
2

Conformal field theory

Conformal invariance of two-dimensional massless scalar field theory was shown
in the previous chapter to associate with the infinite algebra of conserved charges,
the Virasoro algebra. In this chapter we describe the basic building blocks of
any two-dimensional conformal field theory (CFT). The notions of primary and
descendant operators will be introduced and the structure of the Hilbert space
of states will be described. We will discuss and classify certain classes of unitary
CFTs. Crossing symmetry, duality and bootstrap equations will be defined and
applied to computing correlators of CFTs. We then discuss the Verlinde formula
which relates the fusion rules and the S transformation. We will end up with two
examples of CFTs that demonstrate all of the concepts that have been introduced
before. The first one is the theory of a Majorana fermion and the second is the
m = 3 unitary minimal model, which is shown to be the continuum limit of the
two-dimensional Ising model.

Conformal field theory in two dimensions is covered by many review articles
and books. The former include [109] which we use intensively in this chapter,
also [25], [13], [59], [233] and many others.

Among the books that discuss 2d CFT is [140] and books on string theories
[113], [154], [174], [138], [237], [142], [30].

The most complete book on the topic is [77].
The basics of conformal field theory were stated in the seminal paper by

Belavin, Polyakov and Zamolodchikov [33]. This includes the introduction of
primary fields, the behavior of the energy-momentum tensor and the central
charge. Conformal Ward identity and the use of OPEs appears in [93], [95]
and [94].

2.1 Conformal symmetry in two dimensions

The theory of the free massless scalar field in two dimensions was shown to be
invariant under the holomorphic and anti-holomorphic coordinate transforma-
tions

z → z′ = f(z); z̄ → z̄′ = f̄(z̄). (2.1)

Under such a transformation the metric transforms as

ds2 = dzdz̄ → dz′dz̄′ =
∂z′

∂z

∂z̄′

∂z̄
dzdz̄. (2.2)
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18 Conformal field theory

At this point we can understand why we referred to these transformations as
conformal transformations. In general in d space-time dimensions the confor-
mal group is the subgroup of coordinate transformations that leaves the metric
invariant up to a scale, namely,

gμν (x)→ g′μν (x′) = Ω(x)gμν (x). (2.3)

It is obvious from (2.2) that the 2d conformal transformations (2.1) indeed pro-
duce such a variation of the metric. An important property of conformal trans-
formations in any dimension is that they preserve the angle �A · �B√

A 2 B 2 between two

vectors �A and �B.
Starting from flat space, the general infinitesimal coordinate transforma-

tions xμ → xμ + εμ(x) induces a change of the metric ds2 → ds2 + (∂μεν +
∂ν εμ)dxμdxν , so that the condition for conformal transformations reads,

∂μεν + ∂ν εμ =
2
d
(∂ · ε)gμν , (2.4)

where gμν is ημν or δμν for a Minkowskian signature, or Euclidean signature,
respectively.

It is thus obvious that for two-dimensional Euclidean space-time ε = ε(z) and
ε̄ = ε̄(z̄) are the unique solutions of (2.4), which reduces to the Cauchy–Riemann
equation ∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1 .

We would like now to put aside scalar field theory and explore the general prop-
erties of conformal field theories in two dimensions. Any theory with a vanishing
trace of the energy-momentum tensor Tμ

μ = 0, or in complex coordinates Tzz̄ = 0,
has necessarily an independent holomorphically (and anti-holomorphically) con-
served energy-momentum tensor components, namely,

∂̄T ≡ ∂̄Tzz = 0 ∂T̄ ≡ ∂Tz̄ z̄ = 0. (2.5)

This follows trivially from the usual conservation law ∂̄Tzz + ∂Tzz̄ = 0, and its
complex conjugation. It is also clear that in fact there are infinitely many con-
served currents, since g(z)T (z) for any analytic function g(z) is also a holomor-
phically conserved current (we sometimes call any conserved tensor “current”).

We show in the following section that indeed the energy-momentum tensor
T (z) and T̄ (z̄) generate the conformal transformations given in (2.1).

2.2 Primary fields

Conformal invariance constrains the OPEs of the theory. In particular, since T

is holomorphic, the OPE of T (z) with a general operator can be expanded in
terms of a Laurent expansion in integer powers of z. The singular part of the
OPE takes the form,

T (z)Õ(w, w̄) =
∞∑

n=0

1
(z − ω)n+1 Õ

(n)(w, w̄), (2.6)
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2.2 Primary fields 19

where the sum is usually finite, and the operators Õ(n)(w, w̄) have to be deter-
mined. Using radial quantization as in Section 1.7 and the OPE above, we get
for the transformation generated by T (z),

δεÕ(w, w̄) =
∑

n

1
n!

[
(∂nε)Õ(n)(w, w̄)

]
. (2.7)

We now consider operators that transform under conformal transformation in a
way that generalizes the transformation of the metric, (2.2),

O(z, z̄)→ O′(z′z̄′) =
(

∂z′

∂z

)h (
∂z̄′

∂z̄

)h̄

O(z′z̄′). (2.8)

An operator with such conformal transformations is a primary field or a ten-
sor operator with conformal weights (h, h̄), which are sometimes referred to as
the holomorphic and anti-holomorphic conformal dimensions.1 The sum of the
weights h + h̄ is the total dimension that determines the behavior under scal-
ing, whereas h− h̄ is the spin that controls the behavior under rotations. The
infinitesimal transformations that correspond to (2.8) are,

δε,ε̄O(z, z̄) =
[
(h∂ε + ε∂) + (h̄∂̄ε̄ + ε̄∂̄)

]
O(zz̄). (2.9)

This form of transformation implies that the singular part of the OPE of T and
O(w, w̄) reduces to,

T (z)O(w, w̄) =
h

(z − ω)2O(w, w̄) +
1

(z − ω)
∂O(w, w̄). (2.10)

Applying these notions to the free scalar field we find that ∂X(z) has (1, 0)
weights, ∂̄X̄(z̄) has (0, 1) and the weights of : eiαX (z ,z̄ ) : are (α2

2 , α2

2 ).
In Chapter 1 the notion of OPE was discussed in the context of scalar field the-

ory. The generalization to any CFT is straightforward. Normalize the operators
with fixed conformal weights as,

〈Oi(z, z̄)Oj (w, w̄)〉 = δij
1

(z − w)2hi

1
(z̄ − w̄)2h̄ i

, (2.11)

then, for a complete set, the OPE of any pair of such operators is, to leading
singularity,

Oi(z, z̄)Oj (w, w̄) ∼
∑

k

Cijk (z − w)hk −hi −hj (z̄ − w̄)h̄k −h̄ i −h̄ jOk (w, w̄), (2.12)

where Cijk are the product coefficients of the theory.

