_k > 0$, K.J. Wirths and J. Xiao

k = 1, 2 are chosen so that $\int_{\partial \Delta} g(z) |dz| = 0$ and $||g||_{Q_p(\partial \Delta)} \leq 1 - \max_{k=1,2} E_p(f, z_k)$. Now, let I be an open subarc of $\partial \Delta$. If both z_1 and z_2 are not in I, then g is constant on I and thus $S_p(f+g, I)/|I|^p = S_p(f, I)/|I|^p \leq 1$. If one of z_k , say, z_1 lies in I, then

$$\left[\frac{S_p(f+g,I)}{|I|^p}\right]^{1/2} \leqslant \left[\frac{S_p(f,I)}{|I|^p}\right]^{1/2} + \left[\frac{S_p(g,I)}{|I|^p}\right]^{1/2} \leqslant E_p(f,z_1) + \|g\|_{Q_p(\partial \Delta)} \leqslant 1.$$

Accordingly, it follows that $||f+g||_{Q_p(\partial \Delta)} \leq 1$. Similarly, $||f-g||_{Q_p(\partial \Delta)} \leq 1$. Because f may be written as the sum of (f+g)/2 and (f-g)/2, the function f is not an extreme point of the closed unit ball of $Q_p(\partial \Delta)$, violating the given condition.

On the other hand, if $w \in \partial \Delta$ is such that $E_p(f,z) = 1^+$ for all $z \in \partial \Delta \setminus \{w\}$, then to each $z \in \partial \Delta \setminus \{w\}$, there corresponds an open subarc I_z such that $z \in I_z$ and $S_p(f,I_z)/|I_z|^p = 1$. Now let $g \in Q_p(\partial \Delta)$ satisfy $||f + g||_{Q_p(\partial \Delta)} \leq 1$ and $||f - g||_{Q_p(\partial \Delta)} \leq 1$. To complete the proof, we must show $g \equiv 0$. Applying the same reasoning as in the argument for sufficiency of Theorem 2.2, we can prove that $g|I_z$ is a constant. Since g is locally constant on the connected set $\partial \Delta \setminus \{w\}$, $g \equiv 0$ as $\int_{\partial \Delta} g(z)|dz|/(2\pi) = 0$.

3. EXAMPLES

In this section we present some examples of either extreme points or nonextreme points of the closed unit ball of $Q_{p,0}(\partial \Delta)$.

EXAMPLE 3.1. (Extreme points.) Let $p \in (0, \infty)$, and for integers $n = \pm 1, \pm 2, ...$ let $f_n(z) = \lambda z^n$ where $z \in \partial \Delta$ and $|\lambda| \equiv 1$. Then $g_n = f_n/||f_n||_{Q_p(\partial \Delta)}$ are extreme points of the closed unit ball of $Q_{p,0}(\partial \Delta)$.

PROOF: To make these examples more precise, by Theorem 2.2

$$E_p(g_n, z) = 1, \quad \forall z \in \partial \Delta.$$

In fact, some elementary calculations tell us that

$$S_p(f_n, I) = 2^{p+1} \int_0^{|I|} (|I| - t) \sin^{p-2}(\pi t) \sin^2(n\pi t) dt$$

and so that

$$E_p^2(f_n,z) = \sup_{|I| \in \{0,1\}} \frac{2^{p+1}}{|I|^p} \int_0^{|I|} (|I|-t) \sin^{p-2}(\pi t) \sin^2(n\pi t) dt.$$

Thus, $||f_n||_{Q_p(\partial \Delta)} = E_p(f_n, z)$ for each $z \in \partial \Delta$, and then $E_p(g_n, \cdot) \equiv 1$ follows.

In the sequel, we point out that not all points on the closed unit ball of $Q_{p,0}(\partial \Delta)$ are extreme points. In fact, we consider a function first defined on $[0, 2\pi)$ with mean value zero and then extended periodically.

