ATOMIC MEASURE SPACES AND ESSENTIALLY NORMAL COMPOSITION OPERATORS

R.K. SINGH AND T. VELUCHAMY

The adjoint of a composition operator C_T on the L^2 -space of an atomic measure is computed and a characterization for an operator to be a composition operator is given in this short note. The dimensions of kernel and co-kernel of C_T are calculated in order to characterise Fredholm composition operators. Finally, essentially normal composition operators are studied on ℓ^2 .

1. Introduction

Let (X, S, λ) be a sigma-finite measure space and T be a nonsingular measurable transformation from X into itself. Then the mapping C_T on $L^p(\lambda)$ which takes f into $f \circ T$ is a linear transformation. If the range of C_T is in $L^p(\lambda)$ and C_T is bounded, then we call it a composition operator on $L^p(\lambda)$ induced by T. It is known that the composition transformation C_T is bounded if and only if there exists an M > 0 such that $\lambda T^{-1}(E) \leq M\lambda(E)$ for all E in S. From this it follows that if C_T is bounded then the induced measure λT^{-1} is absolutely continuous with respect to the measure λ . Hence, by the Radon-Nikodym theorem, there exists a positive measurable function f_0

Received 18 November 1982.

such that $\lambda T^{-1}(E) = \int_E f_0 d\lambda$ for every E in S. The function f_0 is called the Radon-Nikodym derivative of the measure λT^{-1} with respect to λ .

A measurable set E is called an atom if $\lambda(E) \neq 0$ and if $F \in S$ and $F \subseteq E$, then either $\lambda(F) = 0$ or $\lambda(F) = \lambda(E)$. A measure λ is called atomic if every element $E \in S$ such that $\lambda(E) \neq 0$ contains an atom and in this case we say that (X, S, λ) is an atomic measure space. In this paper the adjoint of a composition operator on $L^2(\lambda)$ is obtained and the necessary and sufficient condition for an operator on $L^2(\lambda)$ to be a composition operator is discussed when the underlying measure λ is atomic. Also dimensions of kernel of C_T and kernel of C_T^* are given. Finally essentially normal composition operators on L^2 are characterised.

2. Composition operators and atomic measure spaces

If (X, S, λ) is a sigma-finite atomic measure space, then we can write X as $\bigcup_{i=1}^{\infty} E_i$, where the E_i 's are disjoint atoms of finite i=1 $\stackrel{\infty}{i=1}$ F_i , where the E_i 's are disjoint atoms of finite measure [7]. These atoms are unique in the sense that if $X = \bigcup_{i=1}^{\infty} F_i$, where the F_i 's are disjoint atoms of finite measures, then for every F_i there exists an E_j such that $\lambda(E_j \Delta F_i) = \lambda\{\{E_j \setminus F_i\} \cup \{F_i \setminus E_j\}\} = 0$. If a non-singular measurable transformation T on X takes one part of an atom E_j to a subset of an atom E_k and the other part of E_j to a subset of another atom E_1 , then anyone of the above parts of E_j has to be a null set. As it is obvious that the image of an atom under a nonsingular measurable transformation $T: X \to X$ as a transformation taking atoms into atoms. Hereafter we denote the atom E_j by j and by T(j)the atom to which E_j is carried over by T. We say that an atom j is in the range of T if $j \in \{T(i) : i \in \mathbb{N}\}$.

A non-singular measurable transformation $T: X \to X$ is called one-toone almost everywhere if the inverse image of every atom under T contains at most an atom. It is called onto almost everywhere if the inverse image of every atom under T contains at least one atom. If T is one-to-one almost everywhere and onto almost everywhere then it is called invertible almost everywhere. Also every function $f \in L^2(\lambda)$ is constant almost everywhere on an atom. Hence the span of the characteristic functions $\{X_i: i \in \mathbb{N}\}$ form a dense subset of $L^2(\lambda)$. Let $K_i = X_i/\lambda(i)$. Then the set of functions $\{K_i: i \in \mathbb{N}\}$ forms an orthonormal basis for $L^2(\lambda)$. The symbol B(H) stands for the C^* -algebra of all bounded operators on the Hilbert space H. Throughout this paper we assume that (X, S, λ) is an atomic sigma-finite measure space. The following theorem computes the adjoint of C_m .