1 The notion of conformal primary field and its descendants was introduced in [33] and further
discussed in [236].
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20 Conformal field theory

2.3 Conformal properties of the energy-momentum tensor

For the free massless scalar field we found that the OPE of T (z)T (w) is not
of the form shown as (2.6), due to the anomaly term as in (1.71). The form of
T (z)T (w) OPE for any CFT is rather,

T (z)T (w) =
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂w T (w)
(z − w)

, (2.13)

where c is the central charge (or the Virasoro anomaly), a constant that charac-
terizes the theory. The second term represents the dimensions and the third the
property of translations under T . For theories with positive semi-definite Hilbert
space c ≥ 0, as follows from,

< T (z)T (w) >=
c/2

(z − w)4 .

This type of OPE implies the following infinitesimal transformation of T :

δε(z )T (z) =
c

12
∂3ε(z) + 2(∂ε(z))T (z) + ε(z)∂T (z). (2.14)

The corresponding finite transformation T (z)→ T ′(z′) takes the form,

T ′(z′) = (∂z′)2T (z) +
c

12
{z′, z}, (2.15)

where {z′, z} is the Schwarzian derivative,

{f, z} =
2∂3f∂f − 3∂2f∂2f

2∂f∂f
. (2.16)

To derive (2.16), we first note that by applying a second transformation f → ω

we get,

{w, z} = (∂zf)2{w, f}+ {f, z}. (2.17)

Then, we take ω = f + δf , thus obtaining a functional equation,

δf
δ

δf
{f, z} = (∂zf)2 ∂3δf

∂3f
. (2.18)

Expressing the right-hand side as derivatives with respect to z,

1
f ′ (δf)

′′′ − 3f
′′

(f ′)2 (δf)
′′

+

[
3(f

′′
)2

(f ′)3 −
f

′′′

(f ′)2

]
(δf)

′
,

we can integrate the equation to get (2.16). The first term suggests integrating to
f

′′′
/f

′
, the variation of which gives 1/f

′
(δf)

′′′ − f
′′′

/(f
′
)2(δf)

′
, while the second

term suggests −3(f
′′
)2/2(f

′
)2 , the variation of which gives −3f

′′
/(f

′
)2(δf)

′′
+

3(f
′′
)2/(f

′
)3(δf)

′
.

For the massless scalar case T can be written as T (z) = − 1
2 : J(z)J(z) :, as

we saw in (1.5). In fact, as will be discussed in Chapter 3, there is a large class
of theories that share this so-called Sugawara form. For this type of theory the
proof that the finite transformation is of the form of (2.15) is as follows. Recall
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2.4 Virasoro algebra for CFT 21

that as a primary field of weights (1, 0), J(z)→ ∂z ′
∂z J(z′). If we write T (z) =

− 1
2 limz→w (J(z)J(w) + 1

(z−w )2 ) and substitute the transformation of the currents
we end up after some lengthy but straightforward calculation with (2.15).

2.4 Virasoro algebra for CFT

Let us use the Laurent expansion of T for CFT, following (1.60),

T =
∞∑

n=−∞
Lnz−(n+2) T̄ =

∞∑
n=−∞

L̄n

z̄−(n+2) , (2.19)

so that,

Ln =
1

2πi

∮
dzzn+1T (z). (2.20)

The expansion is chosen such that Ln has scale dimension n under z → z/a,
namely, Ln → anLn .

The Virasoro algebra2 can now be derived using the OPE of T (z)T (w) given
in (2.13),

[Ln , Lm ] =
(

1
2πi

)2 ∮
dz

∮
dw[zn+1wm+1 − zm+1wn+1]T (z)T (w). (2.21)

The double integral is performed by fixing w and transforming the difference of
the two

∮
dz integrals into one integral around w,

[Ln , Lm ] =
(

1
2πi

)2 ∮
dz

∮
dw
[
zn+1wm+1 − zm+1wn+1]

[
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂w T (w)
(z − w)

]
=
(

1
2πi

)∮
dw
[
c/12(n3 − n)wn+m−1

+ [2(n + 1)− (n + m + 2)] wn+m+1T (w)
]

=
c

12
(n3 − n)δ(n + m) + (n−m)Ln+m . (2.22)

Performing identical steps for L̄n we get that L̄n obeys the same infinite algebra,
with some central charge c̄, and that [Ln , L̄m ] = 0.

Any CFT is a representation of the Virasoro algebra characterized by c and c̄.
It is straightforward to identify the following properties of the algebra:

� The generators (L±1 , L0) span an SL(2,R) algebra,

[L+1 , L−1 ] = 2L0 [L0 , L±1 ] = ∓L± (2.23)

2 The first use of the Virasoro algebra was by M. Virasoro in the context of the dual resonance
model [212]. Its application to two-dimensional CFT was presented in [33].

https://doi.org/10.1017/9781009401654.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.003


22 Conformal field theory

Table 2.1. The conformal family

Level Weight Fields

0 h φ
1 h+1 L−1φ
2 h+2 L−2φ, L2

−1φ
3 h+3 L−3φ, L−2L−1φ, L3

−1φ
...

...
...

N h+N P(N) fields

� For n > 0, L−n is a raising operator and Ln is a lowering one, since [L0 , Ln ] =
−nLn so that if |ψ> is an eigenstate of L0 , L0 |ψ> = h|ψ> then L0 |Lnψ> =
(h− n)|Lnψ>.

