COMPOUNDS OF SKEW-SYMMETRIC MATRICES
MARVIN MARCUS AND ADIL YAQUB

1. Introduction. In a recent interesting paper (3) H. Schwerdtfeger
answered a question of W. R. Utz (4) on the structure of the real solutions 4
of A* = B, where 4 is skew-symmetric. (Utz and Schwerdtfeger call 4* the
“adjugate’ of A; A* is the n-square matrix whose (z, j) entry is (—1) #7 times
the determinant of the (# — 1)-square matrix obtained by deleting row 7 and
column j of A. The word ““adjugate,” however, is more usually applied to the
matrix (47)*, where A7 denotes the transposed matrix of 4; cf. (1, 2).)

The object of the present paper is to find all real n-square skew-symmetric
solutions 4 to the equation

(1) Cr=7(47) = C.(B).

Here C,(A) is the rth compound matrix of A and C*~7(4) is the (n — r)th
supplementary compound matrix of A (5). Thus, for r = 1, (1) reduces to

(A7)* = C=1(47) = Ci(B) = B,

and the problem of determining the solutions to (1) includes the question
considered by Schwerdtfeger.

The following notation will be used. Let Q,, denote the set of increasing
sequences of 7 integers chosen from 1,...,#n. If w and 7 are in Q,,, then
Alw|r] is the r-square submatrix of A4 whose row indices are w and column
indices are 7, whereas 4 (w|r) is the (n — r)-square submatrix of 4 whose row
and column indices are w’ and 7’ respectively; o’ designates the ordered set
complementary towin 1, ..., n.

Suppose © € Q,.; then o(w) denotes the sum of the integers in w. We
shall systematically use, the lexicographic ordering for the sequences in Q; ,.
Then the (w, 7) entry of C,(A4) is d(4[w|r]), where d indicates the determinant.
Since both sets Q,,, and Q,—,,, contain (%) sequences, we can index the entries
of C"7(A) with the sequences in Q,, so that the (w, 7) entry of C*~7(4) be-
comes (—1)7@+7( d(4 (w|r)). Various properties of these associated matrices
are given in (5, pp. 64—67), and we shall use these freely without giving specific
references. The most important of these is the Laplace expansion theorem which
states that

CAAC™"(AT) = d(A)Iy, N = (’:) :

Also, both C,(4) and C"*="(A) are multiplicative functions of 4.
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We observe that (1) always has frivial solutions if p(4) < n — rand p(B) <
7, where p(X) denotes the rank of X. For in this case we would have C*~7(4T) =
0 = C,(B). We shall be interested in the non-trivial solutions only, i.e., those
for which p(4) > n — 7 or p(B) > 7 so that C""(47) = C,(B) # 0.

The main results of this paper are the following two theorems.

THEOREM 1. Let B be an n-square non-singular matrix over the real field. Every
solution of (1) appears in the form

A = (d(B))Y—-n B~
Thus there is no real solution to the problem if n — r is even and d(B) < 0.
COROLLARY. In the non-singular case, the solution A is skew-symmetric if and

only if B is skew-symmetric and since in this case d(B) > 0, the solution extists
always.

THEOREM 2. Let B be an n-square singular matrix over the reals. A necessary
and sufficient condition for the existence of a mon-trivial mn-square real skew-
symmetric matrix A such that C*~"(A") = C,(B) is that both of the following
conditions hold:

(i) p(A) = n — rand p(B) = rand n — r 1is even;

(ii) there exists a real orthogonal matrix U such that the only non-vanishing r-
square subdeterminant of UTBU 1is the first principal one; in fact,

d(U'BU[L, ..., r]l,...,7]) =a > 0.

2. Proof of Theorem 1. It is easily seen that the following equations
are all equivalent:

C(AT) = Cu(B),
CA(A)C"(AT) = C(4)Co(B),

d(A)Iy = C,(4B), N = (”) )

v

Furthermore, it is easily shown that the last equation is equivalent to AB = kI,
for some suitably chosen constant k.
In order to calculate %, observe that

C/(4B) = C,(kl,) = k'Iy = d(4)1y,
d(4B) = d(4) d(B) = d(kl,) = k",

and the result follows.

3. Proof of Theorem 2.

LEmMA 1. If A is a non-trivial singular skew-symmetric solution to (1), then
p(4) =n —rand p(B) = 7.
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Proof. A is skew-symmetric; thus there exists a real orthogonal
n-square matrix U such that

5 —
0
0
0 (23]
UTAU = —er 0 :
0
|
i 0 Ay
| |~ 0]
fora; #0,2=1,...,k Now p(4) = 2k because 4 is skew-symmetric. Also

the zero submatrix in the upper left corner is (# — 2k)-square. It follows that,
since 4 satisfies (1),

C=1(UTAU) = C="(UT)C"7(4)C™"(U)
Cr=r(UT)C(BT)C="(U)
{a()}C(UHC, (BN {d()YC,(UHT
C,(U=B™(U)")

= C.(U'B7D).

