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SUMMARY

Tropical forests are both important stores of carbon
and among the most biodiverse ecosystems on the
planet. Reducing emissions from deforestation and
degradation (REDD) schemes are designed to mitigate
the impacts of climate change, by conserving tropical
forests threatened by deforestation or degradation.
REDD schemes also have the potential to contribute
significantly to biodiversity conservation efforts within
tropical forests, however biodiversity conservation and
carbon sequestration need to be aligned more closely
for this potential to be realized. This paper analyses the
relationship between tree species diversity and above-
ground biomass (AGB) derived from 1-ha tree plots
in Central African rainforests. There was a weakly
significant correlation between tree biomass and tree
species diversity (r = 0.21, p = 0.03), and a significantly
higher mean species diversity in plots with larger AGB
estimates (M = 44.38 species in the top eight plots,
compared to M = 35.22 in the lower eight plots). In
these Central African plots, the relationship between
tree species diversity and AGB appeared to be highly
variable; nonetheless, high species diversity may often
be related to higher biomass and, in such cases, REDD
schemes may enhance biodiversity by targeting species
diverse forests.

Keywords: biomass, Central Africa, REDD, species diversity,
tropical forests

INTRODUCTION

Deforestation and forest degradation, particularly in tropical
regions, are significant contributors to two of the most
pressing global environmental challenges, namely biodiversity
loss and climate change (Strassburg et al. 2009; Talbot
2010). Tropical forests are the most species diverse terrestrial
ecosystems (Parmentier et al. 2007); the majority of the 34
global biodiversity hotspots identified worldwide occur within
tropical forests (Mittermeier et al. 2004). Tropical forests are
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also some of the most important natural sinks of carbon,
accounting for as much as 40% of the carbon stored as
terrestrial biomass worldwide, and thus playing a fundamental
role in the global carbon cycle (Philips et al. 1998; Pan et al.
2011).

The spatial distribution of biomass and biodiversity is
influenced by a range of environmental factors such as
climate, soil and disturbance (Talbot 2010; Thompson et al.
2012). Experimental data and direct observation of ecosystems
have revealed positive relationships between species diversity,
biomass and productivity (Tilman et al. 1997; Erskine et al.
2006; Cardinale et al. 2007; Midgley et al. 2010). However, it is
difficult to examine these relationships in complex ecosystems
such as tropical forests, and there is still considerable debate
regarding the extent of the relationship between biomass and
diversity within forest ecosystems (Szwagrzyk & Gazda 2007;
Talbot 2010; Thompson et al. 2012).

Tropical forests are predominantly located in developing
countries and are often subject to activities such as logging
and conversion to agriculture (Lewis 2006). Africa has some
of the highest rates of net forest loss worldwide (FAO [Food
and Agriculture Organization of the United Nations] 2010)
with Western and Central Africa estimated to having the
highest global rates of primary forest loss over the last 20
years (FAO 2010). The fragmentation of tropical forests
may be the single greatest threat to global biodiversity (Hill
& Curran 2003). Deforestation and degradation of tropical
forests are also significant contributors to climate change and
within many tropical countries are the largest source of carbon
emissions (Gibbs et al. 2007; Pan et al. 2011). Saatchi et al.
(2011) estimated that deforestation and forest degradation,
located mainly in the tropics, contributed 12–20% of global
greenhouse gas emissions over the last 20 years.

Biodiversity and its relationship with the carbon cycle has
become an important consideration in international efforts
to mitigate the loss of climate change, through reducing
the conversion of natural ecosystems (Midgley et al. 2010).
The United Nations programme for Reducing Emissions
from Deforestation and Forest Degradation (UN–REDD) is
focused on maintaining carbon storage within tropical forests
in developing countries (Gibbs et al. 2007). In order for REDD
to be effectively implemented, accurate estimates of forest
carbon stocks are required (Miles & Dickson 2010; Maniatis
et al. 2011). Above-ground biomass (AGB) estimates provide
information on the location of sources and sinks of carbon,
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Table 1 Locations, area, number of plots, survey years and main forest types present for the sites used in the study. Forest types based on
Letouzey (1985) and Kindt et al. (2011).

