ON MODIFICATION OF THE $q-L$-SERIES AND ITS APPLICATIONS

HIROFUMI TSUMURA

Abstract

We slightly modify the definitions of q-Hurwitz ζ-functions and q - L series constructed by J. Satoh. By using these modified functions, we give some relations for the ordinary Dirichlet L-series. Especially we give an elementary proof of Katsurada's formula on the values of Dirichlet L-series at positive integers.

Introduction

Satoh defined q - L-series $L_{q}(s, \chi)$ in [S-1], which interpolated Carlitz's q-Bernoulli numbers at non-positive integers. His result was a response to Koblitz's problem suggested in [Ko]. In fact, $L_{q}(s, \chi)$ could be regarded just as what Koblitz required. $L_{q}(s, \chi)$ was essentially defined as a sum of two q-series. This causes difficulty in studying $L_{q}(s, \chi)$.

In [T-3], we considered the modified q-Riemann ζ-function, which is an example of Satoh's recent result (see [S-2]). By elementary calculations of q series, we proved the formulas for $\zeta(2 k+1)$ given by Cvijović and Klinowski ([C-K]).

In the present paper, corresponding to our previous work in [T-3], we modify the definition of q - L-series. In Section 1, we consider the modified q-Hurwitz ζ-function. In Section 2, we define the modified q - L-series. By investigating their properties, we prove some relations for the values of modified q - L-series (see Lemma 7). By letting $q \rightarrow 1$ in these relations, we prove some relations between the values of ordinary Dirichlet L-series at positive integers (see Proposition 2). Furthermore we give another proof of Katsurada's recent result on the values of Dirichlet L-series at positive integers (see Proposition 3). His result was proved by using the Mellin transformation technique ([Ka]).

[^0]The author would like to thank the referee for his valuable suggestions and comments.

§1. q-Hurwitz ζ-function

For $q \in \mathbf{R}$ with $0<q<1$, let $[z]=[z ; q]=\left(1-q^{z}\right) /(1-q)$ for an indeterminate z. Note that $\lim _{q \rightarrow 1}[z]=z$. The modified q-Bernoulli numbers $\left\{\widetilde{\beta}_{n}(q)\right\}$ can be defined by

$$
F_{q}(t)=\sum_{n=0}^{\infty} \widetilde{\beta}_{n}(q) \frac{t^{n}}{n!}
$$

where $F_{q}(t)$ is determined as a solution of the following q-difference equation

$$
F_{q}(t)=e^{t} F_{q}(q t)-t, \quad F_{q}(0)=\frac{q-1}{\log q}
$$

(see $[\mathrm{T}-1]$). Moreover we let $F_{1}(t)=t /\left(e^{t}-1\right)$, and $\widetilde{\beta}_{n}(1)=B_{n}$ which is the ordinary Bernoulli number. If $0<q<1$ then the following series representation for $F_{q}(t)$ holds:

$$
\begin{equation*}
F_{q}(t)=\frac{q-1}{\log q} e^{t /(1-q)}-t \sum_{n=0}^{\infty} q^{n} e^{[n] t} \tag{1.1}
\end{equation*}
$$

(see [S-2],[T-3]). By above considerations, we can see that $F_{q}(t)$ is continuous as a function of (q, t) on $(0,1] \times\{t \in \mathbf{C}| | t \mid<2 \pi\}$. As generalizations, we defined the modified q-Bernoulli polynomials by

$$
F_{q}\left(q^{x} t\right) e^{[x] t}=\sum_{n=0}^{\infty} \widetilde{\beta}_{n}(x, q) \frac{t^{n}}{n!}
$$

Note that

$$
F_{q}\left(q^{x} t\right) e^{[x] t}=\frac{q-1}{\log q} e^{t /(1-q)}-t \sum_{n=0}^{\infty} q^{n+x} e^{[n+x] t}
$$

We define the modified q-Hurwitz ζ-function by

$$
\begin{equation*}
\widetilde{\zeta}_{q}(s, x)=\frac{(1-q)^{s}}{(1-s) \log q}+\sum_{n=0}^{\infty} \frac{q^{n+x}}{[n+x]^{s}} \tag{1.2}
\end{equation*}
$$

for $x>0$. The following lemma holds (see [T-3] §4).