THEOREM 1. Let $C_T \in B(L^2(\lambda))$ and let A be defined as $(Af)(i) = 1/\lambda(i) \int_{T^{-1}(i)} fd\lambda$ almost everywhere for $f \in L^2(\lambda)$ and for every atom i. Then $A = C_T^*$.

Proof. Let $f, g \in L^2(\lambda)$. Then

$$\langle C_{T}f, g \rangle = \int_{x} (C_{T}f)\overline{g}d\lambda$$

$$= \sum_{i=1}^{\infty} \int_{T^{-1}(i)} f \circ T\overline{g}d\lambda$$

$$= \sum_{i=1}^{\infty} f(i)\lambda(i)(\overline{Ag})(i)$$

$$= \langle f, Ag \rangle ,$$

Hence $A = C_{T}^{\star}$. Hence the proof is completed.

The following theorem gives a necessary and sufficient condition for an operator to be a composition operator. THEOREM 2. Let $A \in B(L^2(\lambda))$. Then A is a composition operator if and only if the set $\{K_i : i \in N\}$ is invariant under A^* . In this case T is determined by $A^*(K_i) = K_{T(i)}$.

Proof. The proof follows from the above theorem and [3].

The above theorem shows that the functions $\{K_i\}$ play the role of kernel functions for $L^2(\lambda)$. In the following theorem we compute the dimension of ker C_{τ} .

THEOREM 3. Let $C_T \in B(L^2(\lambda))$. Then dim ker C_T equals the number of atoms in $X \setminus \{T(i) : i \in \mathbb{N}\}$.

Proof. If an atom i is not in the range of T, then $X_i \in \ker C_T$ since $\lambda T^{-1}(i) = 0$. If an atom j is in the range of T, then $\lambda T^{-1}(j) > 0$ and hence $C_T X_j \neq 0$. Hence ker C_T is equal to the closure of the span of the set $\{X_k : k \text{ is not in the range of } T\}$. Hence the proof is completed.

Let β_n denote one less than the number of atoms in $T^{-1}(n)$ if $T^{-1}(n)$ has more than one atom, otherwise zero.

THEOREM 4. Let $C_T \in B(L^2(\lambda))$. Then dim ker $C_T^* = \sum_{n=1}^{\infty} \beta_n$.

Proof. From Theorem 2 it follows that

$$C_T^{\star}\left(\sum_{i \in T^{-1}(k)} a_i X_i\right) = \left(\sum_{i \in T^{-1}(k)} b_i\right) X_k \text{, where } b_i = \frac{\lambda(i)}{\lambda(T(i))} a_i$$

From this it is clear that when the cardinality of $T^{-1}(k) = p > 1$, C_T^* kills (p-1) basis vectors of the closed subspace spanned by the characteristic functions $\left\{X_i : i \in T^{-1}(k)\right\}$. Since $L^2(\lambda)$ is the direct sum of such closed subspaces, we get dim ker $C_T^* = \sum_{n=1}^{\infty} \beta_n$. Hence the theorem is proved.

DEFINITION. An operator $A \in B(H)$ is called Fredholm if A has closed range and dimensions of kernel of A and co-kernel of A are finite.

Let $X_0 = \{x : x \in X \text{ and } f_0(x) = 0\}$. The following theorem gives a characterization for Fredholm composition operators.

THEOREM 5. Let $C_T \in B(L^2(\lambda))$. Then C_T is Fredholm if and only if f_0 is bounded away from zero on the complement of X_0 , range of T contains all but finitely many atoms of X and T is one-to-one almost everywhere on the complement of a set with finitely many atoms.

Proof. The proof follows from Theorems 3 and 4.

SOME CONSEQUENCES

1. \mathcal{C}_{η} is an injection if and only if T is onto almost everywhere.