Site Country Latitude/ longitude Mean
annual
rainfall
(mm)

Total
area
(km2)

No. of
plots
(n)

Survey
year

Main forest types

Campo Ma’an
National Park

Cameroon 02°09′–02°53′ N:
09°48′–10°25′ E

2800 2700 3 2002 Atlantic Biafran forest, Atlantic
littoral forest and swamp forest

Ejagham Forest
Reserve

Cameroon 05°19′–05°50′ N:
08°50′–09°08′ E

3500 750 2 2002 Atlantic Biafran forest and
Atlantic evergreen forest

Takamanda
National Park

Cameroon 05°59′–06°21′ N:
09°11′–09°30′ E

2400 675 10 2001 Guineo-Congolian rain forest
including sub-montane,
lowland and riverine forest

Monts De
Cristal
National Park

Gabon 00°36′–01°00′ N:
10°13′–11°58′ E

3000 2400 5 2004 Guineo-Congolian rain forest
including montane rainforest

Waka National
Park

Gabon 02°13′–3°24′ N:
15°41′–16°37′ E

1400 1000 5 2005 Guineo-Congolian rain forest
including lowland and
montane rainforest

Nouabalé Ndoki
National Park

Congo 02°10′–03°00′ N:
16°11′–17°00′ E

1750 4000 5 2005 Semi-deciduous
Guineo-Congolian rainforest
including riverine and lowland
forest, monodominant
Gilbertiodendron dewevrei
forest,

Monte Mitra
(Monte Alen
National
Park)

Equatorial
Guinea

01°30′ N: 10°15′ E 3250 2000 3 2005 Guineo-Congolian rain forest
including lowland and
montane rainforest

and allow the quantification of the amount of carbon lost
from sinks through deforestation and degradation (Houghton
2005). Recent studies, using estimates of AGB, have indicated
that tropical forests are likely to act as a growing carbon
sink and therefore may help buffer the increase in levels of
atmospheric CO2 (Philips et al. 1998; Baker et al. 2004a; Lewis
et al. 2009; Pan et al. 2011).

The REDD scheme also has the potential to provide
significant benefits to biodiversity conservation, through the
protection of species diverse forests (Harvey et al. 2009;
Gardner et al. 2012). REDD funding for carbon sequestration
is likely to be significantly greater than that currently available
for biodiversity conservation within tropical regions. The
areas of forest that could be protected through REDD
schemes may also be significantly larger than the area currently
receiving protection for the purposes of conservation (Harvey
et al. 2009). The need for REDD to address biodiversity
conservation was recognized during negotiations in the ad hoc
Working Group on Long Term Cooperative Action (AWG-
LCA), when the scope of REDD schemes was broadened
to include incentives for a wide array of forest management
practices including conservation (Blom et al. 2010). However,
an understanding of the relationship between species diversity
and carbon stocks is required if REDD schemes are going to
fulfil their potential for biodiversity conservation (Midgley
et al. 2010; Strassburg et al. 2010). Direct relationships

between biodiversity and the carbon cycle in mature tropical
forests have not yet been extensively studied (Talbot 2010). A
greater understanding of the congruence between biodiversity
and carbon pools is therefore necessary on a local and regional
scale in order to inform policy considerations (Midgley et al.
2010; Miles & Dickson 2010; Gardner et al. 2012).

The rainforests of West and Central Africa are the second
largest block of rainforest in the world (Baccini et al. 2008) and
contain the highest levels of biomass per hectare (c. 250 t ha−1)
worldwide (Lewis et al. 2009; FAO 2010). Tree diameter and
height data from forest plots can be used to estimate carbon
stocks through the calculation of AGB (Kettering et al. 2001;
Chave et al. 2005). Forests plots can also provide information
regarding tree species diversity and forest structure. This
study uses data collected from an established network of
1-ha permanent plots located within mature tropical forests
in five central African countries. The aim was to explore the
relationship between tree species diversity and biomass using
this network of 1-ha survey plots.