Lemma 1. For $k \in \mathbf{N}, \widetilde{\zeta}_{q}(1-k, x)=-\frac{\widetilde{\beta}_{k}(x, q)}{k}$.
It follows from (1.2) that $\widetilde{\zeta}_{q}(s, x)$ is meromorphic in the whole complex plane and has a simple pole at $s=1$ with residue $(q-1) / \log q$, since $\lim _{n \rightarrow \infty}[n]=1 /(1-q)$ if $0<q<1$. It is obvious that if $\operatorname{Re}(s)>1$ then $\lim _{q \rightarrow 1-0} \widetilde{\zeta}_{q}(s, x)=\zeta(s, x)$ which is the ordinary Hurwitz ζ-function. More strongly we can prove the following.

Lemma 2. $\lim _{q \rightarrow 1-0} \widetilde{\zeta}_{q}(s, x)=\zeta(s, x)$ and $\lim _{q \rightarrow 1-0}(\partial / \partial s) \widetilde{\zeta}_{q}(s, x)=(\partial / \partial s)$. $\zeta(s, x)$ for any $s \in \mathbf{C}$ except for $s=1$.

Proof. According to the well-known method(e.g. [W, Theorem 4.2]), we consider the function

$$
H(s, q)=\left(e^{2 \pi \sqrt{-1} s}-1\right) \int_{0}^{\infty} t^{s-2} F_{q}\left(-q^{x} t\right) e^{-[x] t} d t
$$

for any $s \in \mathbf{C}$ and $\underset{\sim}{q} \in(0,1]$. Then it follows from (1.1) that $H(s, q)$ $=\left(e^{2 \pi \sqrt{-1} s}-1\right) \Gamma(s) \widetilde{\zeta}_{q}(s, x)$, and $H(s, q)$ is holomorphic for any $s \in \mathbf{C}$ if $0<q \leq 1$. We can verify that $\lim _{q \rightarrow 1-0} H(s, q)=H(s, 1)$ and $\lim _{q \rightarrow 1-0}(\partial / \partial s) H(s, q)=(\partial / \partial s) H(s, 1)$. Thus we have the assertion.

If $0<q<1$ then, by (1.2), we have

$$
\begin{equation*}
\frac{\partial}{\partial s} \widetilde{\zeta}_{q}(s, x)=\frac{(1-q)^{s}\{\log (1-q)+1\}}{(1-s)^{2} \log q}-\sum_{n=0}^{\infty} \frac{q^{n+x} \log [n+x]}{[n+x]^{s}} \tag{1.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
a(q)=\frac{\partial}{\partial s} \widetilde{\zeta}_{q}(0,1)=\frac{\log (1-q)+1}{\log q}-\sum_{m=1}^{\infty} q^{m} \log [m] \tag{1.4}
\end{equation*}
$$

By Lemma 2, we have

$$
\begin{equation*}
\lim _{q \rightarrow 1-0} a(q)=\lim _{q \rightarrow 1-0} \frac{\partial}{\partial s} \widetilde{\zeta}_{q}(0,1)=\frac{\partial}{\partial s} \zeta(0,1)=-\frac{1}{2} \log (2 \pi) \tag{1.5}
\end{equation*}
$$

Let $b(q)=\exp (-a(q))$. Then $\lim _{q \rightarrow 1-0} b(q)=\sqrt{2 \pi}$. By combining (1.4) and (1.5), we get the following relation which can be regarded as a q representation for the divergent formula $\prod_{m \geq 1} m=\infty!=\sqrt{2 \pi}$ given by Riemann.

PROPOSITION 1. $\lim _{q \rightarrow 1-0} e^{-\frac{\log (1-q)+1}{\log q}} \prod_{m=1}^{\infty}[m]^{q^{m}}=\sqrt{2 \pi}$.

