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Abstract

A periodic binary array on the square grid is said to be sequential if and only if each row and each
column of the array contains a given periodic binary sequence or some cyclic shift or reversal of this
sequence. Such arrays are of interest in connection with experimental layouts. This paper extends
previous results by characterizing sequential arrays on sequences of the type ( 1 , . . . , 1,0,..., 0) and
solving the problem of equivalence of such arrays (including a computation of the number of
equivalence classes).

1980 Mathematics subject classification (Amer Math. Soc.): 05 B 20.

1. Introduction

A periodic binary sequence fin = { bt} of period n is a sequence of zeros and ones
such that n is the smallest positive integer for which

bi = bi+n for a l l / .
Such a sequence is clearly determined by any of its segments of length n. A
periodic binary array Bn = { b{j } of period n on the square grid is an array each of
whose rows and columns is a periodic binary sequence of period n. Such an array
is called sequential if the same sequence (or its cyclic shifts or their reversals)
occurs in every row and column. (Sequential arrays on square and also on
triangular and hexagonal grids are of interest in connection with some problems
in agricultural statistics; see [3,4,7]). An array of period n can be regarded as
consisting of repetitions of an n X n matrix. In particular, if the array is
sequential, then its corresponding matric has the same sequence (or its cyclic
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[2] Sequential binary arrays and circulant matrices 331

shifts or reversals) in every row and column; we shall call such a matrix
sequential.

Two binary arrays will be called equivalent if one can be obtained from the
other by interchanging zeros with ones, by translation, by rotation, by reflection,
or by some finite sequence of these operations. Two n X n binary matrices will
also be called equivalent if they generate equivalent arrays. Thus we have

1.1. DEFINITION, (a) Two n X n sequential binary matrices A = (a,y) and
B = (bu) are equivalent if one can be obtained from the other by a cyclic shift of
rows SR (downwards), a cyclic shift of columns Sc (to the right), rotation R
clockwise through 90°, transposition T, complementation C, or by any finite
sequence of these operations.

We record the action of these operations.

B = SR(A) if and only if for all i,j, btJ = ai_1 j ,

B = SC(A) if and only if for all i,j, btJ = at j _ x ,

B = R(A) if and only if for all i,j, btJ = an_J+1,,

B = T(A) if and only if for all i,j, bu = ajt,

B = C{A)\i and only if for all i,j, btj = 1 - atj.

Thus A and B are equivalent if and only if they are in the same orbit of the group

G X Z2 = (SR, Sc, R,T\SR = S^ = R — T = 1 , SRSC = SCSR,

Sc*R = RSR, SRR = RSC, RT = TR3, TSC = SRT, TSR = SCT)

X(C\C2 = 1>

acting on the set of n X n binary matrices.
For convenience we let xk denote the sequence xx... x of length k. Thus 02l3

denotes 00111.
The sequences for which the sequential arrays have been characterized are

(i) r(n, k) = lO^ lO"-*- 1 , when k is 2 or n - 2 or when (n, k) = 1, in [2,
Theorem 1] and [5, Theorem 2], and

(ii) t(n, k) = 1*0"-* for k < 3 (or k > n - 3), in [2, Theorem 1] and [5,
Theorem 1].

In this paper we shall characterise in Theorem 1 the sequential arrays on
\l>(n,k) for any k. One class of examples of these sequential arrays has the
structure of a generalized circulant array, a generalization different from the
jc-step circulants, (x, n) = 1, discussed and characterized in [2, Theorem 2]. We
shall show in Theorem 2 that the problem of determining equivalence of these
generalized circulant arrays on $(n,k) reduces to the problem of determining
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equivalence of certain integer sequences, and we shall compute the number of
equivalence classes of these sequences in Theorem 3. Finally, we compute the
number of equivalence classes of sequential arrays on i|/(n, k) in Theorem 4.
Before stating our results we discuss the generalized circulant matrices which
arise.

1.2. DEFINITION, (a) Let g, n be positive integers such that g divides n. Let

sf= (a = (a1,...,ag) e Z g | £ a,, = eg for e = ± 1 , and ea, > 0 for all / } .

Elements of s/ with e = 1 are called positive, and otherwise are called negative.
(b) An n X n matrix C = (c/y) is called an a-circulant matrix, where a e j / , if

(i) for 1 < i < g and 1 <y < n, c,+ l y = c,?J_o (with subscripts to be read
modulo n), and

(ii) for / > g and 1 <y < n, ctj = ci_gj_eg.
(c) An array of period n is called A-circulant if it consists of repetitions of an

a-circulant matrix.

