COMPOUNDS OF SKEW-SYMMETRIC MATRICES

MARVIN MARCUS AND ADIL YAQUB

1. Introduction. In a recent interesting paper (3) H. Schwerdtfeger answered a question of W. R. Utz (4) on the structure of the real solutions A of $A^{*}=B$, where A is skew-symmetric. (Utz and Schwerdtfeger call A^{*} the "adjugate" of $A ; A^{*}$ is the n-square matrix whose (i, j) entry is $(-1)^{i+j}$ times the determinant of the $(n-1)$-square matrix obtained by deleting row i and column j of A. The word "adjugate," however, is more usually applied to the matrix $\left(A^{T}\right)^{*}$, where A^{T} denotes the transposed matrix of A; cf. (1, 2).)

The object of the present paper is to find all real n-square skew-symmetric solutions A to the equation

$$
\begin{equation*}
C^{n-r}\left(A^{T}\right)=C_{r}(B) . \tag{1}
\end{equation*}
$$

Here $C_{r}(A)$ is the r th compound matrix of A and $C^{n-r}(A)$ is the $(n-r) t h$ supplementary compound matrix of A (5). Thus, for $r=1$, (1) reduces to

$$
\left(A^{T}\right)^{*}=C^{n-1}\left(A^{T}\right)=C_{1}(B)=B
$$

and the problem of determining the solutions to (1) includes the question considered by Schwerdtfeger.

The following notation will be used. Let $Q_{r, n}$ denote the set of increasing sequences of r integers chosen from $1, \ldots, n$. If ω and τ are in $Q_{r, n}$, then $A[\omega \mid \tau]$ is the r-square submatrix of A whose row indices are ω and column indices are τ, whereas $A(\omega \mid \tau)$ is the $(n-r)$-square submatrix of A whose row and column indices are ω^{\prime} and τ^{\prime} respectively; ω^{\prime} designates the ordered set complementary to ω in $1, \ldots, n$.

Suppose $\omega \in Q_{r, n}$; then $\sigma(\omega)$ denotes the sum of the integers in ω. We shall systematically use, the lexicographic ordering for the sequences in $Q_{r, n}$. Then the (ω, τ) entry of $C_{\tau}(A)$ is $d(A[\omega \mid \tau])$, where d indicates the determinant. Since both sets $Q_{r, n}$ and $Q_{n-r, n}$ contain $\binom{n}{r}$ sequences, we can index the entries of $C^{n-r}(A)$ with the sequences in $Q_{r, n}$ so that the (ω, τ) entry of $C^{n-r}(A)$ becomes $(-1)^{\sigma(\omega)+\sigma(\tau)} d(A(\omega \mid \tau))$. Various properties of these associated matrices are given in (5, pp. 64-67), and we shall use these freely without giving specific references. The most important of these is the Laplace expansion theorem which states that

$$
C_{r}(A) C^{n-r}\left(A^{T}\right)=d(A) I_{N}, \quad N=\binom{n}{r} .
$$

Also, both $C_{r}(A)$ and $C^{n-r}(A)$ are multiplicative functions of A.

[^0]We observe that (1) always has trivial solutions if $\rho(A)<n-r$ and $\rho(B)<$ r, where $\rho(X)$ denotes the rank of X. For in this case we would have $C^{n-r}\left(A^{T}\right)=$ $0=C_{r}(B)$. We shall be interested in the non-trivial solutions only, i.e., those for which $\rho(A) \geqslant n-r$ or $\rho(B) \geqslant r$ so that $C^{n-r}\left(A^{T}\right)=C_{r}(B) \neq 0$.

The main results of this paper are the following two theorems.
Theorem 1. Let B be an n-square non-singular matrix over the real field. Every solution of (1) appears in the form

$$
A=(d(B))^{1 /(n-r)} B^{-1}
$$

Thus there is no real solution to the problem if $n-r$ is even and $d(B)<0$.
Corollary. In the non-singular case, the solution A is skew-symmetric if and only if B is skew-symmetric and since in this case $d(B)>0$, the solution exists always.

Theorem 2. Let B be an n-square singular matrix over the reals. A necessary and sufficient condition for the existence of a non-trivial n-square real skewsymmetric matrix A such that $C^{n-r}\left(A^{T}\right)=C_{r}(B)$ is that both of the following conditions hold:
(i) $\rho(A)=n-r$ and $\rho(B)=r$ and $n-r$ is even;
(ii) there exists a real orthogonal matrix U such that the only non-vanishing r square subdeterminant of $U^{T} B U$ is the first principal one; in fact,

$$
d\left(U^{T} B U[1, \ldots, r \mid 1, \ldots, r]\right)=a>0
$$

2. Proof of Theorem 1. It is easily seen that the following equations are all equivalent:

$$
\begin{gathered}
C^{n-r}\left(A^{T}\right)=C_{r}(B), \\
C_{r}(A) C^{n-r}\left(A^{T}\right)=C_{r}(A) C_{r}(B), \\
d(A) I_{N}=C_{r}(A B), \quad N=\binom{n}{r} .
\end{gathered}
$$

Furthermore, it is easily shown that the last equation is equivalent to $A B=k I_{n}$, for some suitably chosen constant k.

