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1. Introduction

In this paper we consider aspects of the classical Sturm–Liouville problem

[p(X)YX ]X + [q(X) + r(X)λ]Y = 0, X ∈ (0, a), (1.1)

with conditions

Y ′(0) = 0 (when p(0) > 0) (1.2)

or

Y (X), Y ′(X) bounded as X → 0+ (when p(0) = 0), (1.3)

together with

Y ′(a) = 0, (1.4)

in the framework of the classical setting for Sturm–Liouville problems (as expounded in,
for example, [2, Chapters 7, 8]); we restrict our attention to a ∈ (0, 1]. We will refer to
this problem throughout as SL. In SL we assume (as in [2]) that p, q, r : [0, 1] → R are
independent of a and λ, with q, r ∈ C[0, 1] and p ∈ C1[0, 1]. Moreover, we assume that

r(X), p(X) > 0 ∀X ∈ (0, 1], (1.5)
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and that p, q and r are analytic at X = 0 (that is, ∃δ > 0 such that p, q and r have
convergent power-series representations on [0, δ)). Thus we have

r(X) = r0 + rSXS + o(XS),

q(X) = q0 + qNXN + o(XN ),

p(X) = p0 + p1X + o(X),

as X → 0+, with r0, p0 � 0 and rS , qN , p1 �= 0, while rS > 0 when r0 = 0 and p1 > 0
when p0 = 0. Here S, N ∈ N = {1, 2, . . . }. With the conditions above, an application
of the Frobenius method readily reveals that, when p0 > 0, SL is regular, while, when
p0 = 0, SL is singular, with the endpoint X = 0 being in the limit-circle non-oscillatory
class. In particular, for any λ ∈ C, let Y+ and Y− be two linearly independent solutions
to equation (1.1) on [0, a]. In the case p0 > 0, since p, q, r are analytic at X = 0, Y+, Y−
are analytic at X = 0, and we may take

Y+(0) = 1, Y ′
+(0) = 0,

Y−(0) = 0, Y ′
−(0) = 1,

so boundary condition (1.2) is associated with the solution Y+. In the case p0 = 0
(p1 �= 0), the two linearly independent solutions Y+ and Y− may be chosen so that Y+ is
analytic at X = 0 while Y− is singular at X = 0. Specifically, Y+ may be chosen so that

Y+(0) = 1, Y ′
+(0) =

−(q0 + r0λ)
p1

, (1.6 a)

while Y− has
Y−(X) = log X + O(X log X), (1.6 b)

as X → 0+. Thus, Y+ is the principal solution of equation (1.1) at X = 0, and it is
Y+ that is associated with boundary condition (1.3). Standard Sturm–Liouville theory
(see below) determines that SL has a purely discrete spectrum, consisting of eigenvalues
λ = λr(a) ∈ R, for r = 0, 1, 2, . . . , with

λ0(a) < λ1(a) < λ2(a) < · · · , (1.7)

and λr(a) → ∞ as r → ∞, for each a > 0. The purpose of this paper is to obtain precise
information about the asymptotic behaviour of the eigenvalues (1.7) as a → 0+, and this
has been achieved in all cases for SL. We should point out at this stage that although
we know of no previous results concerning the asymptotic behaviour of the eigenvalues
of SL with shrinking domain size a, many papers have been published concerning the
asymptotic structure of the eigenvalues of SL for fixed domain size a, as r → ∞, in (1.7)
(see, for example, [3] and [4]). The problem of a two-dimensional domain shrinking to a
one-dimensional domain has also been studied [5]. Here we are studying a one-dimensional
domain shrinking to a point. Our results may be summarized in the following theorems.

Theorem 1.1 (regular case). Consider SL with p0 > 0. We then have the following.
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(a) r0 > 0. We have

λ0(a) → −q0

r0
as a → 0+,

while

λr(a) ∼ p0r
2π2

r0
a−2 as a → 0+

for r = 1, 2, 3, . . . .

(b) r0 = 0.

(i) For q0 �= 0 we have

λ0(a) →
{

−∞, q0 > 0,

+∞, q0 < 0,
as a → 0+

with λ0(a) = O(a−S) as a → 0+.