2.5 Descendant operators

From every primary operator φ(z, z̄) one can construct an infinite tower of Vira-
soro descendant operators,

(L−nφ(w, w̄)) =
1

2πi

∮
dz

1
zn−1 T (z)φ(w, w̄). (2.24)

A distinguished descendant operator is the energy momentum tensor T (z) since,

L−21 =
1

2πi

∮
dz

z
T (z)1 = T (0). (2.25)

The set containing the primary field φ(z, z̄) and all its descendant operators
is called a conformal family and it is denoted by [φ]. A conformal family is a
tower of operators where each layer is characterized by its level as shown in
Table 2.1, where P (N) is the number of partitions of N into positive integer
parts, which can be written in terms of the generating function

∏
n=1

1
(1−qn ) =∑∞

N =0 P (N)qN .
We can now use the conformal family to rewrite the expression of the OPE

(2.12) of two primary fields,

φi(z, z̄)φj (w, w̄)

=
∑
k{l l̄}

C
{l l̄}
ijk (z − w)hk −hi −hj +

∑
n ln (z̄ − w̄)h̄k −h̄ i −h̄ j +

∑
n l̄n φll̄

k (w, w̄),

(2.26)

where we denote by φll̄
k (w, w̄) the descendants L−l1 . . . L−ln L̄−l̄1 . . . L̄−l̄n φk (w, w̄)

with the normalization given in (2.11). The product coefficients C
{l l̄}
ijk are given

in terms of those of (2.12) Cijk as,

C
{l l̄}
ijk = Cijkβ

k{l}
ij β̄

k{l̄}
ij , (2.27)
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2.6 Hilbert space of states 23

where β
k{l}
ij are determined by conformal invariance and are functions of c and

hi, hj , hk , and similarly for β̄
k{l̄}
ij . This follows from a detailed analysis that we

do not show here.
The OPEs of any pair of descendant fields can also be deduced from (2.12)

which implies in fact that all the information about the OPE is encoded in the
product coefficients Cijk . Moreover since the structure of (2.26) holds for all the
primaries and their descendants, one can write the so-called fusion algebra for
conformal, families, which takes the form,

[φi ][φj ] =
∑

k

Nk
ij [φk ]. (2.28)

2.6 Hilbert space of states

Our next task is to construct the Hilbert space of states. First we define the
ground state |0> by,

Ln |0>= 0 n ≥ 0. (2.29)

The next step in this program is to build the highest weight states (hws).
Consider the state generated from the vacuum by a primary field φ(z) of
dimension h,

|h> = φ(0)|0> . (2.30)

It is easy to check that for n > 0, [Ln , φ(0)] = 0 since,

[Ln , φ(w)] =
1

2πi

∮
dzzn+1T (z)φ(w) = h(n + 1)wnφ(w) + wn+1∂φ(w). (2.31)

Hence the highest weight state |h> obeys

L0 |h> = h|h> Ln |h> = 0 n > 0. (2.32)

Expanding the primary field φ(z) in a Laurent series
∑

n φnz(n−h) , one can write
the highest weight state symbolically as φh |0>.

Descendant states are generated by applying the descendant operators L−nφ

on the vacuum or alternatively by applying L−n on highest weight states, namely,

L−n |h> = L−nφ(0)|0>= (L−nφ)|0> . (2.33)

It is thus clear that the highest weight states, or equivalently the primary oper-
ators, play a major role in constructing representations of the Virasoro algebra.
In fact one can show that every representation is characterized by a primary
operator. Consider an eigenstate of L0 , L0 |ψ> = hψ |ψ>. Now act on it with the
lowering operator Ln with n > 0. The L0 eigenvalue of the new state Ln |ψ> is
hψ − n. Since we require that the Hamiltonian is bounded from below, L0 has
to be also bounded. This implies that after repeating the lowering process one
finally hits a state that is annihilated by Ln for every n > 0 and hence an hws.
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24 Conformal field theory

It is thus clear that any state in a positive Hilbert space is a linear combination
of hws, and their descendants. The representation given in Table 2.1 is referred
to as the Verma module. Denoting it by V(c, h) and its analogous representation
for the anti-holomorphic Virasoro algebra by V̄(c̄, h̄), the Hilbert space of the
theory is a direct sum of the products V(c, h)⊗ V̄(c̄, h̄), namely,

H =
∑
h,h̄

V(c, h)⊗ V̄(c̄, h̄). (2.34)

The Verma module may be reducible in the sense that there is a submodule that
is by itself a Verma module. Such a submodule whose states transform amongst
themselves under any conformal transformation, is built from a |hnull>. The
latter is both an hws., namely Ln |hnull>= 0 for n > 0, as well as a descendant.
Such a state is called null state or null vector, motivated by what follows. It
generates its own Verma module which is included in the parent module. It is
orthogonal to the whole Verma module as well as to itself <hnull|hnull>= 0,
since <hnull|L−k1 . . . L−kn

|h> =<h|Lkn
. . . Lk1 |hnull>

∗= 0, and in particular it
has a zero norm <hnull|hnull>= 0 and similarly also its descendants. The null
state corresponds to a null operator which is simultaneously a primary and a
secondary field.

Let us now demonstrate the construction of a null vector. Consider a general
linear combination of the states of level 2,

L−2 |h> + aL2
−1 |h>, (2.35)

we would like to check whether for certain values of the mixing coefficient a, this
state is a null state. If indeed it is |null>, then so is the state [Ln |null>]. In fact
it is easy to verify that at level 2, one has to check these consistency conditions
only for L1 and L2 . Now using the Virasoro algebra we find that,

[L1 , L−2 ] |h> + a
[
L1 , L

2
−1
]
|h> = (3 + 2a(2h + 1))L−1 |h>,

[L2 , L−2 ]|h> + a
[
L2 , L

2
−1
]
|h> =

(
4h +

c

2
+ 6ah

)
|h> . (2.36)

It is thus clear that for the following values of a and c,

a = − 3
2(2h + 1)

c =
2h

2h + 1
(5− 8h), (2.37)

the linear combination state (2.35) is a null state. In the unitary case we have
h and c positive (see next section). Hence in this example h < 5