§2. q - L-series

For a primitive Dirichlet character χ with conductor f, we define the modified q - L-series by

$$
\begin{equation*}
\widetilde{L}_{q}(s, \chi)=\sum_{a=1}^{f} \chi(a)[f]^{-s} \widetilde{\zeta}_{q^{f}}\left(s, \frac{a}{f}\right) \tag{2.1}
\end{equation*}
$$

We can verify that

$$
\begin{aligned}
\widetilde{L}_{q}(s, \chi) & =\sum_{a=1}^{f} \chi(a)[f]^{-s}\left\{\frac{\left(1-q^{f}\right)^{s}}{(1-s) \log q^{f}}+\sum_{n=0}^{\infty} \frac{q^{f(n+a / f)}}{\left[n+a / f, q^{f}\right]^{s}}\right\} \\
& =\frac{(1-q)^{s}}{f(1-s) \log q} \sum_{a=1}^{f} \chi(a)+\sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{s}}
\end{aligned}
$$

So we have

$$
\widetilde{L}_{q}(s, \chi)= \begin{cases}\sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{s}} & (\chi \neq 1) \tag{2.2}\\ \frac{(1-q)^{s}}{(1-s) \log q}+\sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s}} & (\chi=1)\end{cases}
$$

In fact, $\widetilde{L}_{q}(s, 1)$ coincides with the q-series $\widetilde{Z}_{q}(s)$ defined in [T-3], which can be regarded as a q-analogue of the Riemann ζ-function. Note that if $\chi \neq 1$ then $\widetilde{L}_{q}(s, \chi)$ is holomorphic in the whole complex plane.

Now we define the generalized q-Bernoulli numbers by

$$
\begin{equation*}
\widetilde{\beta}_{k, \chi}(q)=[f]^{k-1} \sum_{a=1}^{f} \chi(a) \widetilde{\beta}_{k}\left(\frac{a}{f}, q^{f}\right) \tag{2.3}
\end{equation*}
$$

for $k \geq 0$. Note that $\lim _{q \rightarrow 1} \widetilde{\beta}_{k, \chi}(q)=B_{k, \chi}$ which is the generalized Bernoulli number defined by

$$
\begin{equation*}
\sum_{a=1}^{f} \frac{\chi(a) t e^{a t}}{e^{f t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!} \tag{2.4}
\end{equation*}
$$

By (2.1),(2.3) and Lemma 1, we have the following.

Lemma 3. For $k \in \mathbf{N}, \quad \widetilde{L}_{q}(1-k, \chi)=-\frac{\widetilde{\beta}_{k, \chi}(q)}{k}$.
From now on, we assume that $\chi \neq 1$. Let

$$
H_{q}(t, \chi)=-t \sum_{n=1}^{\infty} \chi(n) q^{n} e^{[n] t}
$$

for $q \in \mathbf{R}$ with $0<q<1$. It follows from the definition of $F_{q}(t)$ and (2.2) that $H_{q}(t, \chi)$ is the generating function of $\left\{\widetilde{\beta}_{k, \chi}(q)\right\}$, and is holomorphic in the whole complex plane. For the sake of convenience, let $H_{1}(t, \chi)$ be the function in the left-hand side of (2.4).

We can see that poles of $H_{1}(t, \chi)$ are $\{2 \pi \sqrt{-1} l / f+2 n \pi \sqrt{-1} \mid n \in$ $\mathbf{Z}, l=0,1, \cdots, f-1\}$. So we let

$$
\begin{align*}
h(t, f) & =\prod_{l=1}^{f}(t-2 \pi \sqrt{-1} l / f)(t+2 \pi \sqrt{-1} l / f) \tag{2.5}\\
& =\prod_{l=1}^{f}\left(t^{2}+4 \pi^{2} l^{2} / f^{2}\right)=\sum_{l=0}^{f} C_{l}(f) t^{2 l}
\end{align*}
$$

and let $I_{q}(t, \chi)=H_{q}(t, \chi) h(t, f)$ for any q with $0<q \leq 1$. Then we see that $I_{q}(t, \chi)$ is holomorphic on $|t| \leq 2 \pi$. Let

$$
\begin{equation*}
I_{q}(t, \chi)=\sum_{n=0}^{\infty} A_{n}(q, \chi) \frac{t^{n}}{n!} \tag{2.6}
\end{equation*}
$$