(ii) For q0 = 0 we have the following.

N = S: λ0(a) → −qN

rS
as a → 0+.

N > S: λ0(a) → 0 as a → 0+,

with λ0(a) = O(aN−S) as a → 0+.

N < S: λ0(a) →
{

−∞, qN > 0,

+∞, qN < 0,
as a → 0+,

with λ0(a) = O(a−(S−N)) as a → 0+.

Correspondingly, we have, in either of the cases (i) and (ii) above, that

λr(a) ∼ p0µ
0
r

rS
a−(2+S) as a → 0+

for r = 1, 2, 3, . . . , where
0 = µ0

0 < µ0
1 < µ0

2 < · · ·

are the eigenvalues of the regular Sturm–Liouville problem

Yxx + xSµY = 0, x ∈ (0, 1),

Yx(0) = Yx(1) = 0.

Theorem 1.2 (singular case). Consider SL with p0 = 0. Then, for λ0(a), we have
the following.

(a) q0 �= 0, r0 > 0. λ0(a) → −(q0/r0) as a → 0+.
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(b) q0 = 0, r0 > 0. λ0(a) → 0 as a → 0+, with λ0(a) = O(aN ) as a → 0+.

(c) q0 �= 0, r0 = 0.

λ0(a) →
{

+∞, q0 < 0,

−∞, q0 > 0,
as a → 0+, with λ0(a) = O(a−S) as a → 0+.

(d) q0 = 0, r0 = 0. There are three cases as follows.

N = S: λ0(a) → −(qN/rS) as a → 0+.

N > S: λ0(a) → 0 as a → 0+,

with λ0(a) = O(aN−S) as a → 0+.

N < S: λ0(a) →
{

+∞, qN < 0,

−∞, qN > 0,
as a → 0+,

with λ0(a) = O(a−(S−N)) as a → 0+.

Theorem 1.3 (singular case). Consider SL with p0 = 0. Then, for λr(a), r =
1, 2, 3, . . . , we have the following.

(a) r0 > 0. λr(a) ∼ (µ0
r/r0)a−1 as a → 0+, where 0 = µ0

0 < µ0
1 < µ0

2 < · · · are the
eigenvalues of the singular Sturm–Liouville problem

(xYx)x + µY = 0, x ∈ (0, 1),

Y (x), Y ′(x) bounded as x → 0+,

Y ′(1) = 0.

(b) r0 = 0. λr(a) ∼ (µ0
r/rS)a−(1+S) as a → 0+, where now 0 = µ0

0 < µ0
1 < µ0

2 < · · ·
are the eigenvalues of the singular Sturm–Liouville problem

(xYx)x + xSµY = 0, x ∈ (0, 1),

Y (x), Y ′(x) bounded as x → 0+,

Y ′(1) = 0.

The work in this paper was motivated by the recent paper [1], in which the following
singular Sturm–Liouville problem appeared from a problem arising in fuel cell dynamics,
namely

[XYX ]X + [X3 + Xλ]Y = 0, X ∈ (0, a),

Y (X), Y ′(X) bounded as X → 0+,

Y ′(a) = 0.

⎫⎪⎬
⎪⎭ (P)

Of particular interest in that paper is the behaviour of the eigenvalues of (P) as the
domain size a → 0+. This problem is now a special case of Theorems 1.2 and 1.3, with

p0 = 0, p1 = 1, q0 = 0, q3 = 1, r0 = 0, r1 = 1,
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and S = 1, N = 3. Application of Theorems 1.2 and 1.3 then immediately gives us
that λ0(a) → 0 as a → 0+, with λ0(a) = O(a2) as a → 0+ and λr(a) ∼ µ0

ra
−2 as

a → 0+, where r = 1, 2, . . . , and 0 = µ0
0 < µ0

1 < µ0
2 < · · · are the eigenvalues of the

Sturm–Liouville problem

[xYx]x + xµY = 0, x ∈ (0, 1),

Y (x), Y ′(x) bounded as x → 0+,

Y ′(1) = 0.