EXAMPLE 3.2. (Nonextreme points) Let $p \in (0, \infty)$, and for $\delta \in (0, 1)$ let

$$f_{\delta}(e^{i heta}) = \left\{egin{array}{cc} rac{ heta}{\delta}, & heta \in [0,\delta]; \ 1, & heta \in [\delta, 2\pi - \delta]; \ rac{2\pi - heta}{\delta}, & heta \in [2\pi - \delta, 2\pi). \end{array}
ight.$$

Also put $g_{\delta} = f_{\delta} - 1 + \delta/(2\pi)$ on $[0, 2\pi)$ and extend it 2π -periodically. Then there exists a $\delta > 0$ such that $g_{\delta}/||g_{\delta}||_{Q_p(\partial \Delta)}$ is a nonextreme point of the closed unit ball of $Q_{p,0}(\partial \Delta)$.

PROOF: A key observation is that g_{δ} is convergent to the zero-function as $\delta \to 0$. Because f_{δ} is a Lip1-function, $g_{\delta}/||g_{\delta}||_{Q_{p,0}(\partial \Delta)}$ is in $Q_{p,0}(\partial \Delta)$. However, we show that it is not an extreme point of the closed unit ball of $Q_{p,0}(\partial \Delta)$. By Theorem 2.2 we know this will be done if one can prove that $E_p(f_{\delta}, \cdot)$ is not a constant function for some δ . For this it suffices to verify $E_p(f_{\delta}, 0) \neq E_p(f_{\delta}, \pi)$ for some δ . First, for any open subarc (or subinterval) $I = (a, b) \subseteq (0, \delta)$ we have

$$\frac{S_p(f_{\delta},I)}{|I|^p} = \frac{2^p (2\pi)^{p-2}}{(b-a)^p \delta^2} \int_0^{b-a} \frac{(b-a-t)t^2}{\sin^{2-p} t/2} dt.$$

Thus

$$\sup_{I \subseteq (0,\delta)} \frac{S_p(f_{\delta}, I)}{|I|^p} \ge \frac{2^p (2\pi)^{p-2}}{\delta^{2+p}} \int_0^{\delta} \frac{(\delta - t)t^2}{\sin^{2-p} t/2} dt.$$

Furthermore, by Lemma 2.1 and the limit

$$\lim_{\delta \to 0} \frac{1}{\delta^{p+2}} \int_0^\delta \frac{(\delta - t)t^2}{\sin^{2-p} t/2} \, dt = \frac{2^{2-p}}{(p+1)(p+2)}$$

we can find a $\delta_1 \in (0, 1)$ such that for $\delta \in (0, \delta_1)$,

$$E_p(f_{\delta}, 0) > 2^{-1} \left[\frac{2^p \pi^{p-2}}{(p+1)(p+2)} \right]^{1/2} := \frac{\mu_0}{2}$$

Second, suppose $I \subseteq \partial \Delta$ is any open subarc containing π . If $|I| \leq (\pi - \delta)/(2\pi)$, then $S_p(f_{\delta}, I) = 0$. If $1 \geq |I| > (\pi - \delta)/(2\pi)$, then by the definition of f_{δ} ,

$$S_p(f_{\delta}, I) \leqslant S_p(f_{\delta}, \partial \Delta) = \frac{1}{(2\pi)^2} \iint_{\Omega} \frac{\left| f_{\delta}(e^{i\phi}) - f_{\delta}(e^{i\psi}) \right|^2}{|e^{i\phi} - e^{i\psi}|^{2-p}} d\phi d\psi,$$

where Ω is a domain defined by $\bigcup_{j=1}^{4} \Omega_j$:

$$\Omega_{j} = \begin{cases} \left\{ (\phi, \psi) : 0 \leqslant \phi \leqslant \delta, 0 \leqslant \psi \leqslant 2\pi \right\}, & j = 1; \\ \left\{ (\phi, \psi) : 2\pi - \delta \leqslant \phi \leqslant 2\pi, 0 \leqslant \psi \leqslant 2\pi \right\}, & j = 2; \\ \left\{ (\phi, \psi) : 0 \leqslant \phi \leqslant 2\pi, 0 \leqslant \psi \leqslant \delta \right\} & j = 3; \\ \left\{ (\phi, \psi) : 0 \leqslant \phi \leqslant 2\pi, 2\pi - \delta \leqslant \psi \leqslant 2\pi \right\}, & j = 4. \end{cases}$$

