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Introduction. We show that Diestel's theorem on weak compactness of subsets of
L,((x, X) can be derived as a simple corollary of James's theorem. It is a pleasure to
acknowledge several stimulating conserversations with Dave Emmons and the remarks of
an anonymous referee. Errors are, of course, solely mine.

Let (T, 3~, fz) be a finite measure space and X a Banach space. Denote by L^/x, X)
the Banach space of (equivalence classes of) /x-strongly measurable X-valued Bochner
integrable functions / : T-+X normed by ||/||, = JT||/(t)IM/x(0- In [3] Diestel has proved
through the use of the factorization method in [2] the following result.

THEOREM. Let K be a weakly compact convex subset of X and

K = {feLi(n,X):f(t)eK for almost all tin T};

then K is weakly compact in L^/x, X).

In this note, we offer an alternative proof of Diestel's theorem which relies instead on
James's theorem [5] and on Brooks's extension of the classical Vitali's theorem [1].

Before presenting our proof, we recall that V^dx, X*), where X* is the continuous
dual of X, is isometrically isomorphic to L,(fx, X)* with the correspondence between
F e Vm(|x, X*) and 4> 6L,(/x, X)* given by <£(/) = J/dF. (For an explanation and properties
of Voodx, X*) see [3] and his references.)

Proof. Pick an arbitrary (freiL^ix, X))*. If we can show that <f> attains its supremum
on K, James's theorem [5, Theorem 5] assures us that K is relatively weakly compact.
Since K is convex and closed (hence by Mazur's theorem weakly closed) in L,(/x, X), the
proof is then finished.

Let F e V^/x, X*) correspond to <f>. Towards showing that <$> attains its supremum on
K, select a pairwise disjoint sequence of elements Tf e 2T such that each Tf has positive

oo C oo *\

measure and \J T, = T. Consider the finite partition irn = \ T1; T2,..., Tn_1; U Tt\ in

which T,, will denote U Tf. Let TT ={TTn}nS:i. It is clear that for all integers n, 777,+, is a
refinement of -nn.

 l="
For any partition irn construct the function /neL,(jx, X) such that

/„(*) = x, f o r al l teTh (i = l,...,n),

where x, is characterized by the equality (x;, F(Tf)) = sup (y, F(Tf)>. Since K is nonempty
ysK

and weakly compact, certainly xf e K for all i. We are now going to take a suitable limit of
a subsequence of these functions.
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By our construction, for any f in T,, we can let fn(t) = /,,(T,), where / n (T,)e K for all
n. Since K is weakly compact, the Eberlein-Smulian Theorem guarantees a subsequence
/n°(^i) which converges weakly to an element, say / ( T J , in K. The procedure is now
clear. We can now manufacture a function / : T—»K such that / is the almost everywhere
limit of f"\ where for any i = 1,. . . , n — 1, /J,l + " is a subsequence of fn" such that for all
n,f"(t) = f"(Ti+l) for all t in Ti+1 and /<

n
i+1)(Tj+1) converges weakly to an element, say

/(Ti + 1) , in K
Since K is weakly compact, for all xeK there exists M > 0 such that | |x||<M. Using

this fact it is now easy to show that the sequence f,^ is bounded and uniformly integrable.
We can therefore apply Brooks's extension [1, Theorem 3] of Vitali's convergence
theorem to claim that fe L|(/x, X) and hence feK and that H/-/!,"^! —» 0. Then, certainly

We now claim that </> attains its supremum on K at /. Suppose not; that is there exists
zeK such that r r

4(z) = \^ zdF>\ fdF = <\>(f). (1)

For each partition ir in II, define the linear operator £„ : L^, X)-> L,(/x, X) by

where ^A is the characteristic function of A and the 0/0 = 0 convention is in force. By the
mean value theorem for the Bochner integral [4, Corollary 8, p. 48] and the convexity of

K, certainly ._. JT z(t) dix(t)eK. Thus E^{z)&K. We can now apply Lemma 1 in [3, p.
(i(Ti) '

67] to assert that ||EWi>(z)-z||, - » 0 . Then certainly lTE^n{z)
However by construction,

By taking limits on both sides, we obtain our sought-after contradiction to (1).
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