Then we have the following.
Lemma 4. Let r and d be real numbers with $0<r<2 \pi$ and $0<$ $d<1$. Then there exists a constant $R(r, d)>0$ such that $\left|A_{k}(q, \chi) / k!\right| \leq$ $R(r, d) / r^{k}$ for $k \geq 0$, if $d \leq q \leq 1$.

Proof. Let C_{r} be a circle around O of radius r in the complex plane. By the consideration in $\S 1$, we can see that $I_{q}(t, \chi)$ is continuous as a function of (q, t) on the compact set $[d, 1] \times C_{r}$. So we let $R(r, d)=\operatorname{Max}\left|I_{q}(t, \chi)\right|$ on $[d, 1] \times C_{r}$. By the fact that

$$
\frac{A_{k}(q, \chi)}{k!}=\frac{1}{2 \pi \sqrt{-1}} \int_{C_{r}} I_{q}(t, \chi) t^{-k-1} d t
$$

we get the proof of Lemma.

Now we consider the following permutation and combination function:

$$
P(X, k)=\prod_{j=0}^{k-1}(X-j), \quad\binom{X}{k}=\frac{P(X, k)}{k!}
$$

for any $k \in \mathbf{Z}$ with $k \geq 0$. Formally we let $P(0,0)=1$. If $m \in \mathbf{Z}$ with $0 \leq m<k$, then $P(m, k)=0$. By considering the binomial expansions of both sides of $(1+t)^{X+Y}=(1+t)^{X}(1+t)^{Y}$, we get the following.

Lemma 5. $\binom{X+Y}{k}=\sum_{j=0}^{k}\binom{X}{k-j}\binom{Y}{j}$, namely $P(X+Y, k)=$ $\sum_{j=0}^{k}\binom{k}{j} P(X, k-j) P(Y, j)$.

By Lemma 3 and using the above notations, we have

$$
\begin{aligned}
I_{q}(t, \chi) & =\sum_{l=0}^{f} C_{l}(f) \sum_{n=0}^{\infty} \widetilde{\beta}_{n, \chi}(q) \frac{t^{n+2 l}}{n!} \\
& =\sum_{l=0}^{f} C_{l}(f) \sum_{N \geq 2 l} P(N, 2 l) \widetilde{\beta}_{N-2 l, \chi}(q) \frac{t^{N}}{N!} \\
& =-\sum_{N=0}^{\infty}\left(\sum_{l=0}^{f} C_{l}(f) P(N, 2 l+1) \widetilde{L}_{q}(1-N+2 l, \chi)\right) \frac{t^{N}}{N!}
\end{aligned}
$$

Thus we have the following.
Lemma 6. For $N \in \mathbf{Z}$ with $N \geq 0$,

$$
\begin{aligned}
A_{N}(q, \chi) & =\sum_{l=0}^{f} C_{l}(f) P(N, 2 l) \widetilde{\beta}_{N-2 l, \chi}(q) \\
& =-\sum_{l=0}^{f} C_{l}(f) P(N, 2 l+1) \widetilde{L}_{q}(1-N+2 l, \chi)
\end{aligned}
$$

Remark. Since $B_{2 k+1, \chi}=0$ if $\chi(-1)=1$ and $B_{2 k, \chi}=0$ if $\chi(-1)=$ -1 (e.g. [W] Chap.4), we have $\lim _{q \rightarrow 1} A_{2 k+1}(q, \chi)=0$ if $\chi(-1)=1$, and $\lim _{q \rightarrow 1} A_{2 k}(q, \chi)=0$ if $\chi(-1)=-1$, for $k \geq 0$.