8 .
An irreducible representation of the Virasoro algebra can be constructed from

a Verma module that contains a null vector by a quotient procedure, taking
out of the Verma module the null module. In the next section we discuss this
construction.
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2.7 Unitary CFT and Kac determinant 25

2.7 Unitary CFT and Kac determinant

Unitarity is obviously lost if there are negative norm states in the Verma module.
Hence, our task is to derive the conditions for having a negative norm state. In
the basis of the Verma module,

L−k1 . . . L−ki
|h>≡ |s> (1 ≤ k1 ≤ . . . ≤ ki), (2.38)

the matrix of inner products Iss′ =<s|s′> is block diagonal with blocks I(N ) for
states at level N(

∑
i ki = N). For a given Verma module the elements of I are

functions of (h, c). It is easy to realize that unitarity dictates c > 0 and h > 0.
This follows from <h|LnL−n |h> = [2nh + 1/12cn(n2 − 1)] <h|h>, which is pos-
itive for n = 1 only if h > 0 and for large enough n only for c > 0. To determine
the full set of constraints for unitarity let us analyze further the properties of I.
A general state |ŝ>=

∑
k ck |s> has a norm <ŝ|ŝ>= ĉ†Iĉ, with ĉ the vector of

the ck . Now since I is hermitian it can be diagonalized by a unitary matrix U

so that the norm can be written as <ŝ|ŝ>=
∑

k lk |tk |2 where t = Uĉ and lk are
the eigenvalues of I, which are real. It is thus clear that there are negative norm
states if and only if I has negative eigenvalues. A vanishing eigenvalue indicates
a null vector which means a reducible Verma module.

For the low lying levels these matrices take the following form:

I(0) = 1
I(1) = 2h

I(2) =
(

4h(2h + 1) 6h
6h 4h + c/2

)
. (2.39)

The derivation of the various elements is straightforwad, for instance,

I(2)
11 = <h|L1L1L−1L−1 |h> =<h|L1L−1L1L−1 |h> + 2 <h|L1L0L−1 |h>

= 4 <h|L1L−1L0 |h> + 2 <h|L1L−1 |h> = 8h2 + 4h. (2.40)

The determinant of I(2) is given by

det[I(2) ] = 32(h− h1,1)(h− h1,2)(h− h2,1), (2.41)

where h1,1 = 0 and h1,2 , h2,1 are (1/16)[(5− c)±
√

(1− c)(25− c)]. The trace
of I(2) is Tr[I(2) ] = 8h(h + 1) + c/2. Since the trace and the determinant are the
sum and product of the two eigenvalues, unitarity is lost if either the trace or
the determinant is negative.

The determinant for I(N ) at general level N , which is referred to as the Kac
determinant,3 has the form

det[I(N ) ] = αN

∏
pq≤N

[h− hp,q (c)]
P (N −pq)

, (2.42)

3 The proof of the Kac determinant is detailed in [89], [206] and [95].
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where αN are constants independent of (c, h) and hp,q (c) can be expressed in

terms of m = − 1
2 ±

1
2

√
25−c
1−c as,

hp,q (c) =
[(m + 1)p−mq]2 − 1

4m(m + 1)
. (2.43)

Note that we can choose either the plus or the minus sign in the expression for
m, as their interchange is like interchanging p with q, which does not change the
determinant. Note also that hp,q is invariant under p→ m− p, q → m + 1− q.
Let us also mention that for N = 2 the result is identical to (2.41).

In the (h, c) plane the determinant vanishes along the curves h = hp,q (c) which
are therefore called the vanishing curves. If the determinant (2.42) is negative it
means that there is an odd number of negative eigenvalues and hence the corre-
sponding Virasoro representation is not unitary. If the determinant is vanishing
or positive one needs to further analyze the determinant as follows:

� For c > 1 and h > 0 it is straightforward to show that the determinant does
not vanish.

In the domain 1 < c < 25 the value for m has an imaginary part. Thus hp,q are
complex for p 	= q, and as they come in complex conjugate pairs the product of
the appropriate two factors in the determinant is positive. For p = q the value
of hp,q is negative. Thus the determinant is positive in that domain.

For c > 25 the hp,q are negative.

For large h the matrix is dominated by its diagonal elements.

Since these elements are positive, the eigenvalues for large h are all pos-
itive. Now since the determinant never vanishes in the region considered
(h > 0, c > 1) all the eigenvalues have to be positive on the entire region.

Note that in I(2) the off-diagonal element is larger at large h than the 22
element, but still the determinant is dominated at large h by the diagonal
elements, and thus also the eigenvalues, as a 2 × 2 matrix.

� For c = 1 we have hp,q = (p− q)2/4, and so the determinant is never negative.
However, it vanishes when h = n2/4 for some integer n.

� For 0 < c < 1, h > 0 a closer look at the determinant is required. We draw
hp,q (c) in Fig. 2.1.

By expanding the curves around c = 1 one can show that any point in the
region can be connected to the right of c = 1 by crossing a single vanishing
curve. The vanishing of the determinant is due to one eigenvalue that reverses
its sign which implies that there are negative norm states at any point in the
region that are not on the vanishing curve. In fact it turns out that there are
additional negative norm states at points along the vanishing curve except at
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Fig. 2.1. hp,q (c) as a function of c for various values of (p, q).

certain points where they intersect. On these points the central charge c is a
solution of m = − 1

2 + 1
2

√
25−c
1−c for the cases of m an integer from 3 up,

c = 1− 6
m(m + 1)

, m = 3, 4, . . . (2.44)

For each such unitary minimal model 4 there are m(m− 1)/2 primary fields
with h given by (2.43) where p, q are integers satisfying 1 ≤ p ≤ m− 1, 1 ≤
q ≤ p. The simplest of those models is the Ising model, given in the section
m = 3, c = 1/2 with h1,1 = 0, h2,1 = 1/2, h2,2 = 1/16. It will be described in
Section 2.13.