2. C_T has dense range if and only if T is one-to-one almost everywhere.

3. C_T is invertible if and only if T is invertible almost everywhere and f_0 is bounded away from zero.

4. If $C_T \in B(l^2)$, then C_T is Fredholm if and only if $f_0 = 1$ except for a finite number of points of N.

In [6] it has been proved that in case of a general finite measure space unitary and normal composition operators coincide and isometries and quasinormal composition operators coincide on $B(L^2(\lambda))$. If the measure space is atomic, then all the above coincide.

THEOREM 6. Let (X, S, λ) be a finite atomic measure space and $C_{\pi} \in B(L^{2}(\lambda))$. Then the following are equivalent:

(i) C_T is unitary; (ii) C_T is normal; (iii) C_{τ} is an isometry;

(iv) C_m is quasinormal;

(v) C_{π} is a co-isometry.

Proof. By Theorems 1 and 2 of [6], (i) and (ii) are equivalent, and (iii) and (iv) are equivalent. Now suppose \mathcal{C}_{rr} is an isometry. Then Tis measure preserving and hence $\lambda T^{-1}(i) = \lambda(i)$ for every atom *i* in X. Let S_{i} denote the set of all atoms in X which have the same measure as i. Then each S_i will be a finite set. Also C_{r} is an isometry implies that T is onto almost everywhere. Since $T\bigl(S_{i}\bigr) \subset S_{i}$ for every i , T/S_{i} is one-to-one almost everywhere and hence T is one-to-one almost everywhere. Since an isometry has closed range, this implies that ${\it C}_{m}$ is invertible and hence \mathcal{C}_{T} is unitary. This gives the equivalence of (i) and (iii). To prove the equivalence of (v) and (i), suppose C_{η} is a coisometry. Then C_{T} has dense range and hence T is one-to-one almost everywhere. Also $f_0 \circ T = 1$ almost everywhere. This implies $\lambda T^{-1}(T(i)) = \lambda(i) = \lambda(T(i))$ for every i in X. Considering the set S_i as above we have $T(S_i) \subset S_i$ for every *i* in X which implies that T unitary. This completes the proof of the theorem.

COROLLARY 6.1. If the atoms in the finite atomic measure space (X, S, λ) are such that $\lambda(i) \neq \lambda(j)$ when i is different from j, then all the above composition operators coincide with the identity operator.

3. Essentially normal composition operators on z^2

DEFINITION. Let H be a Hilbert space, C(H) denote the ideal of compact operators in B(H) and π from B(H) to the Calkin algebra B(H)/C(H) be the canonical epimorphism. Then an operator A in B(H) is said to be essentially normal, essentially unitary or an essential isometry if $\pi(A)$ is normal, unitary or an isometry respectively in the C*-algebra B(H)/C(H) (refer [1]). We say that A is quasi-unitary if $A^*A - I$ and $AA^* - I$ are finite rank operators. A is Fredholm is equivalent to saying that $\pi(A)$ is invertible in the Calkin algebra.

We know from [4] that invertible, normal, unitary and isometric composition operators are not different in l^2 . The same is true about Fredholm, essentially normal, essentially unitary and essential isometric composition operators. This we shall exhibit in the following theorem.

THEOREM 7. Let $C_{T} \in B(l^{2})$. Then the following are equivalent:

- (i) C_{π} is Fredholm;
- (ii) C_{η} is essentially normal;
- (iii) C_{π} is quasi-unitary;
- (iv) C_m is essentially unitary;
- (v) C_{π} is an essential isometry.

Proof. First we prove the equivalence of (i) and (ii). Let C_T be Fredholm. Then $f_0 = 1$ except for a finite number of points of N. Now

$$C_T^{\star}C_T - C_T C_T^{\star} = \begin{cases} M_{f_0} - f_0 \circ T & \text{on } \overline{\operatorname{Ran} C_T} \\ \\ M_{f_0} & \text{on } \ker C_T^{\star} = (\operatorname{Ran} C_T)^{\perp} \end{cases}$$