Lemma 7. For $m \in \mathbf{N}$ and $\theta \in \mathbf{R}$ with $|\theta| \leq 2 \pi$,

$$
\text { (1) } \left.\left.\begin{array}{rl}
\sum_{d=0}^{f} P(2 m+2 d-1,2 d) \sum_{l=d}^{f}\binom{2 l+1}{2 d} & C_{l}(f)(-1)^{l-d} \theta^{2(l-d)+1} \\
& \times \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{2 m+2 d}} \cos ([n] \theta) \\
-\sum_{d=0}^{f} P(2 m+2 d, 2 d+1) \sum_{l=d}^{f}\left(\begin{array}{c}
2 l \\
2 d
\end{array}+1\right. \\
2
\end{array}\right) C_{l}(f)(-1)^{l-d} \theta^{2(l-d)}\right)
$$

$=\sum_{k=0}^{m-1} \frac{(-1)^{k+1} \theta^{2 k+1}}{(2 k+1)!}$ $\times \sum_{l=0}^{f} C_{l}(f) P(2 m-2 k+2 l-1,2 l+1) \widetilde{L}_{q}(2 m-2 k+2 l, \chi)$ $+(-1)^{m} \theta^{2 m} \sum_{n=0}^{\infty} \frac{1}{P(2 n+2 m+1,2 m)} \frac{(-1)^{n+1} \theta^{2 n+1}}{(2 n+1)!} A_{2 n+1}(q, \chi)$.
(2) $\sum_{d=0}^{f} P(2 m+2 d-1,2 d) \sum_{l=d}^{f}\binom{2 l+1}{2 d} C_{l}(f)(-1)^{l-d+1} \theta^{2(l-d)+1}$ $\times \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{2 m+2 d}} \sin ([n] \theta)$ $+\sum_{d=0}^{f} P(2 m+2 d, 2 d+1) \sum_{l=d}^{f}\binom{2 l+1}{2 d+1} C_{l}(f)(-1)^{l-d+1} \theta^{2(l-d)}$ $\times \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{2 m+2 d+1}} \cos ([n] \theta)$
$=\sum_{k=0}^{m-1} \frac{(-1)^{k+1} \theta^{2 k}}{(2 k)!}$
$\times \sum_{l=0}^{f} C_{l}(f) P(2 m-2 k+2 l, 2 l+1) \widetilde{L}_{q}(2 m-2 k+2 l+1, \chi)$
$+(-1)^{m-1} \theta^{2 m} \sum_{n=0}^{\infty} \frac{1}{P(2 n+2 m, 2 m+1)} \frac{(-1)^{n} \theta^{2 n}}{(2 n)!} A_{2 n}(q, \chi)$.
Proof. We only give the proof of (1). The proof of (2) is given in just
the same manner as that of (1). For simplicity, we denote C_{l} instead of $C_{l}(f)$. Let

$$
\begin{aligned}
& J_{q}(\theta, \chi, m)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} \\
& \quad \times\left\{\sum_{l=0}^{f} C_{l} P(2 k-2 m+1,2 l+1) \widetilde{L}_{q}(1-(2 k-2 m+1)+2 l, \chi)\right\}
\end{aligned}
$$

By Lemma 5, we have

$$
\begin{aligned}
& J_{q}(\theta, \chi, m) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} \sum_{l=0}^{f} C_{l} \\
& \quad \times \sum_{u=0}^{2 l+1}\binom{2 l+1}{u} P(2 k+1,2 l+1-u) P(-2 m, u) \widetilde{L}_{q}(-2 k+2 m+2 l, \chi) \\
& =\sum_{l=0}^{f} C_{l} \sum_{u=0}^{2 l+1}\binom{2 l+1}{u} P(-2 m, u) \\
& \quad \times \sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} P(2 k+1,2 l+1-u) \widetilde{L}_{q}(-2 k+2 m+2 l, \chi) \\
& =\sum_{l=0}^{f} C_{l} \sum_{d=0}^{l}\binom{2 l+1}{2 d} P(-2 m, 2 d) \\
& \quad \times \sum_{k=l-d}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} P(2 k+1,2 l+1-2 d) \widetilde{L}_{q}(-2 k+2 m+2 l, \chi) \\
& \quad \times \sum_{k=l-d}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} P(2 k+1,2 l-2 d) \widetilde{L}_{q}(-2 k+2 m+2 l, \chi) .
\end{aligned}
$$