4 The minimal models were presented in [33] and discussed in [95].
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2.8 Characters

The structure of the Verma module, and in particular the degeneracy of states
at each level, is captured in the generating function χ(c,h)(τ), the character of
the Verma module, defined by,

χ(c,h)(τ) = Tr[qL0 − c
2 4 ] =

∞∑
n=0

dim(h + n)qh+n− c
2 4 , (2.45)

where q ≡ e2πiτ , τ is a complex number, and dim(n + h) is the number of linearly
independent states of the module at level n. The latter is equal to P (n) the
partitions of n in the generic case, but may be smaller when there are null
states. For |q| < 1, namely, τ in the upper half plane, the series is uniformly
convergent, since |q| < 1 is the domain of convergence of the inverse of the Euler
function ϕ(q) defined by,

1
ϕ(q)

=
∞∏

n=1

1
1− qn

=
∞∑

n=0

P (n)qn . (2.46)

In terms of this function the character of a generic Verma module is given by,

χ(c,h)(τ) =
qh− c

2 4

ϕ(q)
. (2.47)

The character can be expressed also in terms of the Dedekind η(τ) function,

η(τ) ≡ q
1

2 4 ϕ(q) = q
1

2 4

∞∏
n=1

(1− qn ), (2.48)

in the form

χ(c,h)(τ) =
qh+ 1−c

2 4

η(τ)
. (2.49)

To get the character of a minimal model one has to determine the irreducible
Verma module using the quotient procedure discussed in the previous section.
We do not give the derivation here, just the final result, which is,

χ(c(p, p′), hrs(p, p′)) =
qh− c

2 4

ϕ(q)
=
∑
n∈Z

[
q

( 2 p p ′n + p r −p ′s ) 2

4 p p ′ − q
( 2 p p ′n + p r + p ′s ) 2

4 p p ′
]

, (2.50)

where

c(p, p′) = 1− 6
(p− p′)2

pp′
, (2.51)

and

hrs(p, p′) =
(pr − p′s)2 − (p− p′)2

4pp′
. (2.52)

Note that these are the non-unitary minimal models, except for the cases p− p′ =
±1, which coincide with the cases of the previous section with the identification
of p = m or p′ = m.
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2.9 Correlators and the conformal Ward identity

Now that the Hilbert space of states has been analyzed we would like to determine
the correlation functions of all possible operators of a given CFT. Naturally,
we first investigate correlators of primary fields and then those also involving
descendents.

A very useful tool for determining correlators are the symmetries of the system.
In the present case we obviously implement conformal invariance. In particular
we first determine the consequences of the SL(2, C) Ward identities. Recall that
the vacuum is annihilated by L0,±1 and L̄0,±1 , and hence is invariant under
SL(2, C), namely, U |0>= |0> for U ∈ SL(2, C). It thus follows that,

<0|U−1φ1(z1 , z̄1)U . . . U−1φn (zn , z̄n )U |0>=<0|φ1(z1 , z̄1) . . . φ− n(zn , z̄n )|0> .

(2.53)
Recall that by definition a primary field of dimension h transforms under an
SL(2, C) transformation z → f(z) = az+b

cz+d (with ad− bc = 1), as,

U−1φ(z, z̄)U = (∂f(z))hφ(f(z), z̄). (2.54)

Let us mention that SL(2, C) invariance holds for CFT in any dimension.
The invariance of the vacuum implies, in infinitesimal form,

<0|[Lk , φ1(z1 , z̄1)] . . . φn (zn , z̄n )|0> + . . . <0|φ1(z1 , z̄1) . . . [Lk , φn (zn , z̄n )]|0>= 0,
(2.55)

for k = 0,±1. Using [Lk , φ(z, z̄)] = h(k + 1)zkφ(z, z̄) + zk+1∂φ(z, z̄) we get Ward
identities in terms of differential equations:

k = −1 :
∑

i

∂i <0|φ1(z1 , z̄1) . . . φn (zn , z̄n )|0>= 0

k = 0 :
∑

i

(zi∂i + hi) <0|φ1(z1 , z̄1) . . . φn (zn , z̄n )|0>= 0

k = +1 :
∑

i

(z2
i ∂i + 2zihi) <0|φ1(z1 , z̄1) . . . φn (zn , z̄n )|0>= 0. (2.56)

These Ward identities are associated with the invariance under translations,
dilations and special conformal transformations. Applying these equations to the
two point function one finds that,

G2(z1 , z̄1 , z2 , z̄2) ≡<0|φ1(z1 , z̄1)φ1(z2 , z̄2)|0>=
c2

(z1 − z2)2h1 (z̄1 − z̄2)2h̄1
,

(2.57)
where c2 is a constant, to be put to 1 in the normalization (2.11). Note also
that when taking two different fields φ1 and φ2 , SL(2, C) implies that h1 = h2

is necessary for a non-zero two-point function.
In a similar manner the three-point function is given by,

G3(zi, z̄i) = c123

(
1

zh1 +h2 −h3
12 zh1 +h3 −h2

13 zh2 +h3 −h1
23

)(
z → z̄, h→ h̄

)
, (2.58)

https://doi.org/10.1017/9781009401654.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.003


30 Conformal field theory

1

2

3

4

1

2

3

4

w

w

w

w

z

w

w

w
w

Fig. 2.2. Integration along C that bounds all the operators.

where zij = zi − zj and c123 is the correpsonding product coefficient defined in
(2.12). Using the SL(2C) invariance one can set the points z1 , z2 , z3 at ∞, 1, 0,
respectively so that the constant c123 is determined from the corresponding corre-
lator via limz1 ,z̄1 →∞

[
z2h

1 z̄2h̄
1 G3

]
= c123 . For Gn with n > 3 the global conformal

transformations do not fully determine the correlator. For instance the four-point
function G4 can be written using these transformations as,

G4(zi, z̄i) = f(Z, Z̄)

⎡⎣⎛⎝∏
i<j

z
−(hi +hj )+h/3
ij

⎞⎠(z → z̄, h→ h̄
)⎤⎦ , (2.59)

where h =
∑4

i=1 hi and the cross ratio Z is defined as Z = z1 2 z3 4
z1 3 z2 4

, which is an
SL(2, C) invariant.

