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ABSTRACT. The local mass balance of sea ice is dependent on the advection of ice into and out of an
area and on the deformation processes in that area. Sea-ice motion can be observed from space by
synthetic aperture radar (SAR) and quantified by drift-detection algorithms. Due to the scarcity of field
observations, it remains a challenging task to validate the resulting motion fields. We analyse the quality
of sea-ice motion fields derived from SAR data, using an example dataset from the Weddell Sea region.
We apply a quality indicator for sea-ice motion fields which is independent of field data and evaluate it
with reference data obtained from visual analysis of the SAR images. Together with the motion field,
sea-ice deformation can also be retrieved from SAR data. Similarly to ice motion, it is very difficult to
obtain field data to evaluate the quality of the results. Based on a manually derived reference dataset,
we introduce a method to validate the retrieved deformation rates. This procedure requires no
additional field data. Our analysis shows that deformation rates derived from SAR data are consistent
with results obtained from buoy analysis by previous studies.
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INTRODUCTION
In order to understand the interaction between the ocean
and atmosphere in ice-covered regions, it is important to
pay close attention to sea-ice dynamics. The movement of
sea ice impacts the transport of salt and heat, and hence the
ocean dynamics. Sea-ice motion is, to a large extent, driven
by wind, ocean currents and internal ice stress. Convergent
ice motion causes features such as ridges and rubble fields,
which change the momentum balance between atmos-
phere, ice and ocean. Openings in the ice at locations of
divergent motion influence the exchange of heat and matter
between ocean and atmosphere. The development of
compression structures and leads in the ice affects the ice
mass per unit area (local mass balance). For these reasons it
is necessary to examine sea-ice motion to understand the
role of the polar ice cover in the climate system.

Ice motion can be tracked by analysing a time series of
spatially overlapping satellite images. It is convenient to use
data from satellites operating at microwave frequencies,
since they are not influenced by clouds or light conditions.
In our work, we use high-resolution synthetic aperture radar
(SAR) data from satellites operating at C-band frequencies
(�5GHz). More specifically, ice-motion tracking in satellite
imagery uses feature-tracking (Giles and others, 2011;
Komarov and Barber, 2012) or block-matching techniques
(Lavergne and others, 2010). Often, block matching is
extended to a multiscale approach, where patterns in the sea
ice are tracked between two consecutive images using a
series of nested correlations (Fily and Rothrock, 1987;
Thomas and others, 2011; Hollands, 2012; Karvonen,
2012). From the resulting motion fields, deformation
processes taking place in the time interval between image
acquisitions can be inferred.

Drift-detection algorithms are well established, and
retrieved motion and deformation fields have been validated
using buoy arrays (Kwok and others, 1990; Lindsay and
Stern, 2003). Those analyses were conducted on spatial

scales of 10–1000 km, where a sufficient amount of buoy
data was available.

Sea-ice deformation is highly localized (Hutchings and
others, 2012), and it is thus desirable to also analyse
deformation processes on smaller spatial scales. However,
a detailed validation of ice-drift and deformation maps
generated from SAR data is hampered by the scarcity of buoy
tracks within the relatively small area covered by high-
resolution satellite images. For this reason, alternative
methods for validating ice-drift and deformation products
generated from SAR data need to be introduced. In this paper,
we describe a method which relies on the image information
itself, and does not require external measurements.

SEA-ICE DRIFT AND DEFORMATION DETECTION
FROM SAR DATA
A pair of Envisat ASAR (Advanced SAR) Image Mode scenes
acquired over the Weddell Sea on 26 and 27 August 2006,
with a temporal separation of 1.19 days, provides an
interesting example for our analysis (Fig. 1). The upper part
of the image is occupied by a grounded iceberg (A23-A).
Stabilized by the iceberg, the left half of the surrounding sea
ice is stationary in the time between image acquisitions.
While the ice in the right part of the image drifts to the north,
several leads can be observed to open and close.

The SAR scenes were radiometrically calibrated and
resampled from the original 12.5m pixel size to pixels of
25m for speckle reduction. Both images were geocoded and
sampled to a common reference frame. The scenes were
subsequently cut to their overlapping area and have a spatial
extent of �100 km� 100 km. In the following, the zonal
direction in the coordinate system is denoted x, and y is the
meridional component. The respective velocity field com-
ponents are u (in the x-direction) and v (in the y-direction).