METHODS

Study sites

Seven study sites in four countries within Central Africa
were used for the purposes of this analysis (Table 1;
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Appendix 1, Table S1, see supplementary material at
Journals.cambridge.org/ENC). The sites mainly comprised
moist semi-deciduous mixed forest, although a range of
forest types, including montane forest and monodominant
Gilbetiodendron dewevrei forest (one plot, CON-01), were
studied. Average rainfall across the sites was 1400–3500 mm
yr−1. Mean annual temperature was 20–27 °C.

Six sites (Campo Ma’an, Takamanda, Monts De Cristal,
Nouabalé Ndoki, Waka and Monte Mitra) were located within
existing or recently established national parks (NP). The
remaining site in Cameroon is located in a former forest reserve
(Ejagham). The Nouabalé Ndoki and Waka sites contained
plots that had experienced varying levels of selective logging
in the past.

Data collection

A total of 33 1-ha survey plots were established across the
study sites (Table 1). Plots were established following the
standardized methodology of Dallmeier (1992). Within each
plot all individual trees and tree stems with a diameter at breast
height (DBH) �10 cm were identified and measured. The
total height of each individual tree/stem was also estimated
using a clinometer. Voucher specimens were collected during
plot measurement for identification at national/regional
centres of botanical expertise, notably the Herbier National
du Gabon (Libreville) and the Herbier National (Yaoundé,
Cameroon).

Data analysis

Diversity
Species diversity for each plot was calculated using the
Shannon Wiener (SW) index:

SW = −
S∑

i=1

pi lnpi

where S is the total number of species, i is an individual species
and pi is the proportion of species S contributed by ith species.

The diversity indices were then converted into the ‘effective
number of species’ for each plot by calculating exp(SW) (Jost
2006). The effective number of species is the number of
equally-common species required to give a particular value
of the index (Jost 2006). In order to prevent bias due to
sample size, rarefaction was applied to all samples prior to the
calculation of SW, 250 species were randomly selected from
each plot and the Shannon Wiener values and the species
richness were calculated from these random samples. The
Shannon equitability index (ESW) was also calculated for each
plot:

ESW = SW/ln S

Above-ground biomass
AGB of stems with a DBH >10 cm was estimated using the
moist forest equation of Chave et al. (2005), which uses the

largest available dataset of 2410 trees harvested in 27 sites
across the tropics. The Chave equation has been found to be
accurate by several site-specific studies that have developed
allometric equations for calculating biomass within Africa,
and its use has been recommended for regional scale studies
in Africa (Djomo et al. 2010; Henry et al. 2010; Vieilledent
et al. 2012).

AG B = exp(−2.977LN (ρD2 H)),

where D is stem diameter at breast height, H is total height of
the stem and ρ = wood mass density.

Biomass of stems < 10 cm, litter and climbers were
calculated at 3%, 5% and 3%, respectively, of the
total biomass of stems �10 cm (Brown 1997; IPCC
[Intergovernmental Panel for Climate Change] 2006). We did
not estimate biomass within dead wood in the study plots.
We used a carbon conversion rate of 0.47 tonne of carbon per
tonne of dry biomass (derived from IPCC2006).

We compiled data on wood mass density of species
identified within the plots predominantly from the Global
Wood Density Database (Zanne et al. 2009). Additional
species densities were obtained from the wood density
database (see http://worldagroforestry.org/sea/Products/
AFDbases/WD/Index.htm). We calculated densities from
wood with 12–15% moisture content using (Chave et al. 2009):

ρ = x0.861

where x is wood density at 12–18% moisture content.
Species used to calculate the diversity indexes and biomass

estimates were checked for orthography and synonymy using
the African Flowering Plants and Tropicos databases (Lewis
et al. 2009). Species-specific wood density was used where
possible (33% of stems). If a species-specific wood density
was not available, we used the mean value for the genus (46%
of stems) or the family (16% of stems). For unidentified stems,
or where wood density information was not available for the
species, genus or family, we used the overall mean wood
density obtained from the database of species compiled for
this study (5% of stems) (Baker et al. 2004b).