In order to calculate k, observe that

$$
\begin{aligned}
C_{r}(A B) & =C_{r}\left(k I_{n}\right)=k^{r} I_{N}=d(A) I_{N}, \\
d(A B) & =d(A) d(B)=d\left(k I_{n}\right)=k^{n},
\end{aligned}
$$

and the result follows.

3. Proof of Theorem 2.

Lemma 1. If A is a non-trivial singular skew-symmetric solution to (1), then $\rho(A)=n-r$ and $\rho(B)=r$.

Proof. A is skew-symmetric; thus there exists a real orthogonal n-square matrix U such that

for $\alpha_{i} \neq 0, i=1, \ldots, k$. Now $\rho(A)=2 k$ because A is skew-symmetric. Also the zero submatrix in the upper left corner is $(n-2 k)$-square. It follows that, since A satisfies (1),

$$
\begin{aligned}
C^{n-r}\left(U^{T} A U\right) & =C^{n-r}\left(U^{T}\right) C^{n-r}(A) C^{n-r}(U) \\
& =C^{n-r}\left(U^{T}\right) C_{r}\left(B^{T}\right) C^{n-r}(U) \\
& =\{d(U)\} C_{r}\left(U^{-1}\right) C_{r}\left(B^{T}\right)\{d(U)\} C_{r}\left(U^{-1}\right)^{T} \\
& =C_{r}\left(U^{-1} B^{T}\left(U^{-1}\right)^{T}\right) \\
& =C_{r}\left(U^{T} B^{T} U\right) .
\end{aligned}
$$

Thus (1) holds if and only if $C^{n-r}\left(U^{T} A U\right)=C_{r}\left(U^{T} B^{T} U\right)$. We claim that $2 k=n-r$. To prove this, first observe that A is a non-trivial solution to (1) and thus $\rho(A)=2 k \geqslant n-r$. Hence, the last equation reduces to

$$
\begin{equation*}
C^{n-r}\left(A_{1}\right)=C_{r}\left(B_{1}\right), \quad \text { where } A_{1}=U^{T} A U \text { and } B_{1}=U^{T} B^{T} U \tag{2}
\end{equation*}
$$

Now, let $\omega, \tau \in Q_{\tau, n}$, and let $n-2 k=m$. Then the (ω, τ) entry of $C^{n-r}\left(A_{1}\right)$ is $\mp \operatorname{det} A_{1}(\omega \mid \tau)$, and this determinant is not zero only if both ω and τ are of the form $\left(1, \ldots, m, j_{1}, \ldots, j_{r-m}\right)$, where $m<j_{1}<\ldots<j_{r-m} \leqslant n$. Observe that, since $2 k \geqslant n-r, m=n-2 k \leqslant r$. Let the rows of B_{1} be u_{1}, \ldots, u_{n}. The (ω, ω) entry of $C_{r}\left(B_{1}\right)$ is not zero only if $\omega=\left(1, \ldots, m, j_{1}, \ldots, j_{r-m}\right)$, where, again, $m<j_{1}<\ldots<j_{r-m} \leqslant n$. Hence, for any $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in Q_{r, n},\left\{u_{i_{1}}, \ldots, u_{i_{r}}\right\}$ is linearly independent only if $\{1, \ldots, m\}=\left\{i_{1}, \ldots, i_{m}\right\}$. Next, observe that $\left\{u_{1}, \ldots, u_{m}, u_{m+1}, \ldots, u_{r}\right\}$ is linearly independent. To prove this, we distinguish two cases. First, if $n-r$ is even, then the (ω, τ) entry of $C^{n-r}\left(A_{1}\right)$ is equal to $\mp d\left(A_{1}(\omega \mid \tau)\right)$, which is different from zero for the following choice of $\omega, \tau: \omega=(1, \ldots, r), \tau=(1, \ldots, m, m+1, \ldots, r)$. Second, if $n-r$ is $o d d$,
then the (ω, τ) entry of $C^{n-\tau}\left(A_{1}\right)$ is different from zero for the following choice of ω and $\tau: \omega=(1, \ldots, r), \tau=(1, \ldots, m, m+1, \ldots, r-1, r+1)$. (Note that, if $2 k>n-r$, then $m=n-2 k \leqslant r-1)$. Similarly,