It is a completely elementary estimation to obtain a $\delta_2 \in (0,1)$ such that for $\delta \in (0, \delta_2)$,

$$\iint_{\Omega_j} \frac{\left|f_{\delta}(e^{i\phi}) - f_{\delta}(e^{i\psi})\right|^2}{|e^{i\phi} - e^{i\psi}|^{2-p}} d\phi d\psi \leqslant \left(\frac{\pi - \delta}{2\pi}\right)^p \left(\frac{2\pi\mu_0}{2}\right)^2, \quad j = 1, 2, 3, 4.$$

Hence

$$\frac{S_p(f_{\delta},I)}{|I|^p} \leqslant \frac{1}{(2\pi)^2} \left(\frac{2\pi}{\pi-\delta}\right)^p \iint_{\Omega} \frac{\left|f_{\delta}(e^{i\phi}) - f_{\delta}(e^{i\psi})\right|^2}{|e^{i\phi} - e^{i\psi}|^{2-p}} d\phi d\psi \leqslant \left(\frac{\mu_0}{2}\right)^2$$

Consequently, $E_p(f_{\delta}, \pi) \leq \mu_0/2$ whenever $\delta \in (0, \delta_2)$. Therefore there exists a $\delta_3 \in (0, \min\{\delta_1, \delta_2\})$ such that $E_p(f_{\delta_3}, 0) > \mu_0/2$ and $E_p(f_{\delta_3}, \pi) \leq \mu_0/2$. This concludes the proof.

Recall that the (boundary) Dirichlet space $D(\partial \Delta)$ consists of all Lebesgue measurable complex-valued functions f on $\partial \Delta$ for which $\int_{\partial \Delta} f(z) |dz|/(2\pi) = 0$ and

$$\|f\|_{D(\partial\Delta)} := \left[\frac{1}{\left(2\pi\right)^2} \int_{\partial\Delta} \int_{\partial\Delta} \frac{\left|f(z) - f(w)\right|^2}{|z - w|^2} |dz| |dw|\right]^{1/2} < \infty.$$

It is clear that $D(\partial \Delta) \subseteq \bigcap_{p>0} Q_{p,0}(\partial \Delta)$, and that every point on the closed unit ball of $(D(\partial \Delta), \|\cdot\|_{D(\partial \Delta)})$ is an extreme point and vice versa. An explicit computation involving $E_p(f_{\delta}, \cdot)$ above reveals that for p small one has to choose δ small in order to get a nonextreme point of the closed unit ball of $(Q_{p,0}(\partial \Delta), \|\cdot\|_{Q_p(\partial \Delta)})$. This reflects the fact that $Q_{p,0}(\partial \Delta)$ approaches $D(\partial \Delta)$ as $p \searrow 0$ in some sense.

4. Appendix

The first result of this section is to illustrate the important basic relationship between $Q_{p,0}(\partial \Delta)$ and $VMO(\partial \Delta)$ mentioned in the introduction.

PROPOSITION 4.1. If $0 < p_1 < p_2 < \infty$ then $Q_{p_1,0}(\partial \Delta) \subseteq Q_{p_2,0}(\partial \Delta)$. In particular, if $p \in (1, \infty)$ then $Q_{p,0}(\partial \Delta) = VMO(\partial \Delta)$.

PROOF: It suffices to show that each $Q_{p,0}(\partial \Delta)$ coincides with $VMO(\partial \Delta)$ whenever p > 1. First, we verify $VMO(\partial \Delta) \subseteq Q_{p,0}(\partial \Delta)$. To do so, we observe the

integrated Lip-character of $Q_{p,0}(\partial \Delta)$ (which may be worked out via the change of variables; see also [4, p. 579]): $f \in Q_{p,0}(\partial \Delta)$ if and only if $\lim_{\delta \to 0} F_p(f, \delta) = 0$, where for $\delta \in (0, 1)$,

$$F_p(f,\delta) := \sup_{I \subseteq \partial \Delta, |I| < \delta} |I|^{-p} \int_0^{|I|} \sin^{p-2} \frac{\pi t}{2} \int_I \left| f(e^{i(s+t)}) - f(e^{is}) \right|^2 ds \, dt.$$