This reproduces and extends the results given in [1, Theorem 6.1]. The results in [1]
established in the particular case of (P) that λ0(a) → 0 as a → 0+, while λr(a) → +∞
as a → 0+, without the above order estimates.

Theorem 1.1 is established in § 2, while Theorem 1.2 is established in § 3.

2. Regular Sturm–Liouville problems

In this section we consider the regular Sturm–Liouville problem, with eigenvalue param-
eter λ,

[p(X)YX ]X + [q(X) + r(X)λ]Y = 0, X ∈ (0, a), (2.1)

Y ′(0) = Y ′(a) = 0, (2.2)

which we will henceforth refer to as RSL. In the above, a > 0 is the domain size, and
the functions p, q, r : [0, 1] → R are all continuous on [0, 1], with p being differentiable on
[0, 1]. Moreover, for a regular Sturm–Liouville problem, we require

p(X) > 0 ∀X ∈ [0, 1], (2.3)

r(X) > 0 ∀X ∈ [0, 1], (2.4)

and we assume the additional conditions laid down in § 1. As usual, an eigenvalue of
RSL is a number λ ∈ C such that there exists a non-trivial function Y : [0, a] → C that
classically solves RSL. Y (X) is the eigenfunction of RSL associated with the eigenvalue
λ. We recall, from the classical Sturm–Liouville theory (see, for example, [2, Chapter 8]),
the following results for RSL with conditions (2.3), (2.4).

(i) The eigenvalues of RSL are all real, and there are an infinite number of eigenvalues,
λ0(a), λ1(a), λ2(a), . . . , forming a monotone increasing sequence with λn(a) → ∞
as n → ∞.

(ii) Each eigenvalue λr(a) has a unique eigenfunction Yr(·, a) : [0, a] → R such that
Yr(0, a) > 0, Yr(a, a) �= 0 and∫ a

0
r(X)Y 2

r (X, a) dX = 1.

All other eigenfunctions corresponding to the eigenvalue λr(a) are simply complex
scalar multiples of Yr(X, a).
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(iii) The eigenfunction Y = Yr(X, a) corresponding to the eigenvalue λr(a) has exactly
r zeros in (0, a).

We now wish to examine the behaviour of the eigenvalues λr(a) (r = 0, 1, 2, . . . ) of
RSL as a → 0+. It is convenient to consider the cases r(0) = 0 and r(0) > 0 separately.

2.1. The case r(0) > 0

In this case r : [0, 1] → R is bounded above zero, and we begin by considering the
behaviour of λ0(a) as a → 0+. From (ii) and (iii) it follows immediately that

I0(a) =
∫ a

0
r(X)Y0(X, a) dX > 0. (2.5)

Now, via equation (2.1) we have

[p(X)Y0X(X, a)]X +
[
q(X) − q0

r0
r(X) + r(X)

(
λ0(a) +

q0

r0

)]
Y0(X, a) = 0, X ∈ (0, a),

(2.6)
where r0 = r(0) > 0 and q0 = q(0). We next apply the operation

∫ a−ε

+ε
· · · dX, for some

ε > 0, to (2.6), which gives

p(a − ε)Y0X(a − ε, a) − p(ε)Y0X(ε, a)

+
∫ a−ε

ε

Q(X)Y0(X, a) dX +
(

λ0(a) +
q0

r0

) ∫ a−ε

ε

r(X)Y0(X, a) dX = 0,

where Q : [0, 1] → R is given by Q(X) = q(X) − (q0/r0)r(X), which is continuous, and
has

Q(0) = 0. (2.7)

On letting ε → 0, and using continuity, together with conditions (2.2), we obtain[
λ0(a) +

q0

r0

] ∫ a

0
r(X)Y0(X, a) dX +

∫ a

0
Q(X)Y0(X, a) dX = 0. (2.8)

A simple rearrangement of (2.8), using (2.5), leads us to

λ0(a) +
q0

r0
= −J0(a)

I0(a)
, (2.9)

where

J0(a) =
∫ a

0
Q(X)Y0(X, a) dX. (2.10)

Now, Q : [0, 1] → R is continuous, and we set

QM (a) = max{Q(X) : X ∈ [0, a]},

Qm(a) = min{Q(X) : X ∈ [0, a]},

}
(2.11)
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so that, since Y0(X, a) > 0 for all X ∈ [0, a], we have