1.3. REMARKS, (a) For 1 < / < g and any j , row jg + i + 1 of C is obtained
from row jg + / by shifting |a,| places to the right if a is positive or to the left if a
is negative. If a is an all-1 sequence, then C is an ordinary (1-step) circulant
matrix. Figure 1 shows a (2,2,0,0)-circulant matrix with first row i//(8,4).

(1 1 1 1 0 0 0 0\
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0
U 1 1 1 0 0 0 0/

FIGURE 1

(b) There are many periodic binary sequences \j/ of period n for which an
a-circulant array or matrix is sequential on i/>, namely if

^ = lmi0"llm20"2...lm*0m\
where k>\, where Em, + En, = n, and where g divides (w1; nlt..., mk, nk),
then, with a as in Definition 1.2, the a-circulant matrix C with first row \j/ is
sequential on rp. In fact the columns of C are cyclic shifts of ^ if a is negative and
cyclic shifts of the reverse of i// if a is positive. (This follows directly from
Definition 1.2, and the details are omitted.) A different construction of sequential
matrices on ^ was given in [2, Section 2], where it was noted that the Kronecker
product

B <g> /
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is sequential on i|>, where J is the g X g all-1 matrix, and where B is a sequential
matrix on

with m, = ge, and «, = gft for 1 < / < k. We note that some sequential matrices
on i/< may be obtained by both constructions; for example, if we take the matrix
B above to be the 1-step circulant matrix with first row ir, then B ® / is the
(0 ,0 , . . . , 0, g)-circulant matrix with first row \p. In Figure 2 the first matrix is not
only a (0,2)-circulant matrix with first row i|>(8,2), but also a Kronecker product
of the 4 x 4 identity matrix and the 2 x 2 all-1 matrix / . The second matrix is
also sequential on i/-(8,2); it is a Kronecker product but is not equivalent to an
a-circulant matrix for any a.

(I 1 0 0 0 0 0 0)
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

10 0 0 0 0 0 1 1)

(a)

1 1 0 0 0 0 0 01
1 1 0 0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
1
1
0
0

0
0
1
1
0
0

1
1
0
0
0
0

1
1
0
0
0
0

0
0
0
0
1
1

0
0
0
0
1
l i

(b)

FIGURE 2

The (0,2)-circulant matrix with first row ^(8,2). It is also / ® J where / is
^a ' the 4 X 4 identity matrix and J is the 2 x 2 all-1 matrix.

The Kronecker product B ® J where B is a 4 X 4 permutation matrix and 7
^ ' is the 2 X 2 all-1 matrix. It is not equivalent to a generalized circulant matrix.

We shall show that when $ = \j/(n,k) = l^O""*, then all sequential matrices
on \p are equivalent to a matrix obtained by one of these two constructions.

THEOREM 1. Any sequential binary matrix on the sequence

$(n,k) = 1*0""*,

where 1 < k < n/2, is equivalent to either
(a) the a-circulant matrix with ip(n, k) as first row, for some a = (ar,..., ag) e

s/, where g = (n, k), or
(b) the Kronecker product P <8> J of a permutation matrix P of dimension n/k and

the k X k all-l matrix J, where here k divides n.
Moreover, any n X n matrix satisfying (a) or (b) is sequential on \j/(n,k).
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1.4. REMARKS, (a) From Remark 1.3(b) above, the matrices occurring in (a) or
(b) are all sequential on ip(n, k).

(b) Since the sequences yp(n,k) and ip(n,n - k) are equivalent under comple-
mentation (that is, under interchanging zeros with ones), Theorem 1 also char-
acterizes the sequential matrices on \l>(n, k) for n/1 < k < n.

The problem now arises of determining conditions for the equivalence of two
generalized circulant sequential matrices on a given periodic binary sequence, in
particular on the sequence i|/(n, k). We consider this problem for sequences of
the type introduced in Remark 1.3(b). We do not solve the equivalence problem
completely for all sequences of this type, but we do solve it for a subclass of
sequences containing all the \p(n, k); see Theorem 2 and Remarks 1.6. First we
need the following definitions.

1.5. DEFINITIONS, (a) The shift operator a, the reversal operator p, and the
negation operator r\ acting on sequences of integers of finite length are defined by

o(ax,...,am) = (am,a1,...,am_1),

p(ax,...,am) = ( a ^ V i . - . f l i ) .

!}(«!,..., am) = (-«!, -a2,..., -am).

(b) An element a of s/ (as defined in 1.2) is said to be in normal form if a is
positive and if its last entry is non-zero, that is, if a has the form

a=(0 £ » ,6 1 + l , . . . ,0 e ' ,&,+ l ) ,

where l>\, where the />, and c, are non-negative integers, and where Zft, = Ec,
= g — I. The operator r is defined on the subset s/* of elements of s/ in
normal form by

T ^ , ^ + l,...,0«,b,+ 1) = ( 0 \ c ! + l , . . . , 0 \ C / + 1).

