by M. ALI KHAN

(Received 28 July, 1982)

Introduction. We show that Diestel's theorem on weak compactness of subsets of $L_1(\mu, X)$ can be derived as a simple corollary of James's theorem. It is a pleasure to acknowledge several stimulating conserversations with Dave Emmons and the remarks of an anonymous referee. Errors are, of course, solely mine.

Let (T, \mathcal{T}, μ) be a finite measure space and X a Banach space. Denote by $L_1(\mu, X)$ the Banach space of (equivalence classes of) μ -strongly measurable X-valued Bochner integrable functions $f: T \to X$ normed by $||f||_1 = \int_T ||f(t)|| d\mu(t)$. In [3] Diestel has proved through the use of the factorization method in [2] the following result.

THEOREM. Let K be a weakly compact convex subset of X and

$$K = \{f \in L_1(\mu, X) : f(t) \in K \text{ for almost all } t \text{ in } T\};$$

then \tilde{K} is weakly compact in $L_1(\mu, X)$.

In this note, we offer an alternative proof of Diestel's theorem which relies instead on James's theorem [5] and on Brooks's extension of the classical Vitali's theorem [1].

Before presenting our proof, we recall that $V_{\infty}(\mu, X^*)$, where X^* is the continuous dual of X, is isometrically isomorphic to $L_1(\mu, X)^*$ with the correspondence between $F \in V_{\infty}(\mu, X^*)$ and $\phi \in L_1(\mu, X)^*$ given by $\phi(f) = \int f dF$. (For an explanation and properties of $V_{\infty}(\mu, X^*)$ see [3] and his references.)

Proof. Pick an arbitrary $\phi \in (L_1(\mu, X))^*$. If we can show that ϕ attains its supremum on \tilde{K} , James's theorem [5, Theorem 5] assures us that \tilde{K} is relatively weakly compact. Since \tilde{K} is convex and closed (hence by Mazur's theorem weakly closed) in $L_1(\mu, X)$, the proof is then finished.

Let $F \in V_{\infty}(\mu, X^*)$ correspond to ϕ . Towards showing that ϕ attains its supremum on \tilde{K} , select a pairwise disjoint sequence of elements $T_i \in \mathcal{T}$ such that each T_i has positive measure and $\bigcup_{i=1}^{\infty} T_i = T$. Consider the finite partition $\pi_n = \left\{T_1, T_2, \ldots, T_{n-1}, \bigcup_{i=n}^{\infty} T_i\right\}$ in which T_n will denote $\bigcup_{i=n}^{\infty} T_i$. Let $\pi = \{\pi_n\}_{n\geq 1}$. It is clear that for all integers n, π_{n+1} is a refinement of π_n .

For any partition π_n construct the function $f_n \in L_1(\mu, X)$ such that

$$f_n(t) = x_i$$
 for all $t \in T_i$, $(i = 1, \ldots, n)$,

where x_i is characterized by the equality $\langle x_i, F(T_i) \rangle = \sup_{y \in K} \langle y, F(T_i) \rangle$. Since K is nonempty and weakly compact, certainly $x_i \in K$ for all *i*. We are now going to take a suitable limit of a subsequence of these functions.

M. ALI KHAN

By our construction, for any t in T_1 , we can let $f_n(t) = f_n(T_1)$, where $f_n(T_1) \in K$ for all n. Since K is weakly compact, the Eberlein-Šmulian Theorem guarantees a subsequence $f_n^{(1)}(T_1)$ which converges weakly to an element, say $f(T_1)$, in K. The procedure is now clear. We can now manufacture a function $f: T \to K$ such that f is the almost everywhere limit of $f_n^{(n)}$, where for any i = 1, ..., n-1, $f_n^{(i+1)}$ is a subsequence of $f_n^{(i)}$ such that for all $n, f_n^{(i)}(t) = f_n^{(i)}(T_{i+1})$ for all t in T_{i+1} and $f_n^{(i+1)}(T_{i+1})$ converges weakly to an element, say $f(T_{i+1})$, in K.

Since K is weakly compact, for all $x \in K$ there exists M > 0 such that $||x|| \leq M$. Using this fact it is now easy to show that the sequence $f_n^{(n)}$ is bounded and uniformly integrable. We can therefore apply Brooks's extension [1, Theorem 3] of Vitali's convergence theorem to claim that $f \in L_1(\mu, X)$ and hence $f \in \tilde{K}$ and that $||f - f_n^{(n)}||_1 \to 0$. Then, certainly $\int f_n^{(n)} dF \to \int f dF$.

We now claim that ϕ attains its supremum on \tilde{K} at f. Suppose not; that is there exists $z \in \tilde{K}$ such that

$$\phi(z) = \int_{T} z \, dF > \int_{T} f \, dF = \phi(f). \tag{1}$$

For each partition π in Π , define the linear operator $E_{\pi}: L_1(\mu, X) \to L_1(\mu, X)$ by

$$E_{\pi}(z) = \sum_{T_i \in \pi} \left[\frac{1}{\mu(T_i)} \int_{T_i} z(t) d\mu(t) \right] \chi_{T_i},$$

where χ_A is the characteristic function of A and the 0/0 = 0 convention is in force. By the mean value theorem for the Bochner integral [4, Corollary 8, p. 48] and the convexity of

K, certainly $\frac{1}{\mu(T_i)} \int_{T_i} z(t) d\mu(t) \in K$. Thus $E_{\pi}(z) \in \tilde{K}$. We can now apply Lemma 1 in [3, p. 67] to assert that $||E_{\pi_n}(z) - z||_1 \to 0$. Then certainly $\int_T E_{\pi_n}(z) dF \to \int_T z dF$.

However by construction,

$$\int_{T} E_{\pi_n}(z) \, dF \leq \int_{T} f_n^{(n)} \, dF.$$

By taking limits on both sides, we obtain our sought-after contradiction to (1).

REFERENCES

1. J. K. Brooks, Equicontinuous sets of measures and applications to Vitali's integral convergence theorem and control measures, *Advances in Math.* 10 (1973), 165–171.

2. W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327.

3. J. Diestel, Remarks on weak compactness in $L_1(\mu, X)$, Glasgow Math. J. 18 (1977), 87-91.

4. J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society (Providence, Rhode Island, 1977).

5. R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129-140.

The Johns Hopkins University Baltimore Maryland 21218 U.S.A.

46