Since $0<q<1$, we can easily verify that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{s}} \cos ([n] \theta)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!} \widetilde{L}_{q}(s-2 k, \chi) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{s}} \sin ([n] \theta)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} \widetilde{L}_{q}(s-2 k-1, \chi) \tag{2.8}
\end{equation*}
$$

By noticing that $P(-N, e)=(-1)^{e} P(N+e-1, e)$, and letting $n=k-l+d$, we have

$$
\begin{aligned}
& J_{q}(\theta, \chi, m) \\
& \qquad \begin{aligned}
&=\sum_{d=0}^{f} P(2 m+2 d-1,2 d) \sum_{l=0}^{f}\binom{2 l}{2 d} C_{l}(-1)^{l-d} \theta^{2(l-d)+1} \\
& \times \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{2 m+2 d}} \cos ([n] \theta) \\
&+\sum_{d=0}^{f} P(2 m+2 d, 2 d+1) \sum_{l=0}^{f}\binom{2 l+1}{2 d+1} C_{l}(-1)^{l-d} \theta^{2(l-d)} \\
& \times \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{[n]^{2 m+2 d+1}} \sin ([n] \theta)
\end{aligned}
\end{aligned}
$$

On the other hand, by Lemma 6, we have

$$
\begin{aligned}
& J_{q}(\theta, \chi, m)= \\
& \qquad \begin{aligned}
\sum_{k=0}^{m-1} \frac{(-1)^{k+1} \theta^{2 k+1}}{(2 k+1)!} \sum_{l=0}^{f} C_{l} P(& 2 k-2 m+1,2 l+1) \widetilde{L}_{q}(2 m-2 k+2 l, \chi) \\
& +\sum_{k=m}^{\infty} \frac{(-1)^{k+1} \theta^{2 k+1}}{(2 k+1)!} A_{2 k-2 m+1}(q, \chi)
\end{aligned}
\end{aligned}
$$

Thus we have the proof of (1).
By letting $q \rightarrow 1$ with respect to the equations in Lemma 7 , we get some relations for the values of ordinary Dirichlet L-series at positive integers.

Proposition 2. Let $m \in \mathbf{N}$ and $C_{l}(f) \in \mathbf{R}$ defined by (2.5).
(1) If $\chi(-1)=1$ and $\chi \neq 1$, then

$$
\sum_{d=0}^{f} P(2 m+2 d-1,2 d)
$$

$$
\begin{aligned}
& \quad \times \sum_{l=d}^{f}\binom{2 l+1}{2 d} C_{l}(f)(-1)^{l-d}(2 \pi)^{2(l-d)+1} L(2 m+2 d, \chi) \\
& =\sum_{k=0}^{m-1} \frac{(-1)^{k+1}(2 \pi)^{2 k+1}}{(2 k+1)!} \\
& \quad \times \sum_{l=0}^{f} C_{l}(f) P(2 m-2 k+2 l-1,2 l+1) L(2 m-2 k+2 l, \chi) .
\end{aligned}
$$

(2) If $\chi(-1)=-1$, then

$$
\begin{aligned}
& \sum_{d=0}^{f} P(2 m \\
& \quad \times 2 d, 2 d+1) \\
& \quad \times \sum_{l=d}^{f}\binom{2 l+1}{2 d+1} C_{l}(f)(-1)^{l-d+1}(2 \pi)^{2(l-d)} L(2 m+2 d+1, \chi) \\
& =\sum_{k=0}^{m-1} \frac{(-1)^{k+1}(2 \pi)^{2 k}}{(2 k)!} \\
& \quad \times \sum_{l=0}^{f} C_{l}(f) P(2 m-2 k+2 l, 2 l+1) L(2 m-2 k+2 l+1, \chi)
\end{aligned}
$$

Proof. By Lemma 4, we can see that both sides of the equations in (1) and (2) of Lemma 7 are uniformly convergent with respect to $q \in(0,1]$, if $\theta=2 \pi$. So we can let $q \rightarrow 1$. By Remark after Lemma 6 , we get the proof.