$$
\left\{u_{1}, \ldots, u_{m-1}, u_{m+1}, \ldots, u_{r}, u_{k}\right\}
$$

is linearly dependent for any k for which $r+1 \leqslant k \leqslant n$. Hence

$$
\left\{u_{1}, \ldots, u_{m-1}, u_{m}, u_{m+1}, \ldots, u_{r}, u_{k}\right\}
$$

is linearly dependent. Thus u_{k} is linearly dependent on $\left\{u_{1}, \ldots, u_{r}\right\}$ for each k such that $r+1 \leqslant k \leqslant n$. It follows that $\left\{u_{1}, \ldots, u_{r}\right\}$ spans the space of the u_{i} 's, and since this set is linearly independent, it is a basis for the row space of B_{1}. Thus $\rho\left(U^{T} B^{T} U\right)=\rho\left(B_{1}\right)=r, \rho(B)=\rho\left(B_{1}\right)=r$. Hence

$$
\rho\left(C_{r}(B)\right)=\binom{\rho(B)}{r}=1 .
$$

Therefore, $\rho\left(C^{n-r}(A)\right)=\rho\left(C^{n-r}\left(A^{T}\right)\right)=\rho\left(C_{r}(B)\right)=1$. Hence

$$
\binom{\rho(A)}{n-r}=1, \quad \rho(A)=n-r
$$

and the lemma is proved.
Lemma 2. If A is a non-trivial singular skerw-symmetric solution to (1), then there exists a real orthogonal matrix U such that the only non-vanishing r-square subdeterminant of $U^{T} B U$ is the first principal one; in fact,

$$
d\left(U^{T} B U[1, \ldots, r \mid 1, \ldots, r]\right)>0
$$

Proof. A is skew-symmetric, and thus the rank of A is even, say, $2 k$. By Lemma 1, $\rho(A)=n-r$. Hence we have $\rho(A)=n-r=2 k$. As in the proof of Lemma 1, (1) is equivalent to

$$
\begin{aligned}
& =C_{r}\left(U^{T} B^{T} U\right)
\end{aligned}
$$

for some real orthogonal matrix U, where the submatrix in the upper left corner is r-square. Thus (1) holds if and only if $C^{n-r}\left(U^{T} A U\right)=C_{r}\left(U^{T} B^{T} U\right)$. Let $U^{T} B^{T} U=H$. Then (1) is equivalent to

The last equation shows that the only non-vanishing r-square subdeterminant of H is the determinant of the submatrix $H[1, \ldots, r \mid 1, \ldots, r]$; i.e. the $(1,1)$ entry of $C_{r}(H)$. This in turn is just

$$
d\left(\left[\begin{array}{cc}
0 & \alpha_{1} \\
-\alpha_{1} & 0
\end{array} \left\lvert\, \cdots \begin{array}{cc}
\\
& \\
& . \\
& \\
& 0
\end{array} \begin{array}{|cc|}
\hline 0 & \alpha_{k} \\
-\alpha_{k} & 0
\end{array}\right.\right] .\right.
$$

From $\left(U^{T} B U\right)^{T}=U^{T} B^{T} U=H$, it follows that the only non-vanishing subdeterminant of $U^{T} B U$ is the principal one lying in rows $1, \ldots, r$. This proves the lemma.

We are now in a position to complete the proof of Theorem 2.
The necessity of the conditions follows from Lemmas 1 and 2. We prove that they are also sufficient. Suppose that both conditions (i) and (ii) of Theorem 2 hold. By (i), $\rho(A)=n-r=2 k$, say. Choose real numbers $\alpha_{1}, \ldots, \alpha_{k}$ such that $\alpha_{1}{ }^{2} \ldots \alpha_{k}{ }^{2}=a$, where a is the positive number described in (ii) above. Now, using the matrix U described in (ii) and the numbers $\alpha_{1}, \ldots, \alpha_{k}$ just constructed, we define A as follows:
where the zero matrix in the upper left corner is r-square, and $2 k=\rho(A)=$ $n-r$. By an argument similar to the one used in the proofs of Lemmas 1 and 2 , one verifies that A is a skew-symmetric solution of $C^{n-r}\left(A^{T}\right)=C_{r}(B)$. This completes the proof.

References

1. A. C. Aitken, Determinants and matrices (Edinburgh, 1948).
2. T. Muir, A treatise on the theory of determinants (New York, 1960).
3. H. Schwerdtfeger, On the adjugate of a matrix, Portugal. Math., 20 (1961), 39-41.
4. W. R. Utz, Some theorems and questions on matrices, Portugal. Math., 18 (1959), 225-229.
5. J. H. Wedderburn, Lectures on matrices, Am. Math. Soc., Coll. Publ., 17 (1934).

University of California, Santa Barbara

[^0]: Received May 17, 1963. The work of the first author was supported by the National Science Foundation under grant G.P.1085.