Species diversity, richness and above-ground biomass
Partial mantel tests considering the geographic distances
between plots were used to explore the relationship between
species diversity and AGB, between AGB and species
similarity and between species richness and AGB using the
Vegan package in R. The regression residuals were checked
for spatial autocorrelation using PASSaGE 2 (Rosenberg
& Anderson 2011). The Bray-Curtis index was used to
determine the level of species dissimilarity between the plots.

We used an independent sample t-test (t) to compare
Shannon Wiener index and species richness data in the 16 plots
within the lower and upper quartiles of the AGB estimates. We
condicted preliminary analyses to ensure a normal distribution
and equal variances.

We used principal components analysis (PCA), using
Fitopac 2.1 software, to determine any associations between
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Table 2 Species diversity and biomass estimates per plot, including equivalent carbon content. Mean DBH and mean height for stems
within each plot is also shown.

Site Plot Shannon
Wiener
index

Effective
number
of species

Species
richness

Biomass
(Mg ha−1)

Carbon
(Mg ha−1)

Mean
DBH
(cm)

Mean
height
(m)

Basal
area
(m2 ha−1)

Campo Ma’an
National Park

CAM-01 3.44 31.1 67 304.36 143.05 26.88 11.47 37.00
CAM-02 3.62 37.3 68 179.52 84.37 25.44 9.53 33.82
CAM-03 3.36 28.7 57 267.13 125.55 28.29 10.16 39.30
CAM-04 2.75 15.7 48 156.27 73.44 21.95 8.59 33.18

Ejagham Forest
Reserve

CAM-05 3.22 25.1 58 337.08 158.43 22.59 11.79 35.46

CAM-06 3.87 47.9 78 402.70 189.27 23.53 15.69 34.71
CAM-07 3.62 37.7 69 531.82 250.0 26.02 15.87 42.11
CAM-08 3.26 26.8 51 222.84 104.73 20.82 13.88 24.57
CAM-09 3.47 32.0 60 102.25 48.06 18.89 11.29 18.56

Takamanda
National Park

CAM-10 3.71 40.9 68 355.78 167.22 23.69 14.14 28.70
CAM-11 3.78 43.7 82 188.06 88.39 21.30 12.46 21.65
CAM-12 3.60 36.5 67 388.36 182.53 24.70 14.27 31.98
CAM-13 3.82 45.8 79 404.17 189.96 23.06 14.61 32.06
CAM-14 3.60 36.7 69 525.06 246.78 26.38 16.34 40.51
CAM-15 3.81 45.3 72 390.02 183.31 24.86 17.47 33.18
GAB-01 3.73 41.5 76 291.34 136.93 21.73 17.04 28.88

Monts De Cristal
National Park

GAB-02 3.72 41.3 67 410.34 192.86 25.10 14.62 44.91
GAB-03 3.95 46.5 80 479.21 225.23 23.92 17.41 40.02
GAB-04 3.72 41.3 64 478.17 224.74 23.68 16.28 39.32
GAB-05 3.89 48.9 74 619.54 291.18 23.98 16.93 44.52
GAB-06 3.68 39.7 72 370.72 174.24 26.53 17.63 33.36

Waka National Park GAB-07 3.81 44.9 74 346.10 162.67 25.33 16.48 32.37
GAB-08 3.95 51.7 78 464.76 218.44 26.62 18.36 40.17
GAB-09 3.79 44.3 75 591.81 278.15 26.43 19.77 47.72
GAB-10 3.73 41.7 71 195.13 91.71 23.75 16.88 17.00
CON-01 0.44 1.6 10 325.88 153.16 30.76 15.31 29.23