(c) Two elements a, a' of s/ are said to be equivalent, written a ~ a', if and
only if a' can be obtained from a by a finite sequence of the operations TJ, p, a, T
(we recall that T may only be applied to sequences in normal form). Clearly this
relation ~ is an equivalence relation on s/. We shall sometimes consider the
restriction of ~ t o j ^ * and still use the notation ~ .

(d) For a binary sequence \p of length n, where n is a multiple of g, and for
a e s&, the a-circulant matrix with first row \p is denoted by A(n,»//).

Now withi|/ as in Remark 1.3(b) (so that A(a, $) is sequential on \p), it is clear
that any a-circulant matrix which is sequential on i|/ is equivalent to either A(a,\f/)
or A(a, p\p) (by permuting columns). So the problem of equivalence of gener-
alized circulant matrices which are sequential on rp is reduced to the problem of
the equivalence of A(a, i|/) with A(&', 4>) or with A (a', pip), for a, a' e sf.
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THEOREM 2. (a) Let ip = ( l m i 0 n i . . . lm*0n t ) . where Em, + E « , = n, and let g
be a divisor of (mv nv..., m(, nk). Then for a , a ' e ^ , we have a — a' if and only
ifA(n, ip) is equivalent to at least one ofA(a!, ip) andA(a.', pip).

(b) Suppose that either pip = a"ip for some u, or pip = auip for some u, where
ip = (0m», I" 1 , . . . ,0m*, 1"*) is the complement of ip. Then for a, a' e J&, we have
that

(i)A(&,ip), A(a,pip) are equivalent, and that
(ii) a ~ a' if and only ifA(a, \p) andA(ti, ip) are equivalent.

1.6. REMARKS, (a) In Theorem 2(b) we have each a-circulant matrix which is
sequential on ip equivalent to .4 (a, \p), and A (a, \p) equivalent to A (a', \p) if and
only if a ~ a'.

(b) The sequences ip(n, k) = 1*0"-*, l*0'l*0m, and l'O^^O*, where g divides
(k, I, m), all satisfy the conditions of Theorem 2(b).

(c) To refine Theorem 2(b) and Remark 1.6(a) a little, we observe that every
element of s/ is equivalent to a sequence in normal form, so that each generalized
circulant matrix which is sequential on \p is equivalent to A(a, ip) for some a in
the subset s/* of sequences in normal form. Thus the number of equivalence
classes of generalized circulant matrices sequential on ip, with ip as in Theorem
2(b), is equal to the number of equivalence classes in s/; this in turn is equal to
the number of equivalence classes in s/* (of the restriction of ~ to J / * ) .
Finally we note that equivalent sequences in sf have the same number of
nonzero entries.

THEOREM 3. The number N(g,l) of equivalence classes of the equivalence relation
~ in s/ (or s/*) which have exactly I nonzero entries is

and if I > 2, then

where (i) / = 2"v with « > 0 and v odd,

1 if I is even,

if I is odd,

if I is odd,

(iii) S2 = { 0 if I is even and g is odd,

{2( g/l) — 1 // / and g are both even,
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,. x . _ (1 if I divides g,
3 10 otherwise.

Finally, to complete the enumeration of the equivalence classes of sequential
arrays on \p(n, k), we have

THEOREM 4. The number of equivalence classes of binary sequential arrays on
${n, k) = 1*0""*, where 1 < k < n/2, is

£ N(g,l) + 8T(n/k),

where
„ _ (1 if k divides n,

10 otherwise,

N{g,l) is given in Theorem 3, and T(m) is the number of equivalence classes of
m X m permutation matrices as given in [6, Theorem 1].

This theorem depends essentially on the following proposition, which reduces
the problem of equivalence of sequential matrices of the form B ® / defined in
Remark 1.3(b) to the equivalence of the smaller matrices B. We note that the
generalized circulant matrix A{&, i//) is equivalent to a Kronecker product B ® J
if and only if g — k divides n and a ~ (k,0k~1). Thus the summation in
Theorem 4 is over 1 + 8 < / < g.

PROPOSITION 5. Let ^ = (lm i0"».. . lm*0n*), where Lw, + £ « , = n, and let g
be a divisor of (mv nv..., mk, nk). Further, let m, = e,g andnt = fgfor 1 < / <
k, and let IT = ( l e i 0 ^ . . . l^O^*). If B and D are sequential matrices on IT, then B
and D are equivalent if and only if B ® J and D ® / {sequential matrices on \p) are
equivalent, where J is the g X g all-1 matrix.