For convenience, we use $U \leq V$ to denote that there is a constant c > 0 such that $U \leq cV$. If $U \leq V$ and $V \leq U$ hold simultaneously then we say that $U \sim V$. In addition, we write rI (r > 0) for the open arc with length r|I| and the same centre as I, and f_J the average of f over $J \subseteq \partial \Delta$: $f_J = (2\pi|J|)^{-1} \int_J f(e^{it}) dt$. Now if f in $VMO(\partial \Delta)$ then for any small $\varepsilon > 0$ there is a $\delta \in (0, 1/3)$ such that as $|I| < \delta$,

$$\int_{3I} |f(e^{is}) - f_{3I}|^2 \, ds < 2\pi\varepsilon |I|,$$

and hence

$$\int_{0}^{|I|} \sin^{p-2} \frac{\pi t}{2} dt \int_{I} |f(e^{is}) - f_{3I}|^{2} ds \lesssim |I|^{p-1} \int_{3I} |f(e^{is}) - f_{3I}|^{2} ds \lesssim \varepsilon |I|^{p}.$$

Consequently

$$\int_0^{|I|} \sin^{p-2} \frac{\pi t}{2} \int_I \left| f\left(e^{i(t+s)}\right) - f_{3I} \right|^2 ds \, dt \lesssim \varepsilon |I|^p.$$

So, $\lim_{\delta \to 0} F_p(f, \delta) = 0$, namely, $f \in Q_{p,0}(\partial \Delta)$.

Second, we show that $Q_{p,0}(\partial \Delta) \subseteq VMO(\partial \Delta)$. In case $p \in (1,2]$, the result follows immediately from the definition. It remains to consider the case p > 2. Let $f \in Q_{p,0}(\partial \Delta)$. Then for arbitrarily small $\varepsilon > 0$ there exists a $\delta \in (1, 1/2)$ such that $S_p(f, J) < \varepsilon |J|^p$ whenever $|J| < \delta$. Thus for $I \subseteq \partial \Delta$ with $|I| < \delta$, one has

$$\begin{split} \int_{I} \int_{I} \left| f(e^{is}) - f(e^{it}) \right|^{2} ds \, dt &\leq \sum_{k=1}^{\infty} \iint_{2^{-k} < \frac{|s-t|}{|I|} \leq 2^{1-k}} \frac{|e^{is} - e^{it}|^{2-p} |f(e^{is}) - f(e^{it})|^{2}}{|e^{is} - e^{it}|^{2-p}} \, ds \, dt \\ &\lesssim \sum_{k=1}^{\infty} \left(\frac{|I|}{2^{k}} \right)^{2-p} \iint_{|s-t|/|I| \leq 2^{1-k}} \frac{|f(e^{is}) - f(e^{it})|^{2}}{|e^{is} - e^{it}|^{2-p}} \, ds \, dt \\ &\lesssim \sum_{k=1}^{\infty} \left(\frac{|I|}{2^{k}} \right)^{2-p} \int_{2^{2-k}I} \int_{2^{2-k}I} \frac{|f(e^{is}) - f(e^{it})|^{2}}{|e^{is} - e^{it}|^{2-p}} \, ds \, dt \\ &\lesssim \varepsilon |I|^{2}, \end{split}$$

which implies that f in $VMO(\partial \Delta)$. Therefore, the proof is complete.

The second conclusion of this section is an estimate of the distance from $f \in Q_p(\partial \Delta)$ to $Q_{p,0}(\partial \Delta)$.

PROPOSITION 4.2. Let $p \in (0, \infty)$ and $f \in Q_p(\partial \Delta)$ with

$$d(f, Q_{p,0}(\partial \Delta)) := \inf \{ \|f - g\|_{Q_p(\partial \Delta)} : g \in Q_{p,0}(\partial \Delta) \}.$$

Then

$$d(f, Q_{p,0}(\partial \Delta)) \sim M_p(f) := \lim_{\delta \to 0} \sup_{I \subseteq \partial \Delta, |I| < \delta} \Big[\frac{S_p(f, I)}{|I|^p} \Big]^{1/2}$$

PROOF: Since $d(f, Q_{p,0}(\partial \Delta)) = 0$ whenever $f \in Q_{p,0}(\partial \Delta)$, it is easy to show that

$$M_p(f) \leq d(f, Q_{p,0}(\partial \Delta)), \quad f \in Q_p(\partial \Delta).$$