Since C_T is Fredholm $f_0 = f_0 \circ T$ except for a finite number of points of N and ker C_T^* is finite dimensional. Hence $C_T^* C_T - C_T C_T^*$ is of finite rank and hence C_T is essentially normal. Conversely, suppose C_T is essentially normal. If possible let dimension of ker $C_T = \infty$. Then by Theorem 3 there exists an infinite subset $S_1 = \{n_1, n_2, \ldots\}$ of N such that $f_0(n_i) = 0$ for $i = 1, 2, \ldots$. For $n \in \mathbb{N}$ let $e^{(n)}$ be the function on N taking value zero at points different from n and value 1 at n. Then the sequence $\{e^{(n)}\}$ tends to zero weakly. But the sequence $\left\{ \left\| \left(C_T^* C_T^{-} C_T C_T^* \right) e^{(n)} \right\| \right\} \text{ does not tend to zero. This shows that } \left(C_T^* C_T^{-} C_T C_T^* \right) \\ \text{ is not compact. Thus } C_T \text{ is not essentially normal which is a contradiction. Hence dim ker } C_T^{<\infty} \cdot \text{ Similarly, if ker } C_T^* \text{ is infinite dimensional, then we can prove that } \left(C_T^* C_T^{-} C_T C_T^* \right) \text{ is not compact.} \\ \text{ Hence dim ker } C_T^* < \infty \text{ . Thus } C_T \text{ is Fredholm, since every composition } \\ \circ \text{ operator on } l^2 \text{ has closed range.}$

If C_T is Fredholm, then $f_0 = 1$ except for a finite number of points of N. Hence $C_T^* \mathcal{L}_T - I = M_{f_0-1}$ is of finite rank. Also

$$C_T C_T^* - I = \begin{cases} M_{f_0 \circ T - 1} & \text{on } \overline{\operatorname{Ran} C_T} \\ \\ -I & \text{on } (\overline{\operatorname{Ran} C_T})^{\perp} = \ker C_T^* \end{cases}$$

Since $f_0 \circ T = 1$ except for a finite number of points of N and ker C_T^* is finite dimensional, $C_T C_T^* - I$ is also of finite rank and hence C_T is quasi-unitary. Hence (*i*) implies (*iii*). Obviously (*iii*) implies (*iv*) and (*iv*) implies (*v*). Now, let C_T be an essential isometry. Then $C_T^* C_T - I$ is compact which implies $M_{f_0}-1$ is compact. This implies $f_0 = 1$ except for a finite number of points of N. Hence C_T is Fredholm. Thus (*v*) implies (*i*) and the theorem is proved.

THEOREM 8. Let C_T be a quasinormal composition operator on l^2 . Then C_r is essentially normal if and only if it is normal.

Proof. Since a quasinormal composition operator on l^2 is an injection, it is essentially normal if and only if ker C_T^* is finite dimensional. Also $f_0 = f_0 \circ T$. This, in the light of Theorem 3, implies that C_T is essentially normal if and only if ker C_T^* is zero dimensional. Thus C_T is essentially normal if and only if C_T is normal. Hence the theorem is proved.

References

- [1] Ronald G. Douglas, Banach algebra techniques in operator theory (Pure and Applied Mathematics, 49. Academic Press, New York, London, 1972).
- [2] Ashok Kumar, "Fredholm composition operators", Proc. Amer. Math. Soc. 79 (1980), 233-236.
- [3] Eric A. Nordgren, "Composition operators on Hilbert spaces", Hilbert space operators, 37-63 (Proc. Conf. Long Beach, California, 1977. Lecture Notes in Mathematics, 693. Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [4] R.K. Singh and B.S. Komal, "Composition operators on l^p and its adjoint", Proc. Amer. Math. Soc. 70 (1978), 21-25.
- [5] R.K. Singh and Ashok Kumar, "Characterizations of invertible, unitary, and normal composition operators", Bull. Austral. Math. Soc. 19 (1978), 81-95.
- [6] Robert Whitley, "Normal and quasinormal composition operators", Proc. Amer. Math. Soc. 70 (1978), 114-118.
- [7] A.C. Zannen, Integration (North Holland, Amsterdam; Interscience, New York, 1967).

Department of Mathematics, University of Jammu, Jammu 180001, India.