The rest of the paper is organized so that Theorem N is proved in section
N + 1, for W = 1,2,3,4.

2. Gassification of sequential matrices on \p(n, k)

We prove Theorem 1 in this section. Let D = {dtj) be a sequential binary
matrix on ^{n,k) = 1*0""*, where k < n/2. As the result has already been
proved for k = 1,2 [2, Theorem 1] and k = 3 [5, Theorem 1], we shall assume
that k > 4. We shall denote the ith row of D by /?, and the /th column of D by
C, for 1 < i < n, and we set g = {n, k). Finally, we shall say that D is b-circulant
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on rows 1, . . . ,p where b = (bv...,bq) has non negative integer entries (and
p > 0, q > 0), if Rjq+i+i is obtained from Rjq+i by shifting bt places to the right
for all 1 ^ jq + i\ < p and all 1 < i < q.

We may assume that R1 = ip(n, k) ¥= Rn (by applying S£SR for some u, v if
necessary). Suppose first that R1 = ••• = Rk. Since Rk+1 contains \p(n,k),
there is an integer h with k^h < n - k such that Rk+1 = (0hlk0"~k~h). Then
as Ch+i contains ^(n , A:) for each i = 1 , . . . , A;, it follows that

Q + , = (0*l*0"-2*) and /?*+, = /?*+! for/ = l , . . . , f e

(see Figure 3). Continuing this argument, we see that the rows and columns of D
are partitioned into sets of size k, where two rows or columns are in the same set
if and only if they are equal. The sets consist of k consecutive rows or columns,
and part (a) of Theorem 1 is true.

J

0

0

0

0

0

J

0

0

0

FIGURE 3

Thus we may suppose that no k consecutive rows or columns of D are equal.
Then there exists an integer cl satisfying 0 < cx < k — 2 and such that R1 = • • •
= RCi + 1 * RCl+2- Further, we may assume that the first entry of 2?Ci+2 is 0 (if
necessary by applying SgS^R to D for some u, v). Thus there exists an integer b1

with 0 < 6 1 < « — k — \ such that

Since Cv...,Cbi+1 contain ip(n,k), it follows that the first x entries of Rn are
all equal to 1, where x = min(A:, b1 + 1). If bx + 1 > k, then Rn = Rv contrary
to our assumptions. Thus 0 «J bl < k - 2, and Rn = (lu0"-*l*-") for some u
with bl + 1 < u < k — 1. In particular

(2) 'nk = 0 and dnn = I-
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Hence, using (1) and (2), we obtain

(3) C* * (1*0"-*) and C t + 1 - (0e»+1l*0"-*"e»-1).

2.1. LEMMA. There exist non-negative integers bv...,b, and cx,...,c, for some
/ > 2 such that

(a) £!«,<,(&, + 1) = Ei«,«/(c , + 1) = k
and

(b) D is a-circulant on rows 1 , . . . , k + 1, where

PROOF. We have already defined integers bv cr satisfying 0 < b1 < k - 2,
0 < cx < A: - 2 such that D is (0Cl, 2^ + l)-circulant on rows 1 , . . . , c± + 2. We
shall define the other bt, c, recursively as follows.

Suppose that for some positive integer x we have defined non-negative integers
bv...,bx and clt...,cx with

and such that D is (0Cl,6X + 1,...,Qc*,bx + l)-circulant on rows 1 , . . . ,
2-i < i < x(ci + 1) + 1 (represented diagrammatically in Figure 4).

i* 1

..ij

FIGURE 4

First we show that r i < / < x . (6 , + 1) = k if and only if L1<1<x(c, + 1) = k.
Assume that E(6, + 1) = k. Then the A:th entry of row E(c, + 1) + 1 is zero, and
E(c, + 1) + 1 < k + 1. However, by (3) the first k entries in Ck are 1, and hence
I(c, + 1) = k. Conversely, assume that I(c, + 1) = k. If E(^ + 1) < k - 1, then
the fcth entry in Rk+1 would be 1, whereas by (3) it is 0. Thus £(6, + 1) = k.
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Next, if one, and hence both, of E 1 < I < X ( 6 , + 1) and E 1 < l < x ( c , + 1) are less
than k, we have to define bx+1 and cx+l: assume that b = Li<i<x(bj + 1) < k
and that c = £ i < 1 < J t ( c , + 1) < k. Then there exists a non-negative integer cx+1

such that Rc+1 = • •• = Rc+Cx+1+1 * Rc+Cx+1+2- The k1h entry in Rc+1, and
hence in Rc+Cx+i+i, is 1 (since b < k), and by (3) it follows that c + cx+1 + 1 =
E 1 < / < x + 1 ( c , + 1) < k. Set e = c + c x + 1 + 2. There exists a non-negative integer
&,+! such that, setting / = b + bx+1 + 1, we have Re = (0^1k0n~k~f). Since
q + 1 < e < k + 1, it follows from (3) that the (k + l)st entry in Re is 1. Thus

b + bx+l + l= £ (bt + 1) < )fc.