Thus (1) holds if and only if C*"(UTAU) = C,(U*BTU). We claim that
2k = n — r. To prove this, first observe that 4 is a non-trivial solution to (1)
and thus p(4) = 2k > n — r. Hence, the last equation reduces to

(2) C"(4,) = C,(By), where 4; = UTAU and B, = UTBTU.

Now, let w, 7 € Q,.., and let n — 2k = m. Then the (w, 7) entry of C*~7(4,) is
Fdet 4,(w|7), and this determinant is not zero only if both w and r are of the
form (1,...,m,j1,..., Jr_m), Wwhere m < j1 < ... <j,_m < n. Observe that, since
2k >n —r, m = n — 2k < r. Let the rows of B; be uy, ..., u#,. The (v, w)
entry of C,(B;) is not zeroonly if w = (1,...,m,j1, ..., jr—m), where, again,
m<j1<...<jrm <mn Hence forany (¢, %2, ..., %) € Qry {#iry - oo Uy}
is linearly independent only if {1,...,m} = {71, ..., 7,}. Next, observe that
{u1, ..., Um, Upms1, . - ., U,} is linearly independent. To prove this, we dis-
tinguish two cases. First, if n — 7 is even, then the (w, 7) entry of C*~"(4,) is
equal to Fd(4(w|r)), which is different from zero for the following choice of
o= ({0,...,n,r=({,...,mym-+1,...,7). Second, if n — r is odd,

Il

Il
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then the (w, r) entry of C*~7(4,) is different from zero for the following choice
ofwand r:w=(1,...,7,7=0,...,mym+1,...,r—1,r 4+ 1). (Note
that, if 2k > n — r, then m = n — 2k < r — 1). Similarly,

{1y o) Uty U, « o oy Uy Uy

is linearly dependent for any % for which » 4+ 1 < & < n. Hence

{1, o ooy U1y Uy U1y + o+ Upy Ui}
is linearly dependent. Thus u, is linearly dependent on {uy, ..., u,} for each k
such that » + 1 < & < n. It follows that {u,, ..., u,} spans the space of the

u4's, and since this set is linearly independent, it is a basis for the row space of
B,. Thus p(UTBTU) = p(B1) = r, p(B) = p(B;) = r. Hence

o(C.(B)) = (”(f”) ~ 1.

Therefore, p(C*7(4)) = p(C*"(47T)) = p(C,(B)) = 1. Hence
p<A)> _ .
('ﬂ —7 - 1! p(A) =n r,
and the lemma is proved.

LEMMA 2. If A is a non-trivial singular skew-symmetric solution to (1), then
there exists a real orthogonal matrix U sich that the only non-vanishing r-square
subdeterminant of UTBU 1s the first principal one; in fact,

d(UTBUIL,...,r|l,...,r]) > 0.

Proof. A is skew-symmmetric, and thus the rank of 4 is even, say, 2k. By
Lemma 1, p(4) = n — r. Hence we have p(4) = n — r = 2k. As in the proof
of Lemma 1, (1) is equivalent to

o

3) C=r(UTAU) = C*( —o1 0

0 A

— O

= C,(U™B"U)
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for some real orthogonal matrix U, where the submatrix in the upper left
corner is 7-square. Thus (1) holds if and only if C*~"(UTAU) = C,(UTBTU).
Let U*BYU = H. Then (1) is equivalent to

o
0
0
O (65}
C.(H) = C'( a0 )
0
0 Ay
3 e 0]
_ [ 0 gt a
) | 0 ], (@ = a?. ...

The last equation shows that the only non-vanishing 7-square subdeterminant of
H is the determinant of the submatrix H[1,...,7|1,...,r]; i.e. the (1,1)
entry of C,(H). This in turn is just

—O 0{1’
—og O‘ 0
d( M )=a12...ak2=a>0.
0 0 a
i —a 0]

From (UTBU)T = UTBTU = H, it follows that the only non-vanishing sub-
determinant of UTBU is the principal one lying in rows 1, . . ., ». This proves
the lemma.

We are now in a position to complete the proof of Theorem 2.

The necessity of the conditions follows from Lemmas 1 and 2. We prove that
they are also sufficient. Suppose that both conditions (i) and (ii) of Theorem 2

hold. By (i), p(4) = n — » = 2k, say. Choose real numbers ay, . . ., a; such
that a,?...a? = @, where a 1s the positive number described in (ii) above.
Now, using the matrix U described in (ii) and the numbers oy, . . ., oy just

constructed, we define 4 as follows:
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o

A4=U o 0 U,

| 0 ay
) 0]
where the zero matrix in the upper left corner is r-square, and 2k = p(4) =
n — r. By an argument similar to the one used in the proofs of Lemmas 1 and
2, one verifies that 4 is a skew-symmetric solution of C"~"(47") = C,(B). This
completes the proof.
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