For a general n-point function, denoting the power of zij by −hij , we get,

hij =
[

2
n−2 (hi + hj )− 2

(n−1)(n−2) h
]

for n ≥ 3.
So far we have implemented the global Ward identities. To get the local Ward

identity one performs a conformal transformation of an n-point function of pri-
mary fields Gn . This is achieved by integrating ε(z)T (z) along a contour C which
bounds a region that includes all the operators (see Fig. 2.2)

Now using analyticity one can deform the contour into a sum of countours
each of which encircles one operator. The result of the integral is therefore,

〈∮
dz

2πi
ε(z)T (z)φ(w1 , w̄1) . . . φ(wn, w̄n )

〉
=

n∑
i=1

〈
φ(w1 , w̄1) . . .

∮
dz

2πi
ε(z)T (z)φ(wi, w̄i) . . . φ(wn, w̄n )

〉

=
n∑

i=1

〈φ(w1 , w̄1) . . . δεφ(wi, w̄i) . . . φ(wn, w̄n )〉 . (2.60)
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Using (2.9) we substitute now for δεφ(wi, w̄i) = ε(wi)∂ + h∂ε(wi)φ(wi, w̄i).
Since this holds for arbitrary ε we can get a local form of the Ward identity,

〈T (z)φ(w1 , w̄1) . . . φ(wn, w̄n )〉 =
n∑

i=1

(
hi

(z − wi)2 +
1

(z − wi)
∂

∂wi

)
〈φ(w1 , w̄1) . . . φ(wn, w̄n )〉 , (2.61)

similar to the transition from (2.9) to (2.10). It is thus clear that the correlation
function above is a meromorphic function of z with singularities at the positions
of the operators.

A useful tool for computing correlators is the use of null vectors. Rather than
discussing this for a general null vector we demonstrate this procedure on a level
two null vector. Recall that in models with a primary of weight h such that c =

2h
2h+1 (5− 8h) there is a null vector at level two of the form (L−2 + aL2

−1)Φ
(h) = 0

where a = − 3
2(2h+1) . As L−1φ

(h)(z) = ∂φ(h)(z) one can trade L−2φ
(h)(z) with

−a∂2φ(h)(z). Now L−2φ
(h)(w) is given by,

L−2φ
(h)(w) = limz→w

[
T (z)φ(h)(w)− hφ(h)(w)

(z − w)2 −
∂w φ(h)(w)
(z − w)

]
. (2.62)

Substituting this into (2.61) one finds the following differential equation,

−a∂2
w 1
〈φ(w1 , w̄1) . . . φ(wn, w̄n )〉

=
n∑

i �=1

(
hi

(w1 − wi)2 +
1

(w1 − wi)
∂

∂wi

)
〈φ(w1 , w̄1) . . . φ(wn, w̄n )〉 . (2.63)

This exact differential equation will enable us to compute the four-point function
for the Ising model as we discuss in Section (2.13).

Next we would like to deduce the implications of the associativity on correla-
tion functions of primaries and descendant operators.

2.10 Crossing symmetry, duality and bootstrap

The complete package of information that specifies a CFT is its Virasoro anomaly
c, the set of primary fields φi(z, z̄), with their weights (hi, h̄i) and the operator
product coefficients Cijk . Hence, to determine all consistent CFTs one has to find
all the allowed sets of such data. The latter have to comply with the constraints
that follow from confomal symmetry as well as with the associativity of the
operator algebra. To study the implications of associativity it is useful to consider
the four-point function,

〈φi(w1 , w̄1)φj (w2 , w̄2)φk (w3 , w̄3)φl(w4 , w̄4)〉 . (2.64)

The idea is to compare the computation of this correlator using the OPE of φi

and φj and of φk and φl , with those of φi and φk and of φj and φl , namely
calculation where (z1 → z2), (z3 → z4) versus one in which (z1 → z3), (z2 → z4).
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The requirement that the two ways of computing coincide, referred to as crossing
symmetry, is expressed in Fig. 2.3.5

Using conformal transformations, we can relate the diagram on the left-hand
side of Fig. 2.3 to the diagram drawn in Fig. 2.4, which corresponds to the
sum of the contributions of intermediate states belonging to the conformal fam-
ily [φp ] with the four-point function of operators located at (w1 , w2 , w3 , w4) =
(0, z, 1,∞). Note that in such a situation, z is actually also the cross ratio Z. We
denote this amplitude by the conformal block Fkl

ij (m|z)F̄kl
ij (m|z̄) which depends

on the Virasoro anomaly of the theory and the dimensions of all the operators
involved. In terms of conformal blocks the crossing symmetry condition takes
the form, ∑

m

Cijm CklmFkl
ij (m|z)F̄kl

ij (m|z̄)

=
∑

n

CijnCklnF j l
ik (n|1− z)F̄ j l

ik (n|1− z̄). (2.65)

For a given set of conformal blocks (2.65) is a set of equations that determine the
Cijk and the weights. The general set of solutions of these equations is not known,
but for a particular class of theories like the minimal models these equations can
be solved.

5 Crossing symmetry, duality and bootstrap was discussed in [33].
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2.11 Verlinde’s formula

The fusion rules (2.28), namely,

[φi ][φj ] =
∑

k

Nk
ij [φk ],

constitute a commutative associative algebra. The commutativity implies that
Nk

ij = Nk
ji and the associativity means that,∑

k

Nk
ijN

m
kl =

∑
k

Nm
ik Nk

jl . (2.66)

Using matrix notation in which Nk
ij = (Ni)k

j the associativity translates into
the commutativity of the matrices, namely NiNl = NlNi . Thus, the matrices
Ni are also members of an associative commutative algebra. Hence they can
be diagonalized simultaneously to form a one-dimensional representation. This
implies that there is a common matrix S̃,

Nk
ij =

∑
lm

S̃l
j λ

(l)
i δm

l (S̃−1)k
m =

∑
l

S̃l
j λ

(l)
i (S̃−1)k

l , (2.67)

where we denote the eigenvalues of Ni by λ
(l)
i . If j is the vacuum state j = 0 then