By the definition of bx+l and cx + 1 , D is (0c», 6X + 1 , . . . , 0c*+1, bx+1 + l)-circulant
on rows 1 , . . . , e.

It follows that there exists an integer / s* 2 and nonnegative integers bt, c,,
1 < i < / such that (a) and (Z») are true. This proves Lemma 2.1.

By the division algorithm there are unique integers q > 2 and r e [0, k - 1]
such that
(4) n = qk + r.
A l s o t h e r e e x i s t s a n i n t e g e r m , 0 < w < / — 1 , s u c h t h a t

(5) E (fc, + l ) < r < £ (6, + l )
l</<m l«/'<m + l

(where the expression on the left is zero if m = 0), since r < k = Yibi, + 1). By
continuing our above argument we deduce that D is a-circulant (with a as given
in Lemma 2.1), on rows 1 , . . . , c, where c = (q — \)k + E x ^ ,^ m + i (c , + 1). (After
this set of rows we must worry about l 's occurring in column 1.) We may now
easily complete the proof of Theorem 1 in the case where g = (n,k)= k.

2.2. LEMMA. If k divides n, then D is A-circulant, with a as in Lemma 2:1, and
Theorem 1 is true.

PROOF. Let n = qk. Then c = (q - l)k + cx + 1 (the parameter m of (5) is 0
here), and Rc = (0"-*l*). Since
Cx = . . . = C6i+1 = (I'.+iO"-*!*-0'-1) # Cbi+2 = ( 2

it follows that Rc+1 = • • • = Rc+Ci+1 = (\'>1 + io'-k1k-b1-iy Mso ^
+ 2 , . . . , Z»x + 62 + 3 determine rows c + c2 + 2,..., c + c2 + c3 + 2 in the same
way as columns 1 , . . . , bx + 1 determined rows c + 1 , . . . , c + c2 + 1. Continuing
in this fashion we see that Dis a-circulant.

To complete the proof of Theorem 1 we assume that r > 0 (see (4)) and refine
the proof of Lemma 2.2. Set
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We have Rc = (0<«-1>*+*-<*»+i+1>l*0r~fc+*'"+1+1). First we determine the entries
of Rc+l: the (c 4- l)st entries in C(q_1)k+b and C(q_l)k+b+l are 0 and 1,
respectively, and it follows that

(6) dc+lJ = 1 for 1 < y < b - r, and dc+ub_r+1 = 0.

Next we consider Cx = ( i ^ + i o n - * l * - e i + 1 ) ; since the cth entry is 0 and the
(c + l)st entry is 1, it follows that c+l = n-k + c1 + 2, that is,

(7) r - £ (c,+ l) .

(In particular m > 1.) Also since the (c + l)st entry in Cbi+1 is 1 and in Q i + 2 is
0, it follows from (6) that bl + 1 = b - r, that is,

(8) r= E (6,+ l) .
2«isSm + l

Suppose now that r > I1<I<m(*>, + 1). Then the last entry in Rc is 0, and the
last entry in Rc+1 is 1. Thus, by considering Cn, it follows that n - c > k, that is,
r >T.1<i<m+1(ci + 1), which contradicts (7). Thus

1 < i < m

which, together with (8), yields bl = bm+1. It also implies that Rc = (0"~klk), so
that the first entry of Cn equal to 1 is entry c - cm+1. By (2) the last entry in Cn is
1, and so it follows that cm+1 = cx.

If we consider in turn rows c + Em+2<,<y(c/ + 1) + 1 for w + 2 <> < / and
rows qk + T.1<itiy(c, + 1) + 1 for 1 < j < m, we will find as above that

bt = bm+i and c, = cm+i for aU i > 1,

where the subscripts are to be read modulo /. Thus, if 5 = (w, /), it follows that

bj = bs+i and c, = c1+i for all /.

Hence a = (a')//j, where a' = (0Cl, 6X + 1,. . . , 0% bs + 1) e Z', and where / =
£i«/«,(«/ + 1) = */( ' /*) = **/' = Ei<,•<,(*, + I)- It follows that t divides k,
and, as r = Z1</<m(ft,- + 1) = t(m/s), t also divides r, and hence t divides
(«, &) = g. Let g = /M. It follows from our arguments that D is a-circulant and
hence is (a')u-circulant. Finally, (a')" = (0<\ bx + 1,...,0c-, bsu+l)&lg with
Ei o<,«(*» + 1) = ^ ^ ^ ^ ( c ; + 1) = g. This completes the proof of Theorem 1.