For an analysis of the drift-detection algorithm, 300
reference points were chosen by visually detecting

Annals of Glaciology 56(69) 2015 doi: 10.3189/2015AoG69A826 229

https://doi.org/10.3189/2015AoG69A826 Published online by Cambridge University Press

https://doi.org/10.3189/2015AoG69A826


corresponding structures in the ice in both images. The
locations of those points are shown in Figure 1. We estimate
their mean location accuracy to be��1–2 pixels (25–50m).

Sea-ice drift is detected using a pattern-matching
approach, which combines phase correlation with a nor-
malized cross-correlation technique to identify matching
structures in two images (Hollands and Dierking, 2011;
Thomas and others, 2011; Hollands, 2012). Patterns at
different spatial scales are identified using an image pyramid
that comprises different spatial resolutions of the SAR data.
The search is run multiple times, iteratively refining the

resolution of the resulting drift field. For each iteration step,
an intermediate velocity field is calculated, which is then
used to initialize the next step. Our example set-up uses five
iterations to calculate the drift field, which has a spatial
resolution of �500m. The result (Fig. 2) compares well with
the visual analysis.

Determination of drift field reliability
Error analysis of the drift and deformation fields obtained
from our cascaded motion-tracking algorithm is not straight-
forward. Beyond buoy data (which often are unavailable) and
hand-picked reference points (which are very time-consum-
ing to generate), we use two basic approaches to evaluate the
reliability of drift fields calculated from SAR data:

Texture analysis, which works under the assumption that
pattern-matching algorithms fail if there is insufficient
texture in the images (e.g. in apparently homogeneous
new-ice areas or on icebergs/ice shelves). Extending the
image cross-correlation, different statistical and texture
parameters are employed to identify regions where the
drift-detection algorithm is likely to fail. Those par-
ameters are combined in a single metric. A threshold
empirically determined by Hollands and others (2014) is
then used to separate reliable from unreliable regions
(Fig. 3a).

Backmatching, which is a simple consistency check.
Here the drift field is calculated twice, once with a
reversed image order. In theory, identical patterns are
matched during both runs and the difference between
the resulting drift fields is zero. However, in the case of
mismatches, due to insufficient texture or periodically
repeating patterns, the difference between the two drift
fields can be quite large. The backmatching difference
depends on ice-drift speed. For this reason we calculate
a normalized backmatching difference to account for
drift speed and then apply a threshold to identify the
reliable vectors (Fig. 3b). In this case, the threshold
value was again determined empirically (Hollands and
others, 2014).

In both instances, thresholds were empirically determined to
identify regions where sea-ice motion detected by our drift

Fig. 2. Sea-ice motion field for the pair of SAR images acquired on
26 and 27 August 2006 with a temporal separation of 1.19 days.

Fig. 1. SAR image from the Weddell Sea, acquired on 26 August
2006. The reference point locations are marked with white crosses.
Inset: Antarctic map showing location of the test site.

Fig. 3. Ice-drift reliability indicators for the pair of SAR images
acquired on 26 and 27 August 2006. (a) Texture analysis: values <2
correspond to reliable drift vectors. (b) Backmatching difference:
values <3 correspond to reliable drift vectors.
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algorithm can be considered reliable. Threshold values were
set by combining histogram analysis and visual inspection of
the retrieved motion vectors and reference data.

Calculation of sea-ice deformation parameters
In principle, the deformation of sea ice in the time, �t,
between image acquisitions can be derived from the calcu-
lated velocity field. This is usually done by calculating the
invariants of the strain-rate tensor from the partial derivatives
of the velocity field (Thorndike and Colony, 1982):

divergence: _"div ¼
@u
@x
þ
@v
@y

,
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The total deformation of the drift field is given by

_"tdef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_"2div þ _"2shear

q

: ð2Þ

Sea-ice deformation zones appear to be highly localized
features, and many of their properties are still poorly
understood (Herman and Glowacki, 2012), especially on
small spatial scales. It is not yet clear how deformation fields
calculated from SAR data can be independently validated.
One possibility is to conduct a classification of ice types or
an analysis of sea-ice scattering properties. Here deform-
ation structures can be identified under the assumption that
deformed ice and level ice can be separated, based on their
microwave-scattering properties (Dierking and Dall, 2007,
2008). This approach can be used to infer deformation
history, but a quantitative comparison with deformation
rates obtained from ice-drift analysis is not feasible. Field
data exist from buoys (Rampal and others, 2008; Hutchings
and others, 2011, 2012), from laser profiling (Haas and
others, 1999) and, historically, from drift stations (Leppär-
anta and Hibler, 1987). Due to the limited coverage of SAR
images, coincident buoy and SAR data acquisitions require
significant logistical effort. Another problem is that the
temporal sampling that can be achieved with recent SAR
missions is not sufficient for studying high-frequency motion
of the order of less than a few hours.