In [Ka], Katsurada recently proved the following series representations for the values of $L(s, \chi)$ at positive integers by using the Mellin transformation technique. In the rest of this section, we give another proof of Katsurada's result by using the same method as above.

Proposition 3. ([Ka, Theorem 3]) Let n be a positive integer, x be a real number with $|x| \leq 1$ and $\tau(\chi)=\sum_{a=1}^{f} \chi(a) \exp (2 \pi \sqrt{-1} a / f)$ be the Gauss sum.
(1) If $\chi(-1)=1$ and $\chi \neq 1$, then

$$
n L(2 n+1, \chi)-n \sum_{l=1}^{\infty} \frac{\chi(l) \cos (2 \pi l x / f)}{l^{2 n+1}}-\frac{\pi x}{f} \sum_{l=1}^{\infty} \frac{\chi(l) \sin (2 \pi l x / f)}{l^{2 n}}
$$

$$
\begin{aligned}
&=(-1)^{n}\left(\frac{2 \pi x}{f}\right)^{2 n}\left\{\sum_{k=1}^{n-1} \frac{(-1)^{k-1} k L(2 k+1, \chi)}{(2 n-2 k)!(2 \pi x / f)^{2 k}}\right. \\
&\left.+\frac{\tau(\chi)}{f} \sum_{k=1}^{\infty} \frac{(2 k)!L(2 k, \bar{\chi})}{(2 n+2 k)!} x^{2 k}\right\}
\end{aligned}
$$

(2) If $\chi(-1)=-1$, then

$$
\begin{aligned}
& L(2 n, \chi)-\sum_{l=1}^{\infty} \frac{\chi(l) \cos (2 \pi l x / f)}{l^{2 n}} \\
& =(-1)^{n}\left(\frac{2 \pi x}{f}\right)^{2 n-1}
\end{aligned} \begin{aligned}
& \left\{\sum_{k=1}^{n-1} \frac{(-1)^{k-1} L(2 k, \chi)}{(2 n-2 k)!(2 \pi x / f)^{2 k-1}}\right. \\
& \\
& \left.+\frac{2 \sqrt{-1} \tau(\chi)}{f} \sum_{k=0}^{\infty} \frac{(2 k)!L(2 k+1, \bar{\chi})}{(2 n+2 k)!} x^{2 k+1}\right\}
\end{aligned}
$$

Proof. Suppose that $\chi(-1)=1$ and $\chi \neq 1, q \in \mathbf{R}$ with $0<q<1$, and $\theta \in \mathbf{R}$ with $|\theta|<2 \pi / f$. By (2.7), (2.8) and Lemma 3, we have
(3.1) $n \sum_{l=1}^{\infty} \frac{\chi(l) q^{l} \cos ([l] \theta)}{[l]^{2 n+1}}-\frac{\theta}{2} \sum_{l=1}^{\infty} \frac{\chi(l) q^{l} \sin ([l] \theta)}{[l]^{2 n}}$

$$
\begin{array}{r}
=n \widetilde{L}_{q}(2 n+1, \chi)+\sum_{j=1}^{n-1} \frac{(-1)^{j} \theta^{2 j}}{(2 j)!}(n-j) \widetilde{L}_{q}(2 n+1-2 j, \chi) \\
+\frac{1}{2} \sum_{j=n+1}^{\infty} \frac{(-1)^{j} \theta^{2 j}}{(2 j)!} \widetilde{\beta}_{2 j-2 n, \chi}(q)
\end{array}
$$