3. Equivalence of generalized circulant sequential matrices

In this section we prove Theorem 2. Let ̂  = (lmi0ni • • • lm*0"*) with Em, +
E«, = n and let g divide (m1;nx,... , mk, nk). We shall use the operations on
matrices defined in 1.1 and the operations on sequences defined in 1.5. Let
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a = (<*!,..., ag) G s/ and let >|/' = oupv($), where 0 < u < n, and where v is 0 or
1. It is straightforward to check the following, and the details are omitted.

(We note that A(a, o$') = ScA(a, ,//)•) Also if a = (0 c \ bx + 1 , . . . , 0c', b, + 1)
J ^ * (so that column 1 of v4(a, ip') is then oci+1p^')> then

and

It follows from these equations that if a' e s/ can be obtained from a e s/ by a
finite sequence of the operations a, p, ij, T, then ^4(a, i/-) is equivalent to A(a', \p)
orA(a',p\(,).

Conversely, suppose that a, a' e s/ and that A{2L, \f/) and ^4(a', ip') are equiva-
lent, where now \p' is either \p or pxf/, that is, ^4(a', i|/') can be obtained from
A(a, \f/) by applying an element of the group G X Z 2 defined in 1.1. Each element
of this group has a unique representation as S^ScRcTdCe, where the integers a,
i G [ 0 , » - l ] , c e [0,3] and rf, e G [0,1]. Thus we have

If e = 1, then ^4(a, ^) is sequential both on ^ and on its complement ^, so that
<P = a " P y for some u, v, and we have G4(a',iJ/) = v4(a',£') = S£A{a!, pvy).
Thus we may assume that e = 0. Also if rf = 1, then 7M(a', \p') = R^Ai-qst', pty'),
so that we may assume that d = 0. Clearly there is an integer w such that a "a' (if
a' is positive) or a"ija' (if a' is negative) is in normal form, that is, has the form
(0<\ Z>! + 1,. . . ,0% />, + 1). Since ,4(a', >//) = S£S£4(a"a',,//) for some o, w, and
since (S£S£RC)(SRSC)

 = SRS£RC ioT s o m e *> >̂ it follows that we may assume
that a' or ija' is in normal form as above. If a' is in normal form, then
RA(a', >|/) = Sc(Cl+1)A(r)Ta.', \p'), while if rja' is in normal form, then

RA(a',4>') = R2T{RTA(a', <//'))

Thus we may assume that c = 0. Finally,

for some x and we conclude that a ~ a'. Thus part (a) of Theorem 2 is proved.
If pi/- = a"4/ for some u, then A(n, p\p) = A(a, a"\f/) = SgAia, \p), and therefore

) and Afapip) are equivalent. Similarly, if p\p = ou\£, then A(a, p\p) =
i = S£CA(a, >p), and again A(&, \p) and A(&, p ^ ) are equivalent. Thus, if
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either of these two conditions is satisfied, then it follows from part (a) that a ~ a'

if and only if A(a,ip) is equivalent to A(a',ip). This completes the proof of

Theorem 2.

4. Enumeration of the equivalence classes of s/

In Remark 1.6(c), we observed that equivalent sequences in sf had the same
number / of nonzero entries for some 1 < / < g. We also observed that every
element of s/ is equivalent to an element in normal form. Hence we shall
calculate the number N(g,l) of equivalence classes of the restriction of ~ to the
set sf,* of elements of s/* with exactly / nonzero entries. If 1=1, then
N(g, 1) = \s/f\ = 1, so we shall assume that 2 < / < g. First we describe the
equivalence relation on sff in a different way which will allow us to use the
technique of "Burnside counting" (see [1], p. 191) to compute N(g, I).

We define operations a*, p*, T* on s/j* which are analogous to a, p, r as
follows: for

let

a*a = (V>,b,+ \,Q\bx + l , . . . , O c ' - \ V i + 1),

P*a = (0c', b,_x + 1, ...,&! + 1,0*, b, + 1), and

T * a = ( 0 \ c 1 + l , . . . , 0 \ c / + l ) .

4.1. LEMMA. For a, a' e s/,*, a is equivalent to a' if and only if a' can be obtained
from a by a finite sequence of the operations a*, p*, T*.