RESULTS
Sea-ice drift reliability
In our example (Fig. 2) we expect the algorithm to work
poorly on the iceberg, due to a lack of texture. In this case,
the algorithm generates spurious drift vectors by randomly
correlating noise. Image borders pose another problem:
patterns drifting into or out of the images cannot be
matched, and the extent of such regions depends on ice
velocity. We generated reliability maps using both texture
analysis and backmatching (Fig. 3). The results agree with
each other, indicating the iceberg and parts of the image
borders as areas where the retrieved drift should be regarded
as unreliable.

Using a mean location error, �x, ref, of �50m (2 pixels),
the mean error of the reference velocity components, �u, ref,
is calculated (the mean error of the time measurement
�t � �u, ref and can be neglected)

�u, ref ¼ �

ffiffiffi
2
p

�t
�x, ref ¼ 70:71md� 1: ð3Þ

The u- and v-components of the drift vectors from both
forward and backward runs of the ice-drift algorithm are
compared with the reference data. To this purpose, the
calculated velocities are interpolated at the locations of the
reference points. The differences between reference and cal-
culated drift u- and v-components are �u ¼ uref � ucalc and
�v ¼ vref � vcalc, respectively. Mean absolute deviations,
�u ¼ 31:00� 47:84md� 1 and �v ¼ 39:43�85:43md� 1,
are below the location error of the reference data (Eqn (3)).
Hence, the velocities derived from motion tracking are in
very good agreement with the reference data and our dataset
is, in principle, suited to analysing sea-ice deformation
derived from the velocities.

Sea-ice deformation
From the velocity field (Fig. 2), the deformation parameters
are determined according to Eqns (1) and (2). The derived
deformation parameters (Fig. 4) show spatial features,
including those labelled in Figure 4a: stationary ice; rela-
tively fast ice drift northwards; low velocities, in a north-
easterly direction; and faster ice drift, eastwards. As a
consequence, three distinctive deformation zones appear,
separating the regions of different drift velocity (Fig. 4). The
deformation zones are mainly characterized by shear (due to

Fig. 4. Sea-ice deformation (s� 1) calculated from the motion field. (a) Divergence (labels: 1. stationary ice; 2. relatively fast ice drift
northwards; 3. low velocities, in a northeasterly direction; and 4. faster ice drift, eastwards). (b) Shear. (c) Total deformation.
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different drift speeds along the same direction; Fig. 4b) and
divergence (caused by opening and closing of leads; Fig. 4a).

The reference data points are sampled with a spatially
irregular distribution and in no particular order. Hence,
they cannot be directly compared with the deformation
values obtained from the velocity field. Deformation
characteristics are computed for each sampled point, P, in
the following way:

1. Create a Delaunay triangulation between reference
points.

2. Based on the triangulation, find the points, pi, adjacent
to P (Lee and Schachter, 1980). These are used to
calculate the linear approximation of the partial deriva-
tives (following Lindsay and Stern, 2003):

@u
@x
¼

1
2A

Xn

i¼1
uiþ1 þ uið Þ yiþ1 � yið Þ, ð4Þ

where unþ1 ¼ u1, ynþ1 ¼ y1 and the area, A, is calcu-
lated using Gauss’s area formula. The other partial
derivatives are determined analogously to Eqn (4). The
deformation tensor components are then obtained from
Eqns (1) and (2).

3. Since we know the mean error of the reference point
locations from Eqn (3), we can estimate the mean error of
the reference deformation tensor components using the
error propagation approach of Lindsay and Stern (2003)
(Fig. 5c).

4. The spatial resolution of the computed velocity field is
�500m, while the reference values are sampled at
distances ranging from a few hundred metres to several
tens of kilometres. To ensure comparability between
calculated and reference values, we resample the calcu-
lated velocity field components to the locations of the
reference points. This way, the calculated deformation
values from both methods are representative of exactly
the same region. Deformation tensor components of the
velocity field are then derived by repeating steps 1 and 2.

Validation
The resulting maps of total deformation (Fig. 5a and b) are
visualized using Voronoi cells derived from the Delaunay
triangulation. Here we can identify the main deformation
zones, that are also found in the distribution of total
deformation (Fig. 4c). The spatial distributions of retrieved
deformation parameters are very similar. Since the velocity
field from motion tracking is repeatedly smoothed during
iterations, we expect deformation parameters derived from
the motion field to be lower than the associated reference
values. This effect is visible in Figure 5a and b, where
reference deformation values are systematically higher than
values determined from the velocity field. A direct com-
parison of calculated and reference values indicates that the
calculated deformation rates are systematically underesti-
mated by a factor of �0.77 (Fig. 6).