−QM (a)K0(a) � −J0(a) � −Qm(a)K0(a), (2.12)

where
K0(a) =

∫ a

0
Y0(X, a) dX > 0. (2.13)

Therefore,
−|QM (a)|K0(a) � −J0(a) � |Qm(a)|K0(a), (2.14)

which leads to

−|QM (a)|K0(a)
I0(a)

� −J0(a)
I0(a)

� |Qm(a)|K0(a)
I0(a)

. (2.15)

Now, r : [0, 1] → R is continuous, and we set

rM (a) = max{r(X) : X ∈ [0, a]} > 0,

rm(a) = min{r(X) : X ∈ [0, a]} > 0,

}
(2.16)

as r(X) > 0 for X ∈ [0, 1]. Thus

rm(a)K0(a) � I0(a) � rM (a)K0(a), (2.17)

and so (2.15) leads to

−|QM (a)|
rm(a)

� −J0(a)
I0(a)

� |Qm(a)|
rm(a)

,

which gives, via (2.9),

−|QM (a)|
rm(a)

− q0

r0
� λ0(a) � |Qm(a)|

rm(a)
− q0

r0
. (2.18)

Now, as a → 0+, we observe that

rm(a) → r0 > 0, (2.19)

while
QM (a) → Q(0) = 0,

Qm(a) → Q(0) = 0

}
(2.20)

on using the continuity of r and Q. Therefore, using (2.19) and (2.20), and allowing
a → 0+ in (2.18), we finally have

λ0(a) → −q0

r0
as a → 0+. (2.21)

Next we consider the behaviour of λr(a) (r = 1, 2, . . . ) as a → 0+. We cannot follow
the previous approach for λ0(a), since in this case we cannot guarantee that∫ a

0
r(X)Yr(X, a) dX �= 0,
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as was the case before. To proceed, we consider the modified RSL

[p(ax)Yx]x + [a2q(ax) + r(ax)µ]Y = 0, x ∈ (0, 1), (2.22)

Yx(0) = Yx(1) = 0, (2.23)

where a ∈ [0, 1] and µ is now the eigenvalue parameter. We refer to this regular Sturm–
Liouville problem as RSL′. In view of the properties on p(X), q(X) and r(X) for X ∈
[0, 1], as laid down in § 1, it follows that statements (i)–(iii) apply to RSL′ for each a ∈
[0, 1]. Let a ∈ [0, 1], say, and denote the eigenvalues of RSL′ as µ = µr(a) (r = 0, 1, 2, . . . ),
where

µ0(a) < µ1(a) < µ2(a) < · · · . (2.24)

Now let Y +(x, a, µ), x ∈ [0, 1], be that solution to equation (2.22) which has

Y +(0, a, µ) = 1, Y +
x (0, a, µ) = 0.

The eigenvalues of RSL′ at fixed a ∈ [0, 1] are then those values of µ ∈ R such that

φ(a, µ) ≡ Y +
x (1, a, µ) = 0.

Now, for a sufficiently small—in fact, a ∈ [0, 1
2δ], with δ > 0 as defined in § 1—the coeffi-

cients of equation (2.22) are analytic functions of (x, a, µ) ∈ [0, 1] × [0, 1
2δ] × R, following

the conditions on p, q and r as laid down in § 1. It follows immediately from [2, Chap-
ter 1, p. 36, Theorem 8.3] that Y +(x, a, µ), and hence Y +

x (x, a, µ), are analytic functions of
(x, a, µ) ∈ [0, 1] × [0, 1

2δ] × R. Hence φ(a, µ) is an analytic function of (a, µ) ∈ [0, 1
2δ] × R.