PROOF. Since, applied to a = (0<\ bx + 1,.. . ,0c', b, + 1), we have a* = ac'+1,
p* = a~xp, and T* = T, it follows that if a' can be obtained from a by a finite
sequence of a*, p*, T*, then a' - a. Conversely, suppose that a ~ a', that is, a'
can be obtained form a by a finite sequence of a, p, T, TJ. AS i) commutes with the
other three operations, and as a and a' are both positive, we may assume that TJ
does not occur in this sequence. Also, as p = op* and T = T*, we have

a' = aV'T*" 1 1 • • • au'p*"-r*w-a

for some non-negative integers u,, vt, w, with at least one of «„ ot, w, positive for
each i, and some t > 1. Since p* and T* are only defined on elements of s/,*,
and since a' and a are in sfj* it follows that for each i, au< is a possibly trivial
power of a*. This proves the lemma.
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4.2. LEMMA. The operations a*, p*, T* generate a group

H = (o*,P*\(o*)' = (p*)2 = 1, P*o* = o*-y) X <T* | ( T * ) 2 = 1)

isomorphic to the direct product of a dihedral group of order 2/ and a cyclic group of
order 1. Each element of H has a unique expression of the form

where 1 < u < /, and where v and w are 0 or 1. Elements of s/,* are equivalent if
and only if they lie in the same orbit of H acting on s/,*, as defined above.

The proof of Lemma 4.2 is straightforward and is omitted. We may now apply
the theorem of Burnside [1, p. 191] to obtain

*(«,/) = 77

where F(h) is the number of elements of s/,* fixed by h. To complete the proof
of Theorem 3 we compute F(h) for each h e H. To help in this computation we
note that elements of H which are conjugate to each other fix the same number of
elements of s/j*, so we divide our work into the following cases.

1. h = o*m, 1 < m < /,
2. h = o*mr*,l < w</,
3(a). h = p*
3(b). h = p*r*

(If / is odd, then H contains / elements conjugate to p*, namely a*mp* for
1 < m < /, and / elements conjugate to p*r*, namely a*mp*r* for 1 < m < /. So
these cases are sufficient to complete the computation for / odd. If / is even, then
H contains 1/2 elements conjugate to each of p*, p*r*, a*r*, and a*p*r*, so we
add Case 4.)

4(a). h = a*p*,
4(b). h = o*p*r*.
Finally, for use in the computation we note that the number c(m,n) of

compositions of a positive integer n into m nonzero parts is

(9) ,(.,.)

We shall always write a = (0c>, b1 + 1, . . . , 0c', b, + 1) e sf,*.

Case 1. h = a*m, where 1 < m < /. Here a*ma = a if and only if, for all /,

b,_m+i = bt and c,_m+i = c,,
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where subscripts are to be read modulo /. Setting e = (/, m), we have integers u, v
such that u(l - m) + vl = e. Hence bt = b(,_m)+i = • • • = bu(l_m)+i = be+i

(reading the subscripts modulo /), and similarly c, = ce+i for all /. Thus a =
(0c>,Z>! + l,...,Oc-,be+1)

d, where / = ed, and where g = (L1<I<e(c, + l))rf, so
that d divides g also (or no such a exists). The number of choices of cv..., ce is
c(l/d, g/d), and these determine the rest of the ct. Similarly, the number of
choices of bv...,be is c(l/d,g/d). For this given value m, d is 1/(1, m).
Further, for any divisor d of (g, /) there are (by definition of <f>) exactly <j>(d)
integers u such that 1 < u < d and (u, d) = 1, and hence there are exactly <f>(d)
integers m(= lu/d) such that 1 < m < / and (m, /) = l/d. Hence, using (9), we
obtain

(10) £ F(o")

Case 2. h = a*mr*, where 1 < m < /. Here a*mT*a = a if and only if, for all /,
6/_m+, = c, and c,_m+/ = b,.

As in case 1, setting e = (/, m) and / = de, we find that this is true if and only if,
for all i, be+i = c, and ce+i = bt. Thus the Z>, completely determine the c,, and,
for all i, b2e+i = i,.. If rf is odd, then a similar argument yields be+i = Z>, for all /,
while if d is even, then we do not have this extra restriction. Thus, if d is odd,
then F(h) is c(l/d, g/d) if d divides g and is zero otherwise (by a similar
argument to Case 1). If d is even, then F(h) is the number of choices of
*>!,..., b2e with L1<I<2e(fc, + 1) = 2g/d, namely, c(2l/d,2g/d) if J /2 divides
g and zero otherwise. So that we can isolate the even and odd divisors of /, we set
/ = 2"v, where u > 0 and where v is odd. Then we have
(11)

d\(g,v) \(l/d)-l) d\(g,l/2)