Nouabalé Ndoki
National Park

CON-02 3.67 39.4 73 346.70 162.95 28.20 16.15 29.74
CON-03 3.63 37.7 60 249.93 117.47 26.19 16.21 23.31
CON-04 3.74 42.1 68 247.58 116.36 23.04 15.33 23.04
CON-05 3.76 43.1 69 234.65 110.29 23.59 12.35 25.05

Monte Mitra
(Monte Alen
National Park)

EQ-01 4.03 56.5 87 399.95 187.98 23.70 18.32 29.42
EQ-02 3.45 31.6 59 335.73 157.79 20.60 14.65 31.34
EQ-03 3.89 48.4 83 415.43 195.25 23.13 17.99 33.96

AGB, species diversity, species richness, evenness (Shannon’s
equitability EH) and tree density.

RESULTS

Species diversity

A total of 671 species were recorded across all of the survey
plots; we identified 46% to generic level only, while 19% were
identified to family level only or could not be authoritatively
identified.

The Shannon Wiener index ranged from 0.44 to 4.03, or 1.6
to 56.5 for the effective number of species. The mean effective
number of species across all plots was 38.56 (SD = 10.62).
The lowest diversity was found within the plot located in
monodominant Gilbertiodendron dewevrei forest in Nouabale-

Ndoki (Congo). Plot EQ-03 within the Monte Mitra Forest in
Equatorial Guinea had the highest species diversity (Table 2).

Above-ground biomass

Total biomass varied considerably between plots, ranging
from 102.25 to 619.54 Mg ha−1 (Table 2). Mean biomass for
all sites was 350.25 Mg ha−1 (SD = 125.29).

The mean wood density of stems was 0.62 g cm−3 (SD =
0.13). Stem density ranged from 0.211 to 0.981 g cm−3;
approximately 85% of stems had a wood density between
0.5 and 0.8 g cm−3.

Mean DBH and height of stems in the study was 24.38 cm
(SD = 2.47) and 15.01 m (SD = 2.75), respectively (Table 2).
Most biomass was found within tall trees, trees > 15 m in
height accounting for approximately 90% of the biomass
across all of the plots (Fig. 1). The greatest biomass was
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Figure 1 Total above-ground biomass levels for different (a)
height and (b) DBH classes across all 33 survey plots (midpoint of
each height and DBH class is shown).

found in trees with a larger DBH, although this trend was
less pronounced than height. Trees with a DBH > 50 cm
contained approximately 65% of the biomass across all plots
(Fig. 1).

Species diversity, richness and above-ground biomass

We removed the monodominant Gilbertiodendron dewevrei
forest from all analyses, as it was a clear outlier in terms
of species diversity (Table 2). We found no significant spatial
autocorrelation between AGB and species diversity (Moran’s I
= –0.0313, p = 0.082). The Bray Curtis distances ranged from
0.3 to 0.98, and indicated that the study sites had well defined
species compositions. The partial Mantel tests indicated weak
positive correlations between AGB and the Shannon Wiener
index (r = 0.21, p = 0.03) and between AGB and the species
similarity index (r = 0.18, p = 0.013; Fig. 2). There was no
significant relationship between AGB and species richness
(r = 0.12, p = 0.17).

The eight plots within the upper quartile of AGB estimates
had a significantly higher mean effective number of species
(M = 44.38, SD = 5.55), compared to the eight plots within
the lower quartile of AGB estimates (M = 35.22, SD = 10.01;
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Figure 2 Plot of effective number of species calculated from the
Shannon Wiener index against above-ground biomass estimates
across 32 survey plots. Linear regression line is shown (y = 0.0323x
+ 28.363). Plot CON-01, located within a monodominant forest
type, is excluded.

Table 3 Eigenvalues and percentage of variance explained by
different principal components.