Now suppose that (a∗, µ∗) ∈ [0, 1
2δ] × R is such that φ(a∗, µ∗) = 0, then it follows from

(iii) in § 2 that φµ(a∗, µ∗) �= 0. It is now a consequence of the implicit function theorem
that φ(a, µ) = 0 defines a unique differentiable function µ = f(a) in a neighbourhood of
a = a∗, and such that f(a∗) = µ∗. We conclude that the eigenvalues of RSL′ depend con-
tinuously (in fact, differentiably) on a at each a ∈ [0, 1

2δ]. Thus, for each r = 0, 1, 2, . . . ,

µr : [0, 1
2δ] → R (2.25)

is continuous. Now, if we set a = 0 in RSL′, it is trivial to establish that

µr(0) =
p0

r0
r2π2, r = 0, 1, 2, . . . . (2.26)

However, µr(a) is continuous for a ∈ [0, 1
2δ], hence

µr(a) → p0

r0
r2π2 as a → 0+, (2.27)

for each r = 0, 1, 2, . . . . We now establish the relationship between the eigenvalues of
RSL and the eigenvalues of RSL′ for each a ∈ (0, 1], via the following lemma.

Lemma 2.1. For each a ∈ (0, 1] the eigenvalues of RSL and RSL′ are related by
µr(a) = a2λr(a) for each r = 0, 1, 2, . . . .
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Proof. On making the transformation x = a−1X, µ = a2λ (which is invertible for
a ∈ (0, 1]), we observe that RSL′ is transformed into RSL. �

Thus, using (2.27) together with the above Lemma 2.1 we have

a2λr(a) → p0

r0
r2π2 as a → 0+, (2.28)

for each r = 0, 1, 2, . . . . For r = 0, (2.28) tells us λ0(a) = o(a−2) as a → 0+.
However, we have already obtained a better estimate for λ0(a) as a → 0+ in (2.21).

For r = 1, 2, 3, . . . , (2.28) gives us the precise estimate that

λr(a) ∼ p0r
2π2

r0
a−2 as a → 0+, (2.29)

and so, in particular,
λr(a) → +∞ as a → 0+, (2.30)

for each r = 1, 2, 3, . . . . This completes the analysis for this case.

2.2. The case r(0) = 0

We consider RSL with r(0) = 0. We first observe that statements (i)–(iii) still hold for
RSL when r(0) = 0 (see, for example, [2, Chapter 8, § 2]). In addition, we will assume,
in this case, that, as laid out in § 1,

(C1) p(X) = p0 + p1X + o(X),

(C2) q(X) = q0 + qNXN + o(XN ),

(C3) r(X) = rSXS + o(XS)

as X → 0, with p0 > 0, rS > 0 and qN �= 0, for some S, N ∈ N.
Following precisely the same arguments as in the previous case, we arrive at

λ0(a) = −
∫ a

0 q(X)Y0(X, a) dX∫ a

0 r(X)Y0(X, a) dX
. (2.31)

Hence, in terms of our previous notation,

−qM (a)K0(a)
I0(a)

� λ0(a) � −qm(a)K0(a)
I0(a)

, (2.32)

where
qM (a) = max{q(X) : X ∈ [0, a]},

qm(a) = min{q(X) : X ∈ [0, a]},

}
(2.33)

and we recall that
qM (a), qm(a) → q0 (2.34)
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as a → 0+. Also, we have

I0(a) =
∫ a

0
r(X)Y0(X, a) dX

= a

∫ 1

0
r(aw)Y0(aw, a) dw

∼ rSa1+SLS
0 (a) as a → 0+, (2.35)

where, via (C3),

LS
0 (a) =

∫ 1

0
wSY0(aw, a) dw. (2.36)

In addition, we note that

K0(a) = a

∫ 1

0
Y0(aw, a) dw,

so that
K0(a)
I0(a)

∼ aL0
0(a)

rSa1+SLS
0 (a)

as a → 0+. (2.37)

Now,
L0

0(a)
LS

0 (a)
=

∫ 1
0 Y0(aw, a) dw∫ 1

0 wSY0(aw, a) dw
= φS(a),

and it follows that, for any S = 1, 2, . . . ,

φS(a) > 1 for each a > 0. (2.38)

Therefore, we have
K0(a)
I0(a)

∼ 1
rS

a−SφS(a) → +∞ (2.39)

as a → 0+, via (2.37) and (2.38). There are now two cases to consider.