where S1 is 0 if / is odd and is 1 if / is even.
Case 3(a). h = p*. Here p*a = a if and only if, for all /,

bt = b,_, and c, = c/+1_,.
Suppose first that / is odd and set x = b, and j> = c(/+1)/2. Then fe^..., b(l_l)/2

and b, determine all the Z>, and, since g = x + 1 + 2Lls.,<(/_1)/2(&/ + 1), they
can be chosen, for a given x, in c((/ — l)/2, (g - x — l)/2) ways; we require
g — x — 1 to be even. Similarly cx,...,c(/_1)/2 and c(/+1)/2 determine all the c,
and can be chosen, for a given ^, in c((l — l)/2, (g - y — l)/2) ways; we
require g — y — 1 to be even. Thus x, ^ e [ 0 , g - / ] , and both have opposite
parity to g, hence the same parity as g — /. Thus, even when / = 3, we have
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where the summation is over all x, y e [0, g - I] of the same parity as g - I, that

since

Similarly, in the case where / is even, we set x — b, and y = b,/2- If / = 2, then
= c2 = (g - 2) /2 , so that g must be even (or F(h) = 0), and x = g- 2- y
[0, g - 2]. So we have

0 if g is odd, / = 2,
( g - l ) if g is e v e n , / = 2.

For / > 4 and even, blt..., bl/2_1, x and y determine all the ft, and, for given x
and y , can be chosen in c ( / /2 - 1 , (g - JC - ;> - 2)/2) ways; so we require
g - x - y to be even. Similarly c 1 ; . . . , cl/2 determine all the ct and can be chosen
in c ( / / 2 , g /2 ) ways, so that g must be even. So if g is odd, we have F(p*) = 0. If
g is even, then

U-2)/2J'
where the summation is taken over all non-negative integers x, y of the same
parity such that x + y < g - /. Then, upon setting x + y = 2z, we see that each
pair x, y determines a unique z e [0, (g - / ) /2 ] , and each such z determines
2z + 1 pairs x, y . Thus

(g-2)/2\/ l(g-4)/2-z
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since

both summations ranging over z in [0, (g - 0/2]. Then, using (12) again, we
obtain

« * • - » •

Putting all these results together, we have

/ I for / odd,
where S2 = I 0 for / even and g odd,

\ 2g/l — 1 for / and g both even.

Case 3(b): h = p*T*. Here p*r*a = a if and only if, for all i,

b, = c,_, and c1+1 = b,_t,

and this is true if and only if, for all i, bt = c, = (g//) - 1, so that g must be
divisible by /. Thus

, 1 d w • *\ s u * / I if/divides g,
(15) F(p*T*) = 83, where 83 = { „ , . °K ' w J 3> 3 \ 0 otherwise.

Case 4(a): A = o*p*. Here o*p*a = a if and only if, for all /',
bi+1 = b,_t and ci+2 = c,_r

If / is odd, then the bt, i # (/ + l) /2, and the c,, / # 1, occur in pairs. If / is
even, then the bt, and the c,, i # 1, (/ + 2)/2, occur in pairs, and we obtain, in all
cases,

(16) F(o*p*) = F(p*).

Case 4{b): h = o*p*r*. Here o*p*r*a = a if and only if, for all /',

bi+l « c,_,., c,+2 = V,>

and this is true if and only if, for all i, bt = c, = (g/l) — 1; in particular, g must
be divisible by /. Thus

(17) F(o*p*r*) =
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Putting all these results together, we find (from equations (10), (11), (14), (15),
(16), (17)) that

= E
d\(g,D

d\(g,l/2)

where u, v, 8V 82, 53 are as defined above. This completes the proof of Theorem
3.

5. Enumeration of the equivalence classes of sequential arays on \p(n,k)

In the final section we complete the proof of Theorem 4 by proving Proposition
5. Theorem 4 follows immediately from this on taking \p = if/(n, k).

PROOF OF PROPOSITION 5. As in Section 3, B and D (respectively, B ® / and
D ® J) are equivalent if and only if there exist integers a, b, c, d, e (respectively,
v, w, x,y,z) such that

(18) B = S%S£RcTdCe{D), ( B ®

We note that

C(D®J) =

T(D®J) = T{D)®J,

S£gS£g(D 9 J) = S£S£(D) 9 J.

It follows immediately that the equivalence of B and D implies the equivalence
of B ® / and D ® J. Conversely, if B ® / and D ® / are equivalent, so that (18)
holds, then, from the equations above, we may assume that x = y = z = 0.
Hence, if we consider the form of the two matrices as Kronecker products, we see
that (18) can hold only if v and w are both multiples of g, whence B and D are
equivalent.
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