Axis 1 Axis 2 Axis 3
Eigenvalues 2.98 1.420 0.45
Percentage 59.63 28.39 8.90
Cumulative percentage 59.63 88.02 96.92

Table 4 Correlation of descriptors along the first two
principal component axes

Descriptor Axis 1 Axis 2
Biomass 0.55 0.66
Effective no. species 0.97 0.06
Tree density –0.15 0.92
Equitability index 0.92 –0.35
Species richness 0.93 0.05

t = 2.26; df = 14; p = 0.04), but did not exhibit significantly
higher mean species richness (M = 74, SD = 6.37) than the
plots within the lower quartile of AGB estimates (M = 64.63,
SD = 11.13; t = 2.07; df = 14; p = 0.057).

The first two axes of the PCA accounted for almost 90%
of data variance (Tables 3 and 4). All the descriptors (aside
from tree density) were positively correlated with principal
component 1 (PC1), which explained approximately 60% of
the variance of the dataset. The diversity measures effective
number of species, equitability and species richness displayed
the highest correlations with PC1. AGB was also correlated
with axis 1 and therefore those diversity measures. Principal
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component 2 (PC2) accounted for almost 30% of the variance
between the plots, with all variables apart from the equitability
index showing positive correlations with this axis. Tree
density and biomass showed higher correlations with this axis,
which had no real relation to the diversity measures.

DISCUSSION

Our results show a complex and highly variable relationship
between biomass and species diversity within Central African
rainforests. Some plots with high diversity had relatively low
biomass, and some plots with low diversity had high biomass.
Despite this variability, in our survey plots there was evidence
of positive correlations between biomass and species diversity.
The top 12 plots in terms of AGB estimates included seven
plots with the highest species diversity and eight plots with
the highest species richness. Clearly, a number of variables
simultaneously influence the distribution of biodiverse and
carbon-rich forests, and it should be emphasized that our
survey plots encompassed different forest types, management
designations, altitudinal and climate conditions. Historical
forest disturbance is likely to have a significant impact on
standing biomass and tree species diversity, and some of
our survey plots have been previously impacted by differing
degrees of selective logging.

The biomass estimates presented here are likely to
be conservative, as we used the lower range limits for
estimating the biomass content of stems with DBH <10 cm,
litter and climbers. We also did not include estimates of
biomass within dead wood or below-ground biomass. The
biomass of roots in particular can vary considerably and
be a significant component of total biomass (Brown 1997).
However, underestimation of these parameters is expected to
have impacted all study plots equally. The biomass estimates
we produced are within the range found for other studies
within Central Africa (Lewis et al. 2009; Djuikouo et al. 2010;
Maniatis et al. 2011). The mean species wood density from this
study (0.62 g cm−3) was similar to the 0.60 g cm−3 reported
by Djuikouo et al. (2010) from the Dja Biosphere Reserve
(Cameroon) and Henry et al. (2010) from Boi Tano (Ghana).

A positive relationship between biomass and species
diversity has important policy implications, as it would
support the assertion that REDD schemes can provide
significant co-benefits for biodiversity conservation. The
present biomass estimates demonstrate the high variability
of carbon storage within different forest areas. The forest
plot with the highest AGB estimate contained more than six
times the biomass of the plot with the lowest estimate. There
are therefore instances where forests high in species diversity
are not carbon rich, and vice versa. In these cases, there may
be trade-offs between carbon and biodiversity conservation.
In addition, our study only examined tree species diversity,
which may not show great congruence with the diversity of
other taxa (Lawton et al. 1998; Heino et al. 2009). Tchouto
et al. (2006) found that diversity of tree species did not always
reflect the diversity of shrub and herbaceous species in the

Campo-Ma’an Forests in Cameroon, although tree diversity
could be used to predict the diversity of other floral layers
to some extent. High diversity of tree species may not mean
high diversity of other species groups, or of particularly rare
or threatened species. Different taxa also respond differently
to forest disturbance and degradation (Lawton et al. 1998;
Schulze et al. 2004).