By the definition of $\widetilde{\beta}_{n, \chi}(q)$ and the same reason as that in the proof of Proposition 2, we can see that both sides of (3.1) are uniformly convergent with respect to $q \in(0,1]$ if $|\theta|<2 \pi / f$. Hence we can let $q \rightarrow 1$ in both sides of (3.1). By using the well-known relation

$$
B_{2 j, \chi}=\frac{2(-1)^{j+1} \tau(\chi)}{f}\left(\frac{f}{2 \pi}\right)^{2 j}(2 j)!L(2 j, \bar{\chi})
$$

we have

$$
n \sum_{l=1}^{\infty} \frac{\chi(l) \cos (l \theta)}{l^{2 n+1}}-\frac{\theta}{2} \sum_{l=1}^{\infty} \frac{\chi(l) \sin (l \theta)}{l^{2 n}}
$$

$$
\begin{aligned}
& =n L(2 n+1, \chi)+(-1)^{n} \theta^{2 n}\left\{\sum_{k=1}^{n-1} \frac{(-1)^{k} k L(2 k+1, \chi)}{(2 n-2 k)!\theta^{2 k}}\right. \\
& \left.\quad-\frac{\tau(\chi)}{f} \sum_{m=1}^{\infty} \frac{(-1)^{m} \theta^{2 m}(2 m)!}{(2 m+2 n)!}\left(\frac{f}{2 \pi}\right)^{2 m} L(2 m, \bar{\chi})\right\}
\end{aligned}
$$

By putting $\theta=(2 \pi x / f)$, we get the proof of (1).
Suppose that $\chi(-1)=-1$. By (2.7) and Lemma 3, we have

$$
\begin{aligned}
& \sum_{l=1}^{\infty} \frac{\chi(l) q^{l} \cos ([l] \theta)}{[l]^{2 n}} \\
&= \widetilde{L}_{q}(2 n, \chi)
\end{aligned}+\sum_{j=1}^{n-1} \frac{(-1)^{j} \theta^{2 j}}{(2 j)!} \widetilde{L}_{q}(2 n-2 j, \chi) \quad 1 \infty \sum_{j=n}^{\infty} \frac{(-1)^{j} \theta^{2 j}}{(2 j)!}\left(-\frac{\widetilde{\beta}_{2 j-2 n+1, \chi}(q)}{2 j-2 n+1}\right) . ~ \$
$$

By letting $q \rightarrow 1$, putting $\theta=2 \pi x / f$ and by using the relation

$$
B_{2 j+1, \chi}=\frac{2(-1)^{j} \sqrt{-1} \tau(\chi)}{f}\left(\frac{f}{2 \pi}\right)^{2 j+1}(2 j)!L(2 j+1, \bar{\chi})
$$

we get the proof of (2). Thus we have the assertion.

References

[C-K] D. Cvijović and J. Klinowski, New rapidly convergent series representations for $\zeta(2 n+1)$, Proc. Amer. Math. Soc., 125 (1997), 1263-1271.
[Ka] M. Katsurada, Rapidly convergent series representations for $\zeta(2 n+1)$ and their χ-analogue, Acta Arith., 40 (1999), 79-89.
[Ko] N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory, 14 (1982), 332-339.
[S-1] J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory, 31 (1989), 346-362.
[S-2] _, Another look at the q-analogue from the viewpoint of formal groups, Preprint Ser. in Math. Sciences, Nagoya Univ. (1999-4).
[T-1] H. Tsumura, A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, J. Number Theory, 39 (1991), 251-256.
[T-2] On evaluation of the Dirichlet series at positive integers by q-calculation, J. Number Theory, 48 (1994), 383-391.
[T-3] _, A note on q-analogues of Dirichlet series, Proc. Japan Acad., 75 ser.A (1999), 23-25.
[W] R.C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer-Verlag, 1997.

Department of Management
Tokyo Metropolitan College
Azuma-cho, Akishima-shi
Tokyo 196-8540, Japan
tsumura@tmca.ac.jp

[^0]: Received October 22, 1999.
 Revised March 31, 2000.
 2000 Mathematics Subject Classification: Primary 11M41, 11M06. Secondly 11B68 11M06, 11M35, 33B15.