Nk
i0 = δk

i , if all the representations labeled by i are irreducible. We now multiply
from the right by S̃n

k to get,

Nk
i0 S̃

n
k =

∑
l

S̃l
0λ

(l)
i (S̃−1)k

l S̃n
k

S̃n
i =

∑
l

S̃l
0λ

(l)
i δn

l = S̃n
0 λ

(n)
i , (2.68)

which means that λ
(n)
i = S̃ n

i

S̃ n
0

and therefore,

Nk
ij =

∑
l

S̃l
j S̃

l
i (S̃

−1)k
l

S̃l
0

. (2.69)

Now, for the reader who knows about the τ parameter and the characters
(discussed in Section 2.8), we recall that under the S-transformation τ → − 1

τ

the characters of a given CFT transform as,

χj (−
1
τ

) =
∑

k

Sk
j χk (τ). (2.70)

Verlinde’s formula6 states that the matrix S̃ above is identical to the S-
transformation matrix,

S = S̃. (2.71)

This is a remarkable relation.

6 The Verlinde formula was introduced in the seminal paper [210].
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2.12 Free Majorana fermions – an example of a CFT

The theory of free massless fermions in two dimensions is an example of a 2d
conformal theory of the utmost importance. In this section we describe this
theory in detail following the steps taken in the general analysis of conformal
field theories. The well-known Dirac action of a massless free fermion in two
Euclidean dimensions is,

S =
1
4π

∫
d2xΨ̄ 	∂Ψ. (2.72)

Expressing the Dirac fermion in terms of chiral (or Weyl) fermions, a left ψ and
a right ψ̃, with Ψ ≡ (ψ, ψ̃), and using the fact that in two dimensions one can
take γ0 = σ2 and γ1 = σ1 , we rewrite the action as,

S =
1
4π

∫
d2z(ψ†∂̄ψ + ψ̃†∂ψ̃). (2.73)

We remind the reader that ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ . The equations of motion are,

∂̄ψ = 0 ∂ψ̃ = 0 → ψ = ψ(z) ψ̃ = ψ̃(z̄). (2.74)

In analogy to the symmetries of the scalar field it is straighforward to real-
ize that the action is invariant under left holomorphic chiral and right anti-
holomorphic transformations,

ψ → ψ′ = eiα(z )ψ ψ̃ → ψ̃′ = eiα̃(z̄ )ψ̃. (2.75)

The corresponding “affine current algebra” currents, given by,

J = iψ†ψ J̄ = iψ̃†ψ̃, (2.76)

are holomorphically and anti-holomorphically conserved.
In addition the theory is obviously invariant under conformal transformations

z → f(z), z̄ → f̄(z̄).
Dirac (or Weyl) fermions can be further decomposed into Majorana (or Weyl–

Majorana) fermions as Ψ = 1√
2
(Ψ1 + iΨ2) (or ψ = 1√

2
(ψ1 + iψ2)). Substituting

these, the action reads,

S =
1
8π

∫
d2z

(
2∑

i=1

ψi∂̄ψi + ψ̃i∂ψ̃i

)
. (2.77)

From this point on we discuss the theory of single Majorana fermions, namely χ

and χ̃ are a left and a right Weyl–Majorana fermion with the action,

=
1
8π

∫
d2z(χ∂̄χ + χ̃∂χ̃). (2.78)
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The equations of motion are still as in (2.74) so that χ is a holomorphic
function and χ̃ is an anti-holomorphic one (their extensions, as they are real on
the real line).

Before spelling out the conformal structure of the theory we pause for a
moment with the complex coordinate formulation and discuss canonical quanti-
zation in two dimensions with a Minkowski signature. The conjugate momentum
to χ is πχ = ∂L

∂0 χ = 1
2 χ, and as we are dealing with a real field {πχ , χ} has a factor

1
2 multiplying a delta function,which gives,

{χ(x1 , x0), χ(y0 , y1)}|x0 =y0 = δ(x1 − y1). (2.79)

Combining a pair of two Majorana fermions (each consisting of two Weyl–
Majorana) into a Dirac fermion, one finds for the latter the usual anti-
commutation relations, namely,

{Ψ†(x1 , x0),Ψ(y1 , y0)}|x0 =y0 = δ(x1 − y1) {Ψ(x1 , x0),Ψ(y1 , y0)}|x0 =y0 = 0.
(2.80)

The Noether currents associated with conformal transformations, namely the
components of the energy-momentum tensor, are given by,

T (z) = −1
2

: χ∂χ : T̄ (z̄) = −1
2

: χ̃∂̄χ̃ :, (2.81)

where : χχ : the normal ordered product, stands for the product with the sub-
traction of its OPE. The latter is given by,

χ(z)χ(w) =
1

z − w
χ̃(z)χ̃(w) =

1
z̄ − w̄

. (2.82)

Using this basic OPE in T (z)χ(w) one finds,

T (z)χ(w) =
1
2

χ(w)
(z − w)2 +

∂χ(w)
z − w

, (2.83)

which implies that χ is a primary field of conformal dimensions of ( 1
2 , 0), and sim-

ilarly χ̃ with (0, 1
2 ). The Virasoro anomaly, which comes as usual from T (z)T (w),

is c = 1
2 , and c̄ = 1

2 from T̄ (z)T̄ (w).
Recall that the energy-momentum tensor of the scalar field (1.27) takes the

form of a bilinear of the “current algebra” currents (1.24). We want to examine
now if such a construction can be applied also for the fermionic fields. Since for
Weyl–Majorana fermions there are no such currents it is left only to check for
the T (z) of Weyl fermions. Let us note first the OPE of the currents and the
Weyl fermions that read,

J(z)ψ(w) = −i
ψ(z)

(z − w)
J(z)ψ†(w) = i

ψ†(z)
(z − w)

, (2.84)

where J = i : ψ†ψ : with our conventions.
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Using this OPE one finds,

T (z) = −1
2

: J(z)J(z) := −1
2
limz→w

[
J(z)J(w) +

1
(z − w)2

]

= −1
2
limz→w limε→0

[
iJ(z)

(
ψ†(w − ε)ψ(w + ε) +

1
2ε

)
+

1
(z − w)2

]

= −1
2
limz→w limε→0

[
−ψ†(z)ψ(w + ε)

[z − (w − ε)]
+

ψ†(w − ε)ψ(z)
[z − (w + ε)]

+
1

(z − w)2

]

= −1
2
[
ψ†∂ψ − ∂ψ†ψ

]
. (2.85)

This construction of the energy-momentum tensor in terms of a normal ordered
product of two currents, which is known as the Sugawara construction, will play
a key role in the discussion in Chapter 4.