The standard deviation of the total deformation calcu-
lated from the reference points (Fig. 5c) is larger for smaller
areas, which indicates that reference deformation derived
from smaller areas is more strongly influenced by the error
of the velocity vectors. An increase of the sampling area,
however, tends to suppress small-scale deformation struc-
tures. The deformation error also depends on the polygon
configuration. It is higher for fewer vertices (see Hutchings
and others, 2012, for a detailed analysis). From the available
data, we find that for deformation rates _"tdef > 0:03 d� 1,
90% of the values exceed the position noise level, while for
_"tdef � 0:03 d� 1, only 25% are above the noise level.

Fig. 6. Reference vs calculated total deformation. The dark grey line
is the linear regression: log10ð _"cÞ ¼ 0:77 log10ð _"rÞ � 0:64, where _"c

is calculated total deformation and _"r is reference total deformation.
The light grey area shows the standard deviation of the regression
(�log10ð0:38Þ).

Fig. 5. Total sea-ice deformation at the reference point locations. (a) Reference data, (b) calculated values and (c) standard deviation of total
deformation calculated from the reference points. Note the different ranges of values.
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In analogy to the analyses of sea-ice deformation scaling
properties by Marsan and others (2004) and Rampal and
others (2008), we calculated a length scale, L ¼

ffiffiffiffi
A
p

, from
the polygon area and plotted the total deformation, _"tdef,
with respect to L (Fig. 7). It is inherent in the design of our
cascaded motion-tracking algorithm to calculate drift vel-
ocities at different spatial scales. In this process, velocity
fields are calculated repeatedly at increasing resolution,
where the intermediate low-resolution velocity fields are
used to initialize the next iteration steps in order to increase
the numerical stability of the algorithm. We make use of this
property to calculate total deformation from the intermedi-
ate velocity fields, using Eqns (1–4). The derived results
show a reasonable match with the reference data (Fig. 7).

At this point, it has to be considered that the reference
points can only be located along visible structures. This
effect results in a reduced sampling rate at smaller spatial
scales, which might also introduce a bias to the apparent
slope of the reference data cluster. However, our analysis
shows that results from both methods are of the same orders
of magnitude and have a comparable range.

The total deformation rates found by our analysis are also
consistent with results derived from buoy data, if temporal
and spatial scaling properties are considered. In our case of
a 1 day temporal separation between image acquisitions, the
spatial scaling law exponent calculated from the intermedi-
ate deformation fields is H ¼ 0:74, which is a reasonable
value compared with values reported by Rampal and others
(2008), of H ¼ 0:85 for a 3 hour period, and H � 0:7 for a
3 day period.

CONCLUSION
To improve our understanding of the physics behind
ice-deformation processes, it is important to include ice-
deformation observations on small spatial scales. Sea-ice
drift products generated from SAR data can, in principle, be
used to derive information about ongoing deformation
processes at high spatial resolutions. However, it is difficult
to validate the derived deformation parameters at a high level
of detail, even where external data from buoys are available.
In this study, we suggest a method to assess the quality of the
deformation parameters derived from a sequence of SAR
images. This method does not require field data, but instead
relies on careful analysis of tie points in the SAR images.

Our results indicate that the deformation calculated from
SAR data exhibits similar statistical properties to the
reference data obtained from visual analysis. The results
are also comparable to deformation rates obtained from
buoys. With the proposed technique, it is possible to
reproduce scaling characteristics of sea-ice deformation
which were previously observed in buoy data analysis
(Marsan and others, 2004; Rampal and others, 2008;
Hutchings and others, 2012).

However, several issues remain to be addressed. Most
importantly, the effect of the filtering and smoothing steps
within the cascaded motion-tracking algorithm needs to be
quantified. We can see that this introduces a bias, but further
analysis is necessary to properly quantify this bias and find a
method to correct the results accordingly. In our current
approach, deformation rates are calculated on an irregularly
sampled grid. In this case, the error of the deformation rates
also depends on the shape of the sampled polygons. Hence,
further studies need to evaluate the impact of the spatial

properties of the tie-point configuration on the uncertainty
of the deformation rates. As a last point, this work focuses on
the development of a method to evaluate sea-ice properties
derived from SAR data analysis, and is therefore restricted to
a limited amount of data. Further studies need to include
more data in order to develop a representative view of the
heterogeneous nature of sea ice.
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