Regarding the reversed estimate, we define the function

$$f_r(e^{is}) = \frac{1}{2\pi} \int_{\partial \Delta} f(\eta) \frac{1 - r^2}{|\eta - re^{is}|^2} |d\eta|$$

for $r \in (0,1)$ and $f \in Q_p(\partial \triangle)$. It is clear that $f_r \in Q_{p,0}(\partial \triangle)$ and

$$f(\zeta) - f_r(\zeta) = \frac{1}{2\pi} \int_{\partial \Delta} \left[f(\zeta) - f(\zeta \overline{\lambda}) \right] \frac{1 - r^2}{|1 - r\overline{\lambda}|^2} |d\lambda|, \quad \zeta = e^{is}, \quad \lambda = \zeta \overline{\eta}.$$

Setting $T_{\lambda}f(\zeta) = f(\zeta\overline{\lambda})$ and using Minkowski's inequality, we see that for any small $\varepsilon > 0$,

$$\begin{split} \|f - f_r\|_{Q_p(\partial \Delta)} \\ \lesssim \int_{\partial \Delta} \|f - T_\lambda f\|_{Q_p(\partial \Delta)} \frac{1 - r^2}{|1 - r\overline{\lambda}|^2} |d\lambda| \\ \lesssim \int_{|\lambda| < \varepsilon} \|f - T_\lambda f\|_{Q_p(\partial \Delta)} \frac{1 - r^2}{|1 - r\overline{\lambda}|^2} |d\lambda| + \|f\|_{Q_p(\partial \Delta)} \int_{\varepsilon \leqslant |\lambda| \leqslant \pi} \frac{1 - r^2}{|1 - r\overline{\lambda}|^2} |d\lambda| \\ &:= \operatorname{Term}_1 + \operatorname{Term}_2. \end{split}$$

Suppose $\delta \in (0,1)$. By the Lebesgue Dominated Convergence Theorem we know that

$$\lim_{\lambda \to 0} \sup_{|I| \ge \delta} \frac{S_p(f - T_\lambda f, I)}{|I|^p} = 0.$$

Also the Triangle Inequality yields

$$\sup_{|I|<\delta}\frac{S_p(f-T_\lambda f,I)}{|I|^p}\lesssim \sup_{|I|<\delta}\frac{S_p(f,I)}{|I|^p}.$$

Therefore, if $\varepsilon \to 0$ then

$$\operatorname{Term}_1 \lesssim \sup_{|I| < \delta} \left[\frac{S_p(f, I)}{|I|^p} \right]^{1/2}.$$

And, if $r \to 1$ then Term₂ $\to 0$ and thus

$$d(f, Q_{p,0}(\partial \Delta)) \leq \lim_{r \to 1} ||f - f_r||_{Q_p(\partial \Delta)} \lesssim M_p(f).$$

We are done.

With the help of Proposition 4.1, we see that Proposition 4.2 extends Sarason's vanishing mean oscillation-version in [8]. Of course, Proposition 4.2 derives that $f \in Q_{p,0}(\partial \Delta)$ if and only if $d(f, Q_{p,0}(\partial \Delta)) = 0$.

References

- R. Aulaskari, J. Xiao and R. Zhao, 'On subspaces and subsets of BMOA and UBC', Analysis 15 (1995), 101-121.
- [2] S. Axler and A. Shields, 'Extreme points in VMO and BMO', Indiana Univ. Math. J. 31 (1982), 1–6.
- [3] M. Essén and J. Xiao, 'Some results on Q_p spaces, 0
- [4] M. Essén, S. Janson, L. Peng and J. Xiao, 'Q spaces of several real variables', Indiana Univ. Math. J. 49 (2000), 576-615.
- [5] F. John and L. Nirenberg, 'On functions of bounded mean oscillation', Comm. Pure Appl. Math. 14 (1961), 415-426.
- [6] A. Nicolau and J. Xiao, 'Bounded functions in Möbius invariant Dirichlet spaces', J. Funct. Anal. 150 (1997), 383-425.
- [7] W. Rudin, Functional analysis (McGraw-Hill, N.J., 1973).
- [8] D. Sarason, 'Functions of vanishing mean oscillation', Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [9] J. Xiao, 'Some essential properties of $Q_p(\partial \Delta)$ -spaces', J. Fourier Anal. Appl. 6 (2000), 311-323.

Institute of Analysis TU-Braunschweig D-38106 Braunschweig Germany e-mail: kjwirths@tu-bs.de Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, NL A1C 5S7 Canada e-mail: jxiao@math.mun.ca

[11]