The mode expansion of the Weyl–Majorana fermion takes the form,

ψ =
∑

r∈Z+ν

ψr

zr+ 1
2

ψr =
1

2πi

∮
dzzr− 1

2 ψ(z), (2.86)

with z = e−iw , ν is related to the boundary conditions as

ψ(w + 2π) = e2πiν ψ(w), (2.87)

so that there are two types of fermions:

Ramond fermions ν = 1
2 ↔ periodic boundary condition

Neveu–Schwarz fermions ν = 0 ↔ anti-periodic boundary condition.

The anti-commutation relations of the fermionic modes follow straightforwardly
upon using (2.86) and the OPEs (2.82), namely,

{ψr , ψs} = δr+s . (2.88)

The form (2.82) holds for the periodic case. For the anti-periodic case there is
an extra factor of 1

2 (
√

z
w +

√
w
z ), which tends to 1 as z → w.

The canonical quantization conditions in terms of real space-time coordinates
take the following form,

{ψ(x1), ψ(y1)}|x0 =y 0 =
1
2
δ(x1 − y1), (2.89)

since ψ is the conjugate momentum of itself. Combining two Majorana fermions
into a Dirac one yields the following anti-commutation relations for the Dirac
fermions,

{Ψ†(x1),Ψ(y1)}|x0 =y 0 = δ(x1 − y1) {Ψ(x1),Ψ(y1)}|x0 =y 0 = 0, (2.90)

so that now Ψ† is the conjugate momentum of Ψ.
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2.13 The Ising model – the m= 3 unitary minimal model

The first unitary minimal model with m = 3 has c = 1/2, just like the Majorana
fermion discussed above. We now analyze the primaries of this model, their fusion
rules and their correlators. Comparing the latter with correlation functions of
the Ising model,7 we show that in fact the m = 3 unitary minimal model is the
continuum limit of the Ising model. Recall that the set of primaries of the m = 3
model are characterized by the following conformal weights:

h1,1 = 0 h2,1 =
1
2

h2,2 =
1
16

, (2.91)

which determine the two-point functions,〈
Φ(1/2)(z, z̄)Φ(1/2)(w, w̄)

〉
=

1
|z − w|2〈

Φ(1/16)(z, z̄)Φ(1/16)(w, w̄)
〉

=
1

|z − w|1/4 , (2.92)

where Φ(h)(z, z̄) = φ(h)(z)φ̄(h)(z̄). It turns out that at the critical point of the
Ising model, the two-point function of the spin operator σ at a lattice point n and
at the origin behaves like < σnσ0 >∼ 1

|n |1 / 4 . Thus in the continuum, it has the

same “critical exponent” as that of Φ(1/16) , and similarly the Greens function of
the energy density falls like < εnε0 >∼ 1

|n |2 , namely like the two-point function
of Φ(1/2) .

There are additional properties of the m = 3 unitary model that can be shown
to match those of the Ising model. Here we demonstrate this with the determi-
nation of the four-point function of Φ(1/16) , namely,〈

Φ(1/16)(z1 , z̄1) . . . Φ(1/16)(z4 , z̄4)
〉

. (2.93)

From equation (2.63) we have that⎡⎣4
3
∂2

w 1
−

4∑
i �=1

(
1/16

(w1 − wi)2 +
1

(w1 − wi)
∂

∂wi

)⎤⎦ 〈φ(w1 , w̄1) . . . φ(w4 , w̄4)〉 = 0,

(2.94)
where φ denotes Φ(1/16) .

Using the global Ward identities we express G4 as in (2.59),

G4(z1 , z̄1 . . . z4 , z̄4) = f̃(Z, Z̄)
[
(z12z13z14z23z24z34)

−1/24 (C.C.)
]
, (2.95)

where Z = z1 2 z3 4
z1 3 z2 4

. Using also z1 4 z2 3
z1 3 z2 4

= 1−Z, we can rewrite as,

G4(z1 , z̄1 . . . z4 , z̄4) = f̃(Z, Z̄)
[
(z13z24)

−1/8 [Z (1−Z)]−1/24 (C.C.)
]
. (2.96)

7 The two-dimensional Ising model has a long history. It was discussed in [137]. The relation
to Majorana fermions was discussed in [187].
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Anticipating the result of the Ising model, we actually write,

G4(z1 , z̄1 . . . z4 , z̄4) = f(Z, Z̄).
[
[z13z24Z (1−Z)]−1/8 (C.C.)

]
. (2.97)

If we now substitute this ansatz into (2.94) we find the following differential
equation for f , [

Z(1−Z)∂2 + (1/2−Z)∂ + 1/16
]
f(Z, Z̄) = 0. (2.98)

A similar equation holds for Z̄. The solutions of this differential equation are
f1,2(Z) =

(
1±
√

1−Z
)1/2

and so finally the four-point function takes the form,

G4(z1 , z̄1 . . . z4 , z̄4) =
∣∣∣∣( z13z24

z12z23z34z34

)∣∣∣∣1/4 (
|f1(Z)|2 + |f2(Z)|2

)
, (2.99)

where the unique combination is dictated by the requirement for a single value.
This is identical to the result found in the Ising model for G4 .

Note also that f(1−Z, 1− Z̄) is a solution, a result of the symmetry under
the interchange of z1 with z3 .

Note also that although Φ(1/2) is a free fermion, Φ(1/16) cannot be constructed
in a local way from the fermion.
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