Despite complexities in biomass and biodiversity
relationships, REDD schemes should still be able to provide
significant co-benefits between carbon and biodiversity
conservation. In order to maximize the benefits to biodiversity
conservation, where possible, REDD funding should
prioritize mature forests, as they are key to maintaining
biodiversity in the tropics (Gibson et al. 2011). The
conservation of large intact primary forests is also key to
reducing greenhouse gas emissions, as natural ecosystems are
generally more carbon dense as well as biologically diverse
(Thornley & Cannell, 2000; SCBD [Secretariat Convention on
Biological Diversity] 2009). Mature forests are likely to have
a greater incidence of large trees. Trees with large diameters
(> 10 cm DBH) often make the largest contribution to AGB
(Kirby & Potvin 2007; Baishya et al. 2009; Djuikouo et al.
2010). The majority of AGB in our study was found within
taller trees and trees with a larger diameter. As well as holding
the largest stocks of carbon within biomass, mature trees are
often most impacted by forest degradation and deforestation
(Gibbs et al. 2007). Mature and more biodiverse forests are
also likely to provide greater ecosystem resilience, providing
a better guarantee of the long-term persistence of forests and
therefore the carbon pool, which is to be protected (Thompson
et al. 2009).

Several authors have stressed that REDD schemes may also
carry inherent risks to biodiversity conservation (Strassburg
et al. 2009; Gardner et al. 2012). Biodiversity threats from
REDD could include leakage or displacement of deforestation
and forest degradation activities to other species diverse forest
areas or ecosystems (SCBD 2011). Another potential risk
is carbon stock enhancement leading to plantation forestry
and a subsequent loss of biodiversity at plantation sites
(Miles & Dickson 2010). However, if properly managed,
carbon stock enhancement can also provide additional benefits
to biodiversity through forest restoration and afforestation
(SCBD 2011). Gardner et al. (2012) suggested a framework
for integrating biodiversity conservation into REDD schemes
and argued that this was essential if biodiversity considerations
were to be workable within REDD schemes. Including
biodiversity considerations at planning stages is also necessary
to ensure risks to biodiversity are avoided and any trade-offs
between biodiversity conservation and REDD activities are
properly managed and negotiated.

It is important to recognize that less species-diverse forests,
such as the monodominant forest type observed in this study,
may also provide significant stores of carbon (Djuikouo et al.
2010). Safeguards should be put in place to ensure that
biodiverse, but carbon-poor, habitats do not suffer from a
lack of funding or land conversion due to an emphasis on
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conservation of high carbon ecosystems (Midgley et al. 2010).
If REDD schemes are successful in conserving forests, the best
use of limited conservation funds may be to protect low-carbon
and non-forest ecosystems from land-use change, including
change that may be caused by the displacement of activities
from forested areas (Miles & Kapos 2008). There are a number
of knowledge gaps in terms of carbon and biodiversity linkages
in forests ecosystems; for example the impact of species
composition on ecosystem function is not well known. Further
work on the relationship between plant species richness,
functional diversity and biomass accumulation in diverse
forest ecosystems is required (Thompson et al. 2012). The
significant variability in the relationship between carbon and
biodiversity in our study plots supports this conclusion.

CONCLUSION

Our results demonstrate that high variability exists between
standing biomass and tree species diversity in different forest
areas in Central Africa. Despite this variability, on average,
forests with a greater species diversity also tend to be more
likely to have a higher biomass content, and therefore greater
carbon storage. This suggests that REDD policies should be
prioritized towards species-diverse forests. Biodiversity also
plays an important role in the long-term stability and resilience
of tropical forests. As such, biodiverse forests provide a
better long-term guarantee of persistence (if protected from
conversion), than less diverse forests. However, we found that
the relationship between biomass and diversity was highly
variable in our survey plots; more research is required into
the causes of this variation and evidence of the relationship
between diversity and carbon in additional locations, at
different spatial scales and on a range of taxa. Only then will it
be possible to ascertain whether biodiversity is important for
carbon storage.
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