(1) q0 �= 0. With q0 �= 0 we have, via (2.32), (2.34) and (2.39), that

λ0(a) ∼ − q0

rS
a−SφS(a) →

{
−∞, q0 > 0,

+∞, q0 < 0,
(2.40)

as a → 0+.

(2) q0 = 0. With q0 = 0 we have∫ a

0
q(X)Y0(X, a) dX = a

∫ 1

0
q(aw)Y0(aw, a) dw ∼ qNa1+NLN

0 (a), (2.41)

as a → 0+, via (C2). Hence, using (2.31) with (2.35), (2.41) and (2.38) we obtain

λ0(a) ∼ −qN

rS
aN−S LN

0 (a)
LS

0 (a)
, (2.42)

as a → 0+. There are three subcases to consider.
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(a) N = S. In this case we have, directly from (2.42),

λ0(a) → −qS

rS
as a → 0+. (2.43)

(b) N > S. In this case

0 <
LN

0 (a)
LS

0 (a)
< 1

for all a > 0. Thus, via (2.42),

λ0(a) = O(aN−S) → 0 as a → 0+. (2.44)

(c) N < S. In this case
LN

0 (a)
LS

0 (a)
> 1

for all a > 0. Hence, via (2.42),

λ0(a) →
{

−∞, qN > 0,

+∞, qN < 0,
(2.45)

as a → 0+.

The analysis is now complete for λ0(a). We next consider the behaviour of λr(a)
(r = 1, 2, . . . ) as a → 0+. We proceed as in the previous section. We consider the
modified RSL [

p(ax)
p0

Yx

]
x

+
[
a2q(ax)

p0
+

r(ax)
rSaS

µ

]
Y = 0, x ∈ (0, 1), (2.46)

Yx(0) = Yx(1) = 0, (2.47)

where a ∈ [0, 1] and µ is now the eigenvalue parameter. We refer to this regular Sturm–
Liouville problem as RSL′′. Since r(ax)a−S is continuous on (a, x) ∈ [0, 1] × [0, 1], via
(C3), statements (i)–(iii) apply to RSL′′ for each a ∈ [0, 1], and we denote the eigenvalues
of RSL′′ by µ = µr(a) (r = 0, 1, 2, . . . ), where µ0(a) < µ1(a) < µ2(a) < · · · .

Also, since p(ax), a2q(ax) and r(ax)a−S (removable singularity at a = 0) are ana-
lytic for (x, a) ∈ [0, 1] × [0, 1

2δ], we can conclude as before that, for each r = 0, 1, 2, . . . ,
µr : [0, 1

2δ] → R is continuous. Now let a → 0+ in RSL′′, and we obtain

Yxx + xSµY = 0, x ∈ (0, 1),

Yx(0) = Yx(1) = 0.

}
(RSL0)

This is a regular Sturm–Liouville problem, now independent of a. Observe that (RSL0)
has eigenvalue µ = 0 with associated eigenfunction Y (x) ≡ 1 for x ∈ [0, 1]. On using
statement (iii) we can conclude that µ = 0 is the lowest eigenvalue of (RSL0). We denote
the eigenvalues of (RSL0) by µ0

r, r = 0, 1, 2, . . . , with

0 = µ0
0 < µ0

1 < µ0
2 < · · · , (2.48)
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and we conclude that

µr(0) = µ0
r for each r = 0, 1, 2, . . . , (2.49)

and so
µr(a) → µ0

r as a → 0+, (2.50)

for each r = 0, 1, 2, . . . . We now relate the eigenvalues of RSL to those of RSL′′ for each
a ∈ (0, 1] via the following lemma.

Lemma 2.2. For each a ∈ (0, 1] the eigenvalues of RSL and RSL′′ are related by
µr(a) = (rS/p0)a2+Sλr(a) for each r = 0, 1, 2, . . . .

Proof. On making the transformation x = a−1X, µ = (rS/p0)a2+Sλ (which is invert-
ible for each a ∈ (0, 1]) we observe that RSL′′ is transformed to RSL. �

Hence, on using (2.50) together with Lemma 2.2 we have (rS/p0)a2+Sλr(a) → µ0
r as

a → 0+, for each r = 0, 1, 2, . . . , and so

λr(a) ∼ p0µ
0
r

rS
a−(2+S) as a → 0+, (2.51)

for each r = 1, 2, 3, . . . . In particular, then,

λr(a) → +∞ as a → 0+, (2.52)

for r = 1, 2, 3, . . . . This completes the analysis for this case.

3. Remarks on the singular Sturm–Liouville problems

In this section we consider the Sturm–Liouville problem (2.1), (2.2) with all of the addi-
tional conditions applying, except that we replace condition (2.3) by

p(X) > 0 ∀X ∈ (0, 1], (3.1)

with
p(0) = 0 (3.2)

and
p(X) = p1X + o(X) as X → 0, (3.3)

where p1 > 0 and the first of boundary conditions (2.2) is replaced by Y (X), Y ′(X)
bounded as X → 0+.

This is referred to as a singular Sturm–Liouville problem, and we will henceforth refer
to it as SSL. We observe that statements (i)–(iii) still apply to SSL as the singularity
at X = 0 in equation (2.1) is in the limit-circle non-oscillatory class (see § 1). We again
wish to examine the behaviour of the eigenvalues λ = λr(a) (r = 0, 1, 2, . . . ) of SSL
as a → 0+, and the theory can be developed immediately by following the approach
of § 2.2. Consequently, we do not reproduce details in this section but briefly quote
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the corresponding results. We note that the analyticity condition required to establish
continuity of the eigenvalues of the corresponding scaled problem for a ∈ [0, 1

2δ] follows
in this case as we are considering the principal solution of the scaled equation on [0, 1],
which is analytic for (x, a, µ) ∈ [0, 1] × [0, 1

2δ] × R. For the lowest eigenvalue we have four
cases as follows.

(a) q0 �= 0, r0 > 0. Here
λ0(a) → −q0

r0
as a → 0+. (3.4)

(b) q0 = 0, r0 > 0. Here

λ0(a) ∼ −qN

r0
aN LN

0 (a)
L0

0(a)
, (3.5)

as a → 0+. Since

0 <
LN

0 (a)
L0

0(a)
< 1

for all a ∈ (0, 1], we have
λ0(a) → 0 as a → 0+. (3.6)

(c) q0 �= 0, r0 = 0. In this case

λ0(a) ∼ − q0

rS
a−S L0

0(a)
LS

0 (a)
, (3.7)

as a → 0+, and
L0

0(a)
LS

0 (a)
> 1

for all a ∈ (0, 1]. Thus we have

λ0(a) →
{

+∞, q0 < 0,

−∞, q0 > 0,
(3.8)

as a → 0+.

(d) q0 = r0 = 0. Here

λ0(a) ∼ −qN

rS
aN−S LN

0 (a)
LS

0 (a)
, (3.9)

as a → 0+. Thus there are three subcases to consider as follows.

N = S: λ0(a) → −qN

rS
as a → 0+. (3.10)

N > S: λ0(a) → 0 as a → 0+. (3.11)

N < S: λ0(a) →
{

+∞, qN < 0,

−∞, qN > 0,
as a → 0+. (3.12)
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For the higher eigenvalues, we obtain the following results.

(a) r0 > 0. In this case, we have

λr(a) ∼ µ0
r

r0
a−1 as a → 0+, (3.13)

for r = 1, 2, . . . , where 0 = µ0
0 < µ0

1 < µ0
2 < · · · are the eigenvalues of the singular

Sturm–Liouville problem

(xYx)x + µY = 0, x ∈ (0, 1),

Y (x), Y ′(x) bounded as x → 0+,

Y ′(1) = 0.

(b) r0 = 0. Here we have

λr(a) ∼ µ0
r

rS
a−(1+S) as a → 0+, (3.14)

for r = 1, 2, . . . , where now 0 = µ0
0 < µ0

1 < µ0
2 < · · · are the eigenvalues of the singular

Sturm–Liouville problem

(xYx)x + xSµY = 0, x ∈ (0, 1),

Y (x), Y ′(x) bounded as x → 0+,

Y ′(1) = 0.

All of our results have now been established, and the proofs of Theorems 1.1–1.